1
|
Joshi R, Ahmadi H, Gardner K, Bright RK, Wang W, Li W. Advances in microfluidic platforms for tumor cell phenotyping: from bench to bedside. LAB ON A CHIP 2025; 25:856-883. [PMID: 39774602 PMCID: PMC11859771 DOI: 10.1039/d4lc00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Heterogeneities among tumor cells significantly contribute towards cancer progression and therapeutic inefficiency. Hence, understanding the nature of cancer through liquid biopsies and isolation of circulating tumor cells (CTCs) has gained considerable interest over the years. Microfluidics has emerged as one of the most popular platforms for performing liquid biopsy applications. Various label-free and labeling techniques using microfluidic platforms have been developed, the majority of which focus on CTC isolation from normal blood cells. However, sorting and profiling of various cell phenotypes present amongst those CTCs is equally important for prognostics and development of personalized therapies. In this review, firstly, we discuss the biophysical and biochemical heterogeneities associated with tumor cells and CTCs which contribute to cancer progression. Moreover, we discuss the recently developed microfluidic platforms for sorting and profiling of tumor cells and CTCs. These techniques are broadly classified into biophysical and biochemical phenotyping methods. Biophysical methods are further classified into mechanical and electrical phenotyping. While biochemical techniques have been categorized into surface antigen expressions, metabolism, and chemotaxis-based phenotyping methods. We also shed light on clinical studies performed with these platforms over the years and conclude with an outlook for the future development in this field.
Collapse
Affiliation(s)
- Rutwik Joshi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hesaneh Ahmadi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Karl Gardner
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Robert K Bright
- Department of Immunology & Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
2
|
Shulman M, Mathew T, Trivedi A, Gholizadeh A, Colcord C, Wiley R, Allen KS, Thangam L, Voss K, Abbyad P. Stepwise isolation of diverse metabolic cell populations using sorting by interfacial tension (SIFT). LAB ON A CHIP 2025; 25:383-392. [PMID: 39744996 PMCID: PMC11910337 DOI: 10.1039/d4lc00792a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
We present here a passive and label-free droplet microfluidic platform to sort cells stepwise by lactate and proton secretion from glycolysis. A technology developed in our lab, Sorting by Interfacial Tension (SIFT), sorts droplets containing single cells into two populations based on pH by using interfacial tension. Cellular glycolysis lowers the pH of droplets through proton secretion, enabling passive selection based on interfacial tension and hence single-cell glycolysis. The SIFT technique is expanded here by exploiting the dynamic droplet acidification from surfactant adsorption that leads to a concurrent increase in interfacial tension. This allows multiple microfabricated rails at different downstream positions to isolate cells with distinct glycolytic levels. The device is used to correlate sorted cells with three levels of glycolysis with a conventional surface marker for T-cell activation. As glycolysis is associated with both disease and cell state, this technology facilitates the sorting and analysis of crucial cell subpopulations for applications in oncology, immunology and immunotherapy.
Collapse
Affiliation(s)
- Matthew Shulman
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Thomas Mathew
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Aria Trivedi
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Azam Gholizadeh
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Charlotte Colcord
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Ryan Wiley
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Kiron S Allen
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Lakshmi Thangam
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Kelsey Voss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Paul Abbyad
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
| |
Collapse
|
3
|
Zhao Q, Li S, Krall L, Li Q, Sun R, Yin Y, Fu J, Zhang X, Wang Y, Yang M. Deciphering cellular complexity: advances and future directions in single-cell protein analysis. Front Bioeng Biotechnol 2025; 12:1507460. [PMID: 39877263 PMCID: PMC11772399 DOI: 10.3389/fbioe.2024.1507460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Single-cell protein analysis has emerged as a powerful tool for understanding cellular heterogeneity and deciphering the complex mechanisms governing cellular function and fate. This review provides a comprehensive examination of the latest methodologies, including sophisticated cell isolation techniques (Fluorescence-Activated Cell Sorting (FACS), Magnetic-Activated Cell Sorting (MACS), Laser Capture Microdissection (LCM), manual cell picking, and microfluidics) and advanced approaches for protein profiling and protein-protein interaction analysis. The unique strengths, limitations, and opportunities of each method are discussed, along with their contributions to unraveling gene regulatory networks, cellular states, and disease mechanisms. The importance of data analysis and computational methods in extracting meaningful biological insights from the complex data generated by these technologies is also highlighted. By discussing recent progress, technological innovations, and potential future directions, this review emphasizes the critical role of single-cell protein analysis in advancing life science research and its promising applications in precision medicine, biomarker discovery, and targeted therapeutics. Deciphering cellular complexity at the single-cell level holds immense potential for transforming our understanding of biological processes and ultimately improving human health.
