1
|
Andrew J, Ezra-Manicum AL, Witika BA. Developments in radionanotheranostic strategies for precision diagnosis and treatment of prostate cancer. EJNMMI Radiopharm Chem 2024; 9:62. [PMID: 39180599 PMCID: PMC11344754 DOI: 10.1186/s41181-024-00295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Prostate Cancer (PCa) is the second most diagnosed urological cancer among men worldwide. Conventional methods used for diagnosis of PCa have several pitfalls which include lack of sensitivity and specificity. On the other hand, traditional treatment of PCa poses challenges such as long-term side effects and the development of multidrug resistance (MDR). MAIN BODY Hence, there is a need for novel PCa agents with the potential to lessen the burden of these adverse effects on patients. Nanotechnology has emerged as a promising approach to support both early diagnosis and effective treatment of tumours by ensuring precise delivery of the drug to the targeted site of the disease. Most cancer-related biological processes occur on the nanoscale hence application of nanotechnology has been greatly appreciated and implemented in the management and therapeutics of cancer. Nuclear medicine plays a significant role in the non-invasive diagnosis and treatment of PCa using appropriate radiopharmaceuticals. This review aims to explore the different radiolabelled nanomaterials to enhance the specific delivery of imaging and therapeutic agents to cancer cells. Thereafter, the review appraises the advantages and disadvantages of these modalities and then discusses and outlines the benefits of radiolabelled nanomaterials in targeting cancerous prostatic tumours. Moreover, the nanoradiotheranostic approaches currently developed for PCa are discussed and finally the prospects of combining radiopharmaceuticals with nanotechnology in improving PCa outcomes will be highlighted. CONCLUSION Nanomaterials have great potential, but safety and biocompatibility issues remain. Notwithstanding, the combination of nanomaterials with radiotherapeutics may improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Jubilee Andrew
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa
| | - Amanda-Lee Ezra-Manicum
- Department of Chemistry, Faculty of Science, Tshwane University of Technology (Arcadia Campus), Pretoria, South Africa
| | - Bwalya Angel Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria, 0208, South Africa.
| |
Collapse
|
2
|
Gape PMD, Schultz MK, Stasiuk GJ, Terry SYA. Towards Effective Targeted Alpha Therapy for Neuroendocrine Tumours: A Review. Pharmaceuticals (Basel) 2024; 17:334. [PMID: 38543120 PMCID: PMC10974115 DOI: 10.3390/ph17030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
This review article explores the evolving landscape of Molecular Radiotherapy (MRT), emphasizing Peptide Receptor Radionuclide Therapy (PRRT) for neuroendocrine tumours (NETs). The primary focus is on the transition from β-emitting radiopharmaceuticals to α-emitting agents in PRRT, offering a critical analysis of the radiobiological basis, clinical applications, and ongoing developments in Targeted Alpha Therapy (TAT). Through an extensive literature review, the article delves into the mechanisms and effectiveness of PRRT in targeting somatostatin subtype 2 receptors, highlighting both its successes and limitations. The discussion extends to the emerging paradigm of TAT, underlining its higher potency and specificity with α-particle emissions, which promise enhanced therapeutic efficacy and reduced toxicity. The review critically evaluates preclinical and clinical data, emphasizing the need for standardised dosimetry and a deeper understanding of the dose-response relationship in TAT. The review concludes by underscoring the significant potential of TAT in treating SSTR2-overexpressing cancers, especially in patients refractory to β-PRRT, while also acknowledging the current challenges and the necessity for further research to optimize treatment protocols.
