1
|
Swaminathan S, Haribabu J, Karvembu R. From Concept to Cure: The Road Ahead for Ruthenium-Based Anticancer Drugs. ChemMedChem 2024; 19:e202400435. [PMID: 39374112 DOI: 10.1002/cmdc.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Indexed: 10/09/2024]
Abstract
The evolution of chemotherapy, especially the dawn of metal-based drugs, represents a transformative era in cancer treatment. From the serendipitous discovery of mustard gas's cytotoxic effects to the sophisticated development of targeted therapies, chemotherapy has significantly refined. Central to this progression is the incorporation of metal-based compounds, such as platinum (Pt), ruthenium (Ru), and gold (Au), which offer unique mechanisms of action, distinguishing them from organic therapeutics. Among these, Ru complexes, exemplified by BOLD-100 and TLD1433, have shown exceptional promise due to their selective activity, lower propensity for resistance, and the ability to target spescific cellular pathways. This paper explores the journey of such Ru candidates, focusing on the mechanisms, efficacy, and clinical potential of these Ru-based drugs, which stand at the forefront of current research, aiming to provide more targeted, less toxic, and highly effective cancer treatments.
Collapse
Affiliation(s)
- Srividya Swaminathan
- Center for Computational Modelling, Chennai Institute of Technology, Chennai, Tamil Nadu, 600069, India
- Inorganic and Physical Chemistry Laboratory, CSIR-CLRI, Chennai, Tamil Nadu, 600020, India
| | - Jebiti Haribabu
- Faculty of Medicine, University of Atacama, Los Carreras 1579, Copiapo, 1532502, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
| |
Collapse
|
2
|
Boubaker G, Bernal A, Vigneswaran A, Imhof D, de Sousa MCF, Hänggeli KPA, Haudenschild N, Furrer J, Păunescu E, Desiatkina O, Hemphill A. In vitro and in vivo activities of a trithiolato-diRuthenium complex conjugated with sulfadoxine against the apicomplexan parasite Toxoplasma gondii. Int J Parasitol Drugs Drug Resist 2024; 25:100544. [PMID: 38703737 PMCID: PMC11087982 DOI: 10.1016/j.ijpddr.2024.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Organometallic compounds, including Ruthenium complexes, have been widely developed as anti-cancer chemotherapeutics, but have also attracted much interest as potential anti-parasitic drugs. Recently hybrid drugs composed of organometallic Ruthenium moieties that were complexed to different antimicrobial agents were synthesized. One of these compounds, a trithiolato-diRuthenium complex (RU) conjugated to sulfadoxine (SDX), inhibited proliferation of Toxoplasma gondii tachyzoites grown in human foreskin fibroblast (HFF) monolayers with an IC50 < 150 nM, while SDX and the non-modified RU complex applied either individually or as an equimolar mixture were much less potent. In addition, conjugation of SDX to RU lead to decreased HFF cytotoxicity. RU-SDX did not impair the in vitro proliferation of murine splenocytes at concentrations ranging from 0.1 to 0.5 μM but had an impact at 2 μM, and induced zebrafish embryotoxicity at 20 μM, but not at 2 or 0.2 μM. RU-SDX acted parasitostatic but not parasiticidal, and induced transient ultrastructural changes in the mitochondrial matrix of tachyzoites early during treatment. While other compounds that target the mitochondrion such as the uncouplers FCCP and CCCP and another trithiolato-Ruthenium complex conjugated to adenine affected the mitochondrial membrane potential, no such effect was detected for RU-SDX. Evaluation of the in vivo efficacy of RU-SDX in a murine T. gondii oocyst infection model comprised of non-pregnant outbred CD1 mice showed no effects on the cerebral parasite burden, but reduced parasite load in the eyes and in heart tissue.
Collapse
Affiliation(s)
- Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Alice Bernal
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Maria Cristina Ferreira de Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Switzerland.
| | - Noé Haudenschild
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern. Länggass-Strasse 122, 3012, Bern, Switzerland.
| |
Collapse
|
3
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Bugnon Q, Melendez C, Desiatkina O, Fayolles de Chaptes L, Holzer I, Păunescu E, Hilty M, Furrer J. In vitro antibacterial activity of dinuclear thiolato-bridged ruthenium(II)-arene compounds. Microbiol Spectr 2023; 11:e0095423. [PMID: 37815336 PMCID: PMC10714934 DOI: 10.1128/spectrum.00954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The in vitro assessment of diruthenium(II)-arene compounds against Escherichia coli, Streptococcus pneumoniae, and Staphylococcus aureus showed a significant antibacterial activity of some compounds against S. pneumoniae, with minimum inhibitory concentration (MIC) values ranging from 1.3 to 2.6 µM, and a medium activity against E. coli, with MIC of 25 µM. The nature of the substituents anchored on the bridging thiols and the compounds molecular weight appear to significantly influence the antibacterial activity. Fluorescence microscopy showed that these ruthenium compounds enter the bacteria and do not accumulate in the cell wall of gram-positive bacteria. These diruthenium(II)-arene compounds exhibit promising activity against S. aureus and S. pneumoniae and deserve to be considered for further studies, especially the compounds bearing larger benzo-fused lactam substituents.