Collapse
Affiliation(s)
- Qirui Zhao
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Shan Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Leonard Krall
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qianyu Li
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Rongyuan Sun
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuqi Yin
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Jingyi Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xu Zhang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yonghua Wang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Mei Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Cheng G, Kuan CY, Lou KW, Ho Y. Light-Responsive Materials in Droplet Manipulation for Biochemical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2313935. [PMID: 38379512 PMCID: PMC11733724 DOI: 10.1002/adma.202313935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Miniaturized droplets, characterized by well-controlled microenvironments and capability for parallel processing, have significantly advanced the studies on enzymatic evolution, molecular diagnostics, and single-cell analysis. However, manipulation of small-sized droplets, including moving, merging, and trapping of the targeted droplets for complex biochemical assays and subsequent analysis, is not trivial and remains technically demanding. Among various techniques, light-driven methods stand out as a promising candidate for droplet manipulation in a facile and flexible manner, given the features of contactless interaction, high spatiotemporal resolution, and biocompatibility. This review therefore compiles an in-depth discussion of the governing mechanisms underpinning light-driven droplet manipulation. Besides, light-responsive materials, representing the core of light-matter interaction and the key character converting light into different forms of energy, are particularly assessed in this review. Recent advancements in light-responsive materials and the most notable applications are comprehensively archived and evaluated. Continuous innovations and rational engineering of light-responsive materials are expected to propel the development of light-driven droplet manipulation, equip droplets with enhanced functionality, and broaden the applications of droplets for biochemical studies and routine biochemical investigations.
Collapse
Affiliation(s)
- Guangyao Cheng
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Chit Yau Kuan
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Kuan Wen Lou
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SAR999077China
| | - Yi‐Ping Ho
- Department of Biomedical EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
- State Key Laboratory of Marine PollutionCity University of Hong KongHong Kong SAR999077China
- Centre for Novel BiomaterialsThe Chinese University of Hong KongHong Kong SAR999077China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and GeneticsThe Chinese University of Hong KongHong Kong SAR999077China
- The Ministry of Education Key Laboratory of Regeneration MedicineThe Chinese University of Hong KongHong Kong SAR999077China
| |
Collapse
|
5
|
Potenza L, Kozon L, Drewniak L, Kaminski TS. Passive Droplet Microfluidic Platform for High-Throughput Screening of Microbial Proteolytic Activity. Anal Chem 2024; 96:15931-15940. [PMID: 39320273 PMCID: PMC11465220 DOI: 10.1021/acs.analchem.4c02979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
Traditional bacterial isolation methods are often costly, have limited throughput, and may not accurately reflect the true microbial community composition. Consequently, identifying rare or slow-growing taxa becomes challenging. Over the past decade, a new approach has been proposed to replace traditional flasks or multiwell plates with ultrahigh-throughput droplet microfluidic screening assays. In this study, we present a novel passive droplet-based method designed for isolating proteolytic microorganisms, which are crucial in various biotechnology industries. Following the encapsulation of single cells in gelatin microgel compartments and their subsequent clonal cultivation, microcultures are passively sorted at high throughput based on the deformability of droplets. Our novel chip design offers a 50-fold improvement in throughput compared to a previously developed deformability-based droplet sorter. This method expands an array of droplet-based microbial enrichment assays and significantly reduces the time and resources required to isolate proteolytic bacteria strains.