Collapse
Affiliation(s)
- Paul M. D. Gape
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| | - Michael K. Schultz
- Departments of Radiology, Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA;
- Perspective Therapeutics, Coralville, IA 52241, USA
| | - Graeme J. Stasiuk
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| | - Samantha Y. A. Terry
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| |
Collapse
|
3
|
Miederer M, Benešová-Schäfer M, Mamat C, Kästner D, Pretze M, Michler E, Brogsitter C, Kotzerke J, Kopka K, Scheinberg DA, McDevitt MR. Alpha-Emitting Radionuclides: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:76. [PMID: 38256909 PMCID: PMC10821197 DOI: 10.3390/ph17010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The use of radionuclides for targeted endoradiotherapy is a rapidly growing field in oncology. In particular, the focus on the biological effects of different radiation qualities is an important factor in understanding and implementing new therapies. Together with the combined approach of imaging and therapy, therapeutic nuclear medicine has recently made great progress. A particular area of research is the use of alpha-emitting radionuclides, which have unique physical properties associated with outstanding advantages, e.g., for single tumor cell targeting. Here, recent results and open questions regarding the production of alpha-emitting isotopes as well as their chemical combination with carrier molecules and clinical experience from compassionate use reports and clinical trials are discussed.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - David Kästner
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Jörg Kotzerke
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - David A. Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA;
| | - Michael R. McDevitt
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
4
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
5
|
Fu Y, Farnham J, Li W, Powers B, Humphries D, Picard F. LC-MS/MS Bioanalysis of Radioligand Therapeutic Drug Candidate for Preclinical Toxicokinetic Assessment. Anal Chem 2023. [PMID: 37402311 DOI: 10.1021/acs.analchem.3c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Radioligand therapy (RLT) has gained significant momentum in recent years in the diagnosis, treatment, and monitoring of cancers. In preclinical development, the safety profile of RLT drug candidate(s) is investigated at relatively low dose levels using the cold (non-radioactive, e.g., 175Lu) ligand as a surrogate of the hot (radioactive, e.g., 177Lu) one in the "ligand-linker-chelator" complex. The formulation of the test article used in preclinical safety studies contains a mixture of free ligand (i.e., ligand-linker-chelator without metal) and cold ligand (i.e., ligand-linker-chelator with non-radioactive metal) in a similar molar ratio as seen under the manufacturing conditions for the RLT drug for clinical use, where only a fraction of free ligand molecules chelate the radioactive metal to form a hot ligand. In this very first report of LC-MS/MS bioanalysis of RLT molecules in support of a regulated preclinical safety assessment study, a highly selective and sensitive LC-MS/MS bioanalytical method was developed for the simultaneous determination of free ligand (NVS001) and cold ligand (175Lu-NVS001) in rat and dog plasma. Several unexpected technical challenges in relation to LC-MS/MS of RLT molecules were successfully addressed. The challenges include poor assay sensitivity of the free ligand NVS001, formation of the free ligand (NVS001) with endogenous metal (e.g., potassium), Ga loss from the Ga-chelated internal standard during sample extraction and analysis, "instability" of the analytes at low concentrations, and inconsistent IS response in the extracted plasma samples. The methods were validated according to the current regulatory requirements in a dynamic range of 0.5-250 ng/mL for both the free and cold ligands using a 25 μL sample volume. The validated method was successfully implemented in sample analysis in support of regulated safety studies, with very good results from incurred sample reanalysis. The current LC-MS/MS workflow can be expanded to quantitative analysis of other RLTs in support of preclinical RLT drug development.
Collapse
Affiliation(s)
- Yunlin Fu
- Pharmacokinetic Sciences─Drug Disposition, Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - James Farnham
- Labcorp Drug Development, 3301 Kinsman Boulevard, Madison, Wisconsin 53704, United States
| | - Wenkui Li
- Pharmacokinetic Sciences─Drug Disposition, Novartis Institutes for BioMedical Research, One Health Plaza, East Hanover, New Jersey 07936, United States
| | - Brendan Powers
- Labcorp Drug Development, 3301 Kinsman Boulevard, Madison, Wisconsin 53704, United States
| | - David Humphries
- Labcorp Drug Development, 3301 Kinsman Boulevard, Madison, Wisconsin 53704, United States
| | - Franck Picard
- Pharmacokinetic Sciences─Drug Disposition, Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| |
Collapse
|
6
|
Gao Y, Jennifer G A, Varathan E, Schreckenbach G. Understanding the Coordination Chemistry of Am III/Cm III in the DOTA Cavity: Insights from Energetics and Electronic Structure Theory. Inorg Chem 2023; 62:3229-3237. [PMID: 36748113 DOI: 10.1021/acs.inorgchem.2c04235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The minor actinides Am/Cm show multiple possibilities for coordination, providing great opportunities for their extraction and adsorption separation. Herein, we report complexation in an aqueous medium of AmIII/CmIII in the DOTA (H4DOTA = 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cavity with axial ligands (OH-, F-, and H2O), based on the energetics and electronic structure properties using density functional theory (DFT). The formation and substitution reactions of OH--capped complexes are more likely to occur due to their enhanced hydration Gibbs free energies, followed by F-, and then H2O. Both the longer An-ODOTA bond lengths and the larger bite angle (∠O-An-O) in the OH--capped complexes reflect the enhanced coordination provided by the axial ligand, slightly less so for F-. Energy decomposition analysis based on the electronic structure supports the preference for OH--capped complexes with a near-perfect balance between attractive and repulsive contributions toward the interaction. Furthermore, molecular orbital analysis revealed that the frontier molecular orbitals of Am and Cm complexes are substantially different; that is, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) compositions of the Am complexes are all contributed by 5f, while the HOMO and LUMO compositions of the Cm complexes are derived from 5f and 6d, respectively. Finally, the metal-exchange reactions demonstrate competitive complexation of DOTA toward AmIII over CmIII for the OH--capped system. These results imply the importance of coordination chemistry in actinide chemistry in general and specifically in AmIII/CmIII solution chemistry.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.,National Health Commission Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Abigail Jennifer G
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Elumalai Varathan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
7
|
Theoretical Study of Complexes of Tetravalent Actinides with DOTA. Symmetry (Basel) 2022. [DOI: 10.3390/sym14112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
1,4,7,10-Tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid (H4DOTA) is a prominent chelating ligand with potential applications in various fields, from radiotherapy to the separation of fission products. The present study explores the stability, structure, and bonding properties of its complexes with tetravalent actinides (An = Th, U, Np, Pu) using density functional theory and relativistic multireference calculations. Neutral complexes prefer to form symmetric (C4) structures with DOTA. The first coordination sphere of the actinide ions is readily saturated by a weakly bonded H2O ligand. The latter ligand reduces the molecular symmetry while exerting only marginal effects on the properties of the parent complex. An-ligand bonding is mainly electrostatic, but there are also significant charge-transfer contributions from DOTA to the An 6d/5f orbitals. The charge-transfer interactions and the covalent character of bonding increase gradually in the order of Th < U < Np < Pu, as indicated by analysis of the electron density distribution using the Quantum Theory of Atoms in Molecules.