Collapse
Affiliation(s)
- Quentin Bugnon
- Department of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Camilo Melendez
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Louis Fayolles de Chaptes
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Isabelle Holzer
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| | - Markus Hilty
- Department of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceuticals Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Holzer I, Desiatkina O, Anghel N, Johns SK, Boubaker G, Hemphill A, Furrer J, Păunescu E. Synthesis and Antiparasitic Activity of New Trithiolato-Bridged Dinuclear Ruthenium(II)-arene-carbohydrate Conjugates. Molecules 2023; 28:902. [PMID: 36677958 PMCID: PMC9865825 DOI: 10.3390/molecules28020902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Eight novel carbohydrate-tethered trithiolato dinuclear ruthenium(II)-arene complexes were synthesized using CuAAC ‘click’ (Cu(I)-catalyzed azide-alkyne cycloaddition) reactions, and there in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) and in non-infected human foreskin fibroblasts, HFF, was determined at 0.1 and 1 µM. When evaluated at 1 µM, seven diruthenium-carbohydrate conjugates strongly impaired parasite proliferation by >90%, while HFF viability was retained at 50% or more, and they were further subjected to the half-maximal inhibitory concentration (IC50) measurement on T. gondii β-gal. Results revealed that the biological activity of the hybrids was influenced both by the nature of the carbohydrate (glucose vs. galactose) appended on ruthenium complex and the type/length of the linker between the two units. 23 and 26, two galactose-based diruthenium conjugates, exhibited low IC50 values and reduced effect on HFF viability when applied at 2.5 µM (23: IC50 = 0.032 µM/HFF viability 92% and 26: IC50 = 0.153 µM/HFF viability 97%). Remarkably, compounds 23 and 26 performed significantly better than the corresponding carbohydrate non-modified diruthenium complexes, showing that this type of conjugates are a promising approach for obtaining new antiparasitic compounds with reduced toxicity.
Collapse
Affiliation(s)
- Isabelle Holzer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Serena K. Johns
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- School of Chemistry, Cardiff University, Park Place, Cardiff CF103AT, UK
| | - Ghalia Boubaker
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
6
|
Desiatkina O, Anghel N, Boubaker G, Amdouni Y, Hemphill A, Furrer J, Păunescu E. Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Conjugates Tethered with Lipophilic Units: Synthesis and Toxoplasma gondii Antiparasitic Activity. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Müller J, Schlange C, Heller M, Uldry AC, Braga-Lagache S, Haynes RK, Hemphill A. Proteomic characterization of Toxoplasma gondii ME49 derived strains resistant to the artemisinin derivatives artemiside and artemisone implies potential mode of action independent of ROS formation. Int J Parasitol Drugs Drug Resist 2022; 21:1-12. [PMID: 36512904 PMCID: PMC9763631 DOI: 10.1016/j.ijpddr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The sesquiterpene lactone artemisinin and its amino-artemisinin derivatives artemiside (GC008) and artemisone (GC003) are potent antimalarials. The mode of action of artemisinins against Plasmodium sp is popularly ascribed to 'activation' of the peroxide group by heme-Fe(II) or labile Fe(II) to generate C-radicals that alkylate parasite proteins. An alternative postulate is that artemisinins elicit formation of reactive oxygen species by interfering with flavin disulfide reductases resposible for maintaining intraparasitic redox homeostasis. However, in contradistinction to the heme-activation mechanism, the amino-artemisinins are effective in vitro against non-heme-degrading apicomplexan parasites including T. gondii, with IC 50 values of 50-70 nM, and induce distinct ultrastructural alterations. However, T. gondii strains readily adapted to increased concentrations (2.5 μM) of these two compounds within few days. Thus, T. gondii strains that were resistant against artemisone and artemiside were generated by treating the T. gondii reference strain ME49 with stepwise increasing amounts of these compounds, yielding the artemisone resistant strain GC003R and the artemiside resistant strain GC008R. Differential analyses of the proteomes of these resistant strains compared to the wildtype ME49 revealed that 215 proteins were significantly downregulated in artemisone resistant tachyzoites and only 8 proteins in artemiside resistant tachyzoites as compared to their wildtype. Two proteins, namely a hypothetical protein encoded by ORF TGME49_236950, and the rhoptry neck protein RON2 encoded by ORF TGME49_300100 were downregulated in both resistant strains. Interestingly, eight proteins involved in ROS scavenging including catalase and superoxide dismutase were amongst the differentially downregulated proteins in the artemisone-resistant strain. In parallel, ROS formation was significantly enhanced in isolated tachyzoites from the artemisone resistant strain and - to a lesser extent - in tachyzoites from the artemiside resistant strain as compared to wildtype tachyzoites. These findings suggest that amino-artemisinin derivatives display a mechanism of action in T. gondii distinct from Plasmodium.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Carling Schlange
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Andrew Hemphill
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland.