Collapse
Affiliation(s)
- Luca Potenza
- Department
of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Lukasz Kozon
- Department
of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
- Institute
of Physical Chemistry of Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| | - Lukasz Drewniak
- Department
of Environmental Microbiology and Biotechnology, Institute of Microbiology,
Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| | - Tomasz S. Kaminski
- Department
of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02-096, Poland
| |
Collapse
|
6
|
Shulman M, Mathew T, Trivedi A, Gholizadeh A, Colcord C, Wiley R, Allen KS, Thangam L, Voss K, Abbyad P. Stepwise Isolation of Diverse Metabolic Cell Populations Using Sorting by Interfacial Tension (SIFT). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.612740. [PMID: 39386539 PMCID: PMC11463469 DOI: 10.1101/2024.09.23.612740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We present here a passive and label-free droplet microfluidic platform to sort cells stepwise by lactate and proton secretion from glycolysis. A technology developed in our lab, Sorting by Interfacial Tension (SIFT), sorts droplets containing single cells into two populations based on pH by using interfacial tension. Cellular glycolysis lowers the pH of droplets through proton secretion, enabling passive selection based on interfacial tension and hence single-cell glycolysis. The SIFT technique is expanded here by exploiting the dynamic droplet acidification from surfactant adsorption that leads to a concurrent increase in interfacial tension. This allows multiple microfabricated rails at different downstream positions to isolate cells with distinct glycolytic levels. The device is used to correlate sorted cells with three levels of glycolysis with a conventional surface marker for T-cell activation. As glycolysis is associated with both disease and cell state, this technology facilitates the sorting and analysis of crucial cell subpopulations for applications in oncology, immunology and immunotherapy.
Collapse
|
7
|
Vladisaljević GT. Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules. MICROMACHINES 2024; 15:971. [PMID: 39203623 PMCID: PMC11356158 DOI: 10.3390/mi15080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024]
Abstract
Directed evolution is a powerful technique for creating biomolecules such as proteins and nucleic acids with tailor-made properties for therapeutic and industrial applications by mimicking the natural evolution processes in the laboratory. Droplet microfluidics improved classical directed evolution by enabling time-consuming and laborious steps in this iterative process to be performed within monodispersed droplets in a highly controlled and automated manner. Droplet microfluidic chips can generate, manipulate, and sort individual droplets at kilohertz rates in a user-defined microchannel geometry, allowing new strategies for high-throughput screening and evolution of biomolecules. In this review, we discuss directed evolution studies in which droplet-based microfluidic systems were used to screen and improve the functional properties of biomolecules. We provide a systematic overview of basic on-chip fluidic operations, including reagent mixing by merging continuous fluid streams and droplet pairs, reagent addition by picoinjection, droplet generation, droplet incubation in delay lines, chambers and hydrodynamic traps, and droplet sorting techniques. Various microfluidic strategies for directed evolution using single and multiple emulsions and biomimetic materials (giant lipid vesicles, microgels, and microcapsules) are highlighted. Completely cell-free microfluidic-assisted in vitro compartmentalization methods that eliminate the need to clone DNA into cells after each round of mutagenesis are also presented.