Collapse
|
8
|
Kovács A. Theoretical Study of Actinide(III)-DOTA Complexes. ACS OMEGA 2021; 6:13321-13330. [PMID: 34056480 PMCID: PMC8158830 DOI: 10.1021/acsomega.1c01292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
1,4,7,10-Tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid (DOTA) is a prominent chelating ligand used in imaging contrast agents and radiopharmaceuticals. The present study explores the stabilities, structures, and bonding properties of its complexes with trivalent actinides (Ac, U, Np, Pu, Am, Cm, Cf) using density functional theory and relativistic multireference calculations. For reference purposes, the La- and Lu-DOTA complexes are also included. Similar to La3+, the large An3+ ions prefer the TSAP conformer of the ligand. The An-ligand bonding is mainly electrostatic, with minor charge transfer contributions to the An 6d orbitals. For the assessment of the thermodynamic stabilities in aqueous solution, PCM radii to use in conjunction with the SMD solvation model were developed. Basically, the thermodynamic stability of the DOTA complexes increases along the An row but with notable counteracting of spin-orbit coupling.
Collapse
Affiliation(s)
- Attila Kovács
- European Commission Joint
Research Centre, P. O. Box 2340, Karlsruhe D-76125, Germany
| |
Collapse
|
9
|
Gao Y, Varathan E, Grover P, Schreckenbach G. Computational Characterization of Ac III-DOTA Complexes in Aqueous Solution. Inorg Chem 2021; 60:6971-6975. [PMID: 33909433 DOI: 10.1021/acs.inorgchem.1c00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) aqueous complexes of AcIII with H2O, dimethyl sulfoxide (DMSO), OH-, and F- as axial ligands were studied using density functional theory. Formation of the [AcIII(DOTA)(OH)]2- and [AcIII(DOTA)(F)]2- complexes is predicted to be significantly more favorable than that of [AcIII(DOTA)(H2O)]- and [AcIII(DOTA)(DMSO)]- because of the enhanced relative Gibbs free energies. Further electronic structure analyses demonstrate that the type and nature of the bond between Ac and the ligand donor atom is the main driving force that determines the thermodynamic stability of the complexes. Specifically, the [AcIII(DOTA)]- complex strongly binds to OH- and F- via covalent bonds, while the bonding to H2O and DMSO is ionic and relatively weaker.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.,Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Elumalai Varathan
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.,Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Payal Grover
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Georg Schreckenbach
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
10
|
Basu S, Parghane RV, Kamaldeep, Chakrabarty S. Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors. Semin Nucl Med 2020; 50:447-464. [PMID: 32768008 DOI: 10.1053/j.semnuclmed.2020.05.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peptide receptor radionuclide therapy (PRRT), over the years, has evolved as an important modality in the therapeutic armamentarium of advanced, metastatic or inoperable, progressive Neuroendocrine Neoplasms (NENs). This review deliberates on the basic understanding and applied clinical aspects of PRRT in NENs, with special reference to (1) tumor biology and receptor characteristics, (2) molecular PET-CT imaging (in particular the invaluable role of dual-tracer PET with [68Ga]-DOTA-TATE/NOC and [18F]-FDG for exploring tumor biology in continuum and individualizing treatment decision making) and NEN theranostics, (3) relevant radiochemistry of different therapeutic radionuclides (both beta emitting 177Lu-DOTATATE and 90Y-DOTATATE and alpha emitting 225Ac-DOTATATE), and (4) related dosimetric considerations. Successful clinical management of the NENs would require multifactorial considerations, and all the aforementioned points pertaining to the disease process and available logistics are key considerations for state-of-the-art clinical practice and delivering personalized care in this group of patients. Emphasis has been placed on relatively intriguing areas such as (1) NET grade 3 of WHO 2017 classification (ie, Ki-67>20% but well-differentiation features), (2) "Neoadjuvant PRRT," (3) combining chemotherapy and PRRT, (4) 'Sandwich Chemo-PRRT', (5) duo-PRRT and tandem PRRT, (6) resistant functioning disease with nuances in clinical management and how one can advocate PRRT rationally in such clinical settings and individualize the management in a patient specific manner. Relevant clinical management issues related to some difficult case scenarios, which the Nuclear Medicine attending physician should be aware of to run an efficient clinical PRRT services, are described.