| |
Collapse
|
8
|
Desiatkina O, Boubaker G, Anghel N, Amdouni Y, Hemphill A, Furrer J, Păunescu E. Synthesis, Photophysical Properties and Biological Evaluation of New Conjugates BODIPY: Dinuclear Trithiolato-Bridged Ruthenium(II)-Arene Complexes. Chembiochem 2022; 23:e202200536. [PMID: 36219484 DOI: 10.1002/cbic.202200536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Indexed: 01/25/2023]
Abstract
The synthesis, photophysical properties and antiparasitic efficacy against Toxoplasma gondii β-gal (RH strain tachyzoites expressing β-galactosidase) grown in human foreskin fibroblast monolayers (HFF) of a series of 15 new conjugates BODIPY-trithiolato-bridged dinuclear ruthenium(II)-arene complexes are reported (BODIPY=4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, derivatives used as fluorescent markers). The influence of the bond type (amide vs. ester), as well as that of the length and nature (alkyl vs. aryl) of the spacer between the dye and the diruthenium(II) complex moiety, on fluorescence and biological activity were evaluated. The assessed photophysical properties revealed that despite an important fluorescence quenching effect observed after conjugating the BODIPY to the diruthenium unit, the hybrids could nevertheless be used as fluorescent tracers. Although the antiparasitic activity of this series of conjugates appears limited, the compounds demonstrate potential as fluorescent probes for investigating the intracellular trafficking of trithiolato-bridged dinuclear Ru(II)-arene complexes in vitro.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.,Laboratoire de Parasitologie, Université de la Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
9
|
Desiatkina O, Mösching M, Anghel N, Boubaker G, Amdouni Y, Hemphill A, Furrer J, Păunescu E. New Nucleic Base-Tethered Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Compounds: Synthesis and Antiparasitic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238173. [PMID: 36500266 PMCID: PMC9738179 DOI: 10.3390/molecules27238173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Aiming toward compounds with improved anti-Toxoplasma activity by exploiting the parasite auxotrophies, a library of nucleobase-tethered trithiolato-bridged dinuclear ruthenium(II)-arene conjugates was synthesized and evaluated. Structural features such as the type of nucleobase and linking unit were progressively modified. For comparison, diruthenium hybrids with other type of molecules were also synthesized and assessed. A total of 37 compounds (diruthenium conjugates and intermediates) were evaluated in a primary screening for in vitro activity against transgenic Toxoplasma gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in non-infected host cells (human foreskin fibroblasts, HFF) was determined by alamarBlue assay. Twenty compounds strongly impairing parasite proliferation with little effect on HFF viability were subjected to T. gondii β-gal half maximal inhibitory concentration determination (IC50) and their toxicity for HFF was assessed at 2.5 µM. Two promising compounds were identified: 14, ester conjugate with 9-(2-oxyethyl)adenine, and 36, a click conjugate bearing a 2-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)methyl substituent, with IC50 values of 0.059 and 0.111 µM respectively, significantly lower compared to pyrimethamine standard (IC50 = 0.326 µM). Both 14 and 36 exhibited low toxicity against HFF when applied at 2.5 µM and are candidates for potential treatment options in a suitable in vivo model.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Martin Mösching
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Laboratoire de Parasitologie, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, Université de la Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Müller J, Boubaker G, Imhof D, Hänggeli K, Haudenschild N, Uldry AC, Braga-Lagache S, Heller M, Ortega-Mora LM, Hemphill A. Differential Affinity Chromatography Coupled to Mass Spectrometry: A Suitable Tool to Identify Common Binding Proteins of a Broad-Range Antimicrobial Peptide Derived from Leucinostatin. Biomedicines 2022; 10:biomedicines10112675. [PMID: 36359195 PMCID: PMC9687860 DOI: 10.3390/biomedicines10112675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/28/2022] Open
Abstract
Leucinostatins are antimicrobial peptides with a broad range of activities against infectious agents as well as mammalian cells. The leucinostatin-derivative peptide ZHAWOC_6027 (peptide 6027) was tested in vitro