Collapse
Affiliation(s)
- Goran T Vladisaljević
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
8
|
Liu Y, Cui X, Lu R, Yang D, Ai Y, Cheow LF. Digital Sort-Enabled Counting Allows Absolute Electrical Quantification of Target Nucleic Acid. ACS Sens 2024; 9:2695-2702. [PMID: 38747895 DOI: 10.1021/acssensors.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Quantitative nucleic acid amplification tests are of great importance for diagnostics, but current approaches require complex and costly optical setups that limit their nonlaboratory applications. Herein we describe the implementation of a microfluidics platform that can perform binary DNA-amplification-activated droplet sorting. The digital sort-enabled counting (DISCO) platform enables label-free absolute quantification of the nucleic acid. This is achieved by provoking a pH change in droplets through a loop-mediated isothermal amplification (LAMP) reaction, followed by using sorting by interfacial tension (SIFT) to direct positive and negative droplets to different outlets. With the use of on-chip electrodes at both outlets, we demonstrate that the digital electrical counting of target DNA and RNA can be realized. DISCO is a promising approach for realizing sensitive nucleic acid quantification in point-of-care settings.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Xu Cui
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Ri Lu
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
| | - Dahou Yang
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
| | - Ye Ai
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore 387372, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering and Institute for Health Innovation and Technology, National University of Singapore, Singapore 119077, Singapore
- Critical Analytics for Manufacturing Personalized Medicine, Singapore MIT Alliance for Research and Technology, Singapore 138602, Singapore
| |
Collapse
|
9
|
Staskiewicz K, Dabrowska-Zawada M, Kozon L, Olszewska Z, Drewniak L, Kaminski TS. Droplet microfluidic system for high throughput and passive selection of bacteria producing biosurfactants. LAB ON A CHIP 2024; 24:1947-1956. [PMID: 38436364 DOI: 10.1039/d3lc00656e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Traditional methods for the enrichment of microorganisms rely on growth in a selective liquid medium or on an agar plate, followed by tedious characterization. Droplet microfluidic techniques have been recently used to cultivate microorganisms and preserve enriched bacterial taxonomic diversity. However, new methods are needed to select droplets comprising not only growing microorganisms but also those exhibiting specific properties, such as the production of value-added compounds. We describe here a droplet microfluidic screening technique for the functional selection of biosurfactant-producing microorganisms, which are of great interest in the bioremediation and biotechnology industries. Single bacterial cells are first encapsulated into picoliter droplets for clonal cultivation and then passively sorted at high throughput based on changes in interfacial tension in individual droplets. Our method expands droplet-based microbial enrichment with a novel approach that reduces the time and resources needed for the selection of surfactant-producing bacteria.
Collapse
Affiliation(s)
- Klaudia Staskiewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
- Dioscuri Centre for Physics and Chemistry of Bacteria, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Dabrowska-Zawada
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | - Lukasz Kozon
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Zofia Olszewska
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
| | - Tomasz S Kaminski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland.
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Poland
| |
Collapse
|
10
|
Zhang Y, Lin Y, Hong X, Di C, Xin Y, Wang X, Qi S, Liu BF, Zhang Z, Du W. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall. Anal Bioanal Chem 2023; 415:5311-5322. [PMID: 37392212 DOI: 10.1007/s00216-023-04806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Droplet microfluidics is a rapidly advancing area of microfluidic technology, which offers numerous advantages for cell analysis, such as isolation and accumulation of signals, by confining cells within droplets. However, controlling cell numbers in droplets is challenging due to the uncertainty of random encapsulation which result in many empty droplets. Therefore, more precise control techniques are needed to achieve efficient encapsulation of cells within droplets. Here, an innovative microfluidic droplet manipulation platform had been developed, which employed positive pressure as a stable and controllable driving force for manipulating fluid within chips. The air cylinder, electro-pneumatics proportional valve, and the microfluidic chip were connected through a capillary, which enabled the formation of a fluid wall by creating a difference in hydrodynamic resistance between two fluid streams at the channel junction. Lowering the pressure of the driving oil phase eliminates hydrodynamic resistance and breaks the fluid wall. Regulating the duration of the fluid wall breakage controls the volume of the introduced fluid. Several important droplet microfluidic manipulations were demonstrated on this microfluidic platform, such as sorting of cells/droplets, sorting of droplets co-encapsulated cells and hydrogels, and active generation of droplets encapsulated with cells in a responsive manner. The simple, on-demand microfluidic platform was featured with high stability, good controllability, and compatibility with other droplet microfluidic technologies.