Collapse
Affiliation(s)
- Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, India; Homi Bhabha National Institute, Mumbai, India.
| | - Rahul V Parghane
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Mumbai, India; Homi Bhabha National Institute, Mumbai, India
| | - Kamaldeep
- Homi Bhabha National Institute, Mumbai, India; Health Physics Division, Bhabha Atomic Research Centre Mumbai, India
| | - Sudipta Chakrabarty
- Homi Bhabha National Institute, Mumbai, India; Radiochemicals Section, Radiopharmaceuticals Division, Bhabha Atomic Research Centre Mumbai, India
| |
Collapse
|
11
|
Atomic Nanogenerators in Targeted Alpha Therapies: Curie's Legacy in Modern Cancer Management. Pharmaceuticals (Basel) 2020; 13:ph13040076. [PMID: 32340103 PMCID: PMC7243103 DOI: 10.3390/ph13040076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Atomic in vivo nanogenerators such as actinium-225, thorium-227, and radium-223 are of increasing interest and importance in the treatment of patients with metastatic cancer diseases. This is due to their peculiar physical, chemical, and biological characteristics, leading to astonishing responses in otherwise resistant patients. Nevertheless, there are still a few obstacles and hurdles to be overcome that hamper the broader utilization in the clinical setting. Next to the limited supply and relatively high costs, the in vivo complex stability and the fate of the recoiling daughter radionuclides are substantial problems that need to be solved. In radiobiology, the mechanisms underlying treatment efficiency, possible resistance mechanisms, and late side effect occurrence are still far from being understood and need to be unraveled. In this review, the current knowledge on the scientific and clinical background of targeted alpha therapies is summarized. Furthermore, open issues and novel approaches with a focus on the future perspective are discussed. Once these are unraveled, targeted alpha therapies with atomic in vivo nanogenerators can be tailored to suit the needs of each patient when applying careful risk stratification and combination therapies. They have the potential to become one of the major treatment pillars in modern cancer management.
Collapse
|
12
|
Tafreshi NK, Doligalski ML, Tichacek CJ, Pandya DN, Budzevich MM, El-Haddad G, Khushalani NI, Moros EG, McLaughlin ML, Wadas TJ, Morse DL. Development of Targeted Alpha Particle Therapy for Solid Tumors. Molecules 2019; 24:molecules24234314. [PMID: 31779154 PMCID: PMC6930656 DOI: 10.3390/molecules24234314] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Targeted alpha-particle therapy (TAT) aims to selectively deliver radionuclides emitting α-particles (cytotoxic payload) to tumors by chelation to monoclonal antibodies, peptides or small molecules that recognize tumor-associated antigens or cell-surface receptors. Because of the high linear energy transfer (LET) and short range of alpha (α) particles in tissue, cancer cells can be significantly damaged while causing minimal toxicity to surrounding healthy cells. Recent clinical studies have demonstrated the remarkable efficacy of TAT in the treatment of metastatic, castration-resistant prostate cancer. In this comprehensive review, we discuss the current consensus regarding the properties of the α-particle-emitting radionuclides that are potentially relevant for use in the clinic; the TAT-mediated mechanisms responsible for cell death; the different classes of targeting moieties and radiometal chelators available for TAT development; current approaches to calculating radiation dosimetry for TATs; and lead optimization via medicinal chemistry to improve the TAT radiopharmaceutical properties. We have also summarized the use of TATs in pre-clinical and clinical studies to date.
Collapse
Affiliation(s)
- Narges K. Tafreshi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Michael L. Doligalski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Christopher J. Tichacek
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Darpan N. Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (D.N.P.); (T.J.W.)
| | - Mikalai M. Budzevich
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Ghassan El-Haddad
- Depts. of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Nikhil I. Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Eduardo G. Moros
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Physics, University of South Florida, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Mark L. McLaughlin
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, WV & Modulation Therapeutics Inc., 64 Medical Center Drive, Morgantown, WV 26506, USA;
| | - Thaddeus J. Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (D.N.P.); (T.J.W.)
| | - David L. Morse
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
- Department of Physics, University of South Florida, Tampa, FL 33612, USA
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8948; Fax: +1-813-745-8375
| |
Collapse
|