Collapse
Affiliation(s)
- Yiwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Lin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Di
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuelai Xin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinru Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuhong Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhihong Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
11
|
Sun G, Qu L, Azi F, Liu Y, Li J, Lv X, Du G, Chen J, Chen CH, Liu L. Recent progress in high-throughput droplet screening and sorting for bioanalysis. Biosens Bioelectron 2023; 225:115107. [PMID: 36731396 DOI: 10.1016/j.bios.2023.115107] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Owing to its ability to isolate single cells and perform high-throughput sorting, droplet sorting has been widely applied in several research fields. Compared with flow cytometry, droplet allows the encapsulation of single cells for cell secretion or lysate analysis. With the rapid development of this technology in the past decade, various droplet sorting devices with high throughput and accuracy have been developed. A droplet sorter with the highest sorting throughput of 30,000 droplets per second was developed in 2015. Since then, increased attention has been paid to expanding the possibilities of droplet sorting technology and strengthening its advantages over flow cytometry. This review aimed to summarize the recent progress in droplet sorting technology from the perspectives of device design, detection signal, actuating force, and applications. Technical details for improving droplet sorting through various approaches are introduced and discussed. Finally, we discuss the current limitations of droplet sorting for single-cell studies along with the existing gap between the laboratory and industry and provide our insights for future development of droplet sorters.
Collapse
Affiliation(s)
- Guoyun Sun
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Lisha Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology GTIIT, Shantou, Guangdong, 515063, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Sun G, Wu Y, Huang Z, Liu Y, Li J, Du G, Lv X, Liu L. Directed evolution of diacetylchitobiose deacetylase via high-throughput droplet sorting with a novel, bacteria-based biosensor. Biosens Bioelectron 2023; 219:114818. [PMID: 36327560 DOI: 10.1016/j.bios.2022.114818] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
Numerous biological disciplines rely on high-throughput cell sorting. Flow cytometry, the current gold standard, is capable of ultrahigh-throughput cell sorting, but measurements are primarily limited to cell size and surface marker. Droplet sorting technology is gaining increasing attention with the ability to provide an individual environment for the analysis of single-cell secretion. Although various droplet detecting methods, such as fluorescence, absorbance, mass spectrum, imaging analysis, have been developed for droplet sorting, it remains challenging to establish high-throughput sorting methods for numerous analytes. We aim to develop a high-throughput sorting system based on the glucosamine (GlcN) measurement for the directed evolution of diacetylchitobiose deacetylase (Dac), the key enzyme for GlcN production. To overcome the limitation that no high-throughput sorting system existed for GlcN, we designed a novel bacteria-based biosensor capable of converting GlcN to a positively correlated fluorescence signal. Through characterization and optimization, it was possible to detect GlcN in droplets for high-throughput droplet sorting. We recovered the best Dac mutant S60I/R157T/F168S after sorting ∼0.2 million Dac mutants; its activity was 48.6 ± 1.5 U/mL, which was 1.8-times that of our previously discovered Dac mutant R157T (27.2 ± 1.8 U/mL). This result successfully demonstrated the combination of high-throughput droplet sorting technology and a bacteria-based biosensor, which could facilitate the industrial production of GlcN and serve as a model for similar droplet sorting applications.
Collapse
Affiliation(s)
- Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Ziyang Huang
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
13
|
Zielke C, Gutierrez Ramirez AJ, Voss K, Ryan MS, Gholizadeh A, Rathmell JC, Abbyad P. Droplet Microfluidic Technology for the Early and Label-Free Isolation of Highly-Glycolytic, Activated T-Cells. MICROMACHINES 2022; 13:1442. [PMID: 36144067 PMCID: PMC9503730 DOI: 10.3390/mi13091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
A label-free, fixation-free and passive sorting method is presented to isolate activated T-cells shortly after activation and prior to the display of activation surface markers. It uses a recently developed sorting platform dubbed "Sorting by Interfacial Tension" (SIFT) that sorts droplets based on pH. After polyclonal (anti-CD3/CD28 bead) activation and a brief incubation on chip, droplets containing activated T-cells display a lower pH than those containing naive cells due to increased glycolysis. Under specific surfactant conditions, a change in pH can lead to a concurrent increase in droplet interfacial tension. The isolation of activated T-cells on chip is hence achieved as flattened droplets are displaced as they encounter a micro-fabricated trench oriented diagonally with respect to the direction of flow. This technique leads to an enrichment of activated primary CD4+ T-cells to over 95% from an initial mixed population of naive cells and cells activated for as little as 15 min. Moreover, since the pH change is correlated to successful activation, the technique allows the isolation of T-cells with the earliest activation and highest glycolysis, an important feature for the testing of T-cell activation modulators and to determine regulators and predictors of differentiation outcomes.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA 95053, USA
| | | | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maya S. Ryan
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA 95053, USA
| | - Azam Gholizadeh
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA 95053, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Paul Abbyad
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA 95053, USA
| |
Collapse
|
14
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021; 60:24368-24387. [PMID: 33539653 PMCID: PMC8596820 DOI: 10.1002/anie.202016154] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
15
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| |
Collapse
|
16
|
Fu X, Zhang Y, Xu Q, Sun X, Meng F. Recent Advances on Sorting Methods of High-Throughput Droplet-Based Microfluidics in Enzyme Directed Evolution. Front Chem 2021; 9:666867. [PMID: 33996758 PMCID: PMC8114877 DOI: 10.3389/fchem.2021.666867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Droplet-based microfluidics has been widely applied in enzyme directed evolution (DE), in either cell or cell-free system, due to its low cost and high throughput. As the isolation principles are based on the labeled or label-free characteristics in the droplets, sorting method contributes mostly to the efficiency of the whole system. Fluorescence-activated droplet sorting (FADS) is the mostly applied labeled method but faces challenges of target enzyme scope. Label-free sorting methods show potential to greatly broaden the microfluidic application range. Here, we review the developments of droplet sorting methods through a comprehensive literature survey, including labeled detections [FADS and absorbance-activated droplet sorting (AADS)] and label-free detections [electrochemical-based droplet sorting (ECDS), mass-activated droplet sorting (MADS), Raman-activated droplet sorting (RADS), and nuclear magnetic resonance-based droplet sorting (NMR-DS)]. We highlight recent cases in the last 5 years in which novel enzymes or highly efficient variants are generated by microfluidic DE. In addition, the advantages and challenges of different sorting methods are briefly discussed to provide an outlook for future applications in enzyme DE.
Collapse
Affiliation(s)
- Xiaozhi Fu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yueying Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Xu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaomeng Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fanda Meng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
17
|
Guo QR, Zhang LL, Liu JF, Li Z, Li JJ, Zhou WM, Wang H, Li JQ, Liu DY, Yu XY, Zhang JY. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics 2021; 5:73-89. [PMID: 33391976 PMCID: PMC7738943 DOI: 10.7150/ntno.49614] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Microfluidic chip is not a chip in the traditional sense. It is technologies that control fluids at the micro level. As a burgeoning biochip, microfluidic chips integrate multiple disciplines, including physiology, pathology, cell biology, biophysics, engineering mechanics, mechanical design, materials science, and so on. The application of microfluidic chip has shown tremendous promise in the field of cancer therapy in the past three decades. Various types of cell and tissue cultures, including 2D cell culture, 3D cell culture and tissue organoid culture could be performed on microfluidic chips. Patient-derived cancer cells and tissues can be cultured on microfluidic chips in a visible, controllable, and high-throughput manner, which greatly advances the process of personalized medicine. Moreover, the functionality of microfluidic chip is greatly expanding due to the customizable nature. In this review, we introduce its application in developing cancer preclinical models, detecting cancer biomarkers, screening anti-cancer drugs, exploring tumor heterogeneity and producing nano-drugs. We highlight the functions and recent development of microfluidic chip to provide references for advancing cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao-ru Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Ling-ling Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Ji-fang Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, P.R.China
| | - Jia-jun Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Wen-min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, P.R.China
| | - Jing-quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, P.R.China
| | - Da-yu Liu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, P.R.China
| | - Xi-yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
| | - Jian-ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, P.R.China
- The First Affiliated Hospital, Hainan Medical University, Haikou, P.R.China
| |
Collapse
|
18
|
Berlanda SF, Breitfeld M, Dietsche CL, Dittrich PS. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal Chem 2020; 93:311-331. [DOI: 10.1021/acs.analchem.0c04366] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simon F. Berlanda
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Maximilian Breitfeld
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Claudius L. Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
19
|
Method for Passive Droplet Sorting after Photo-Tagging. MICROMACHINES 2020; 11:mi11110964. [PMID: 33126559 PMCID: PMC7692103 DOI: 10.3390/mi11110964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
We present a method to photo-tag individual microfluidic droplets for latter selection by passive sorting. The use of a specific surfactant leads to the interfacial tension to be very sensitive to droplet pH. The photoexcitation of droplets containing a photoacid, pyranine, leads to a decrease in droplet pH. The concurrent increase in droplet interfacial tension enables the passive selection of irradiated droplets. The technique is used to select individual droplets within a droplet array as illuminated droplets remain in the wells while other droplets are eluted by the flow of the external oil. This method was used to select droplets in an array containing cells at a specific stage of apoptosis. The technique is also adaptable to continuous-flow sorting. By passing confined droplets over a microfabricated trench positioned diagonally in relation to the direction of flow, photo-tagged droplets were directed toward a different chip exit based on their lateral movement. The technique can be performed on a conventional fluorescence microscope and uncouples the observation and selection of droplets, thus enabling the selection on a large variety of signals, or based on qualitative user-defined features.
Collapse
|
20
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
21
|
Zhang J, Chintalaramulu N, Vadivelu R, An H, Yuan D, Jin J, Ooi CH, Cock IE, Li W, Nguyen NT. Inertial Microfluidic Purification of Floating Cancer Cells for Drug Screening and Three-Dimensional Tumor Models. Anal Chem 2020; 92:11558-11564. [DOI: 10.1021/acs.analchem.0c00273] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane QLD 4111, Australia
| | - Naveen Chintalaramulu
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Raja Vadivelu
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane QLD 4111, Australia
- Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane QLD 4111, Australia
| | - Dan Yuan
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan
| | - Jing Jin
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane QLD 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane QLD 4111, Australia
| | - Ian Edwin Cock
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
- Environmental Futures Research Institute, Nathan Campus, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Weihua Li
- School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane QLD 4111, Australia
| |
Collapse
|
22
|
Zhang X, Wei X, Wei Y, Chen M, Wang J. The up-to-date strategies for the isolation and manipulation of single cells. Talanta 2020; 218:121147. [PMID: 32797903 DOI: 10.1016/j.talanta.2020.121147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Due to the large cellular heterogeneity, the strategies for the isolation and manipulation of single cells have been pronounced indispensable in the fields of disease diagnostics, drug delivery, and cancer biology at the single-cell resolution. Herein, an overview of the up-to-date techniques for precise manipulation/separation and analysis of single-cell is accomplished, these include the various approaches for the isolation and detection of individual cells in flow cytometry, microfluidic systems, micromodule systems, and others. In addition, the advanced application of these protocols is discussed. In particular, a few designs are highlighted for visualization, non-invasion, and intelligentization in single cell analysis, i.e., imaging flow cytometry, label-free microfluidic platform, single-cell capillary probe, and other related techniques. At the present, the main barriers in the various schemes for single cell manipulation which limited their practical applications are their cumbersome construction and single-functionality. The future opportunities and outstanding challenges in the isolation/manipulation of single cells are depicted.
Collapse
Affiliation(s)
- Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yujia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China; Analytical and Testing Center, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| |
Collapse
|
23
|
Zielke C, Pan CW, Gutierrez Ramirez AJ, Feit C, Dobson C, Davidson C, Sandel B, Abbyad P. Microfluidic Platform for the Isolation of Cancer-Cell Subpopulations Based on Single-Cell Glycolysis. Anal Chem 2020; 92:6949-6957. [PMID: 32297730 DOI: 10.1021/acs.analchem.9b05738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High rates of glycolysis in tumors have been associated with cancer metastasis, tumor recurrence, and poor outcomes. In this light, single cells that exhibit high glycolysis are specific targets for therapy. However, the study of these cells requires efficient tools for their isolation. We use a droplet microfluidic technique developed in our lab, Sorting by Interfacial Tension (SIFT), to isolate cancer cell subpopulations based on glycolysis without the use of labels or active sorting components. By controlling the flow conditions on chip, the threshold of selection can be modified, enabling the isolation of cells with different levels of glycolysis. Hypoxia in tumors, that can be simulated with treatment with CoCl2, leads to an increase in glycolysis, and more dangerous tumors. The device was used to enrich CoCl2 treated MDA-MB 231 breast cancer cells from an untreated population. It is also used to sort K562 human chronic myelogenous leukemia cells that have either been treated or untreated with 2-deoxy-d-glucose (2DG), a pharmaceutical that targets cell metabolism. The technique provides a facile and robust way of separating cells based on elevated glycolytic activity; a biomarker associated with cancer cell malignancy.
Collapse
Affiliation(s)
- Claudia Zielke
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Ching W Pan
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Adriana J Gutierrez Ramirez
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Cameron Feit
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Chandler Dobson
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Catherine Davidson
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| | - Brody Sandel
- Department of Biology, Santa Clara University, Santa Clara, California 95053, United States
| | - Paul Abbyad
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, California 95053, United States
| |
Collapse
|
24
|
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian M. Freed
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66044, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66044, United States
| |
Collapse
|
25
|
Horvath DG, Braza S, Moore T, Pan CW, Zhu L, Pak OS, Abbyad P. Sorting by interfacial tension (SIFT): Label-free enzyme sorting using droplet microfluidics. Anal Chim Acta 2019; 1089:108-114. [PMID: 31627807 DOI: 10.1016/j.aca.2019.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Droplet microfluidics has the ability to greatly increase the throughput of screening and sorting of enzymes by carrying reagents in picoliter droplets flowing in inert oils. It was found with the use of a specific surfactant, the interfacial tension of droplets can be very sensitive to droplet pH. This enables the sorting of droplets of different pH when confined droplets encounter a microfabricated trench. The device can be extended to sort enzymes, as a large number of enzymatic reactions lead to the production of an acidic or basic product and a concurrent change in solution pH. The progress of an enzymatic reaction is tracked from the position of a flowing train of droplets. We demonstrate the sorting of esterase isoenzymes based on their enzymatic activity. This label-free technology, that we dub droplet sorting by interfacial tension (SIFT), requires no active components and would have applications for enzyme sorting in high-throughput applications that include enzyme screening and directed evolution of enzymes.
Collapse
Affiliation(s)
- Daniel G Horvath
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Samuel Braza
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Trevor Moore
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Ching W Pan
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Lailai Zhu
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA; KTH Mechanics, Stockholm, SE-10044, Sweden
| | - On Shun Pak
- Department of Mechanical Engineering, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Paul Abbyad
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
| |
Collapse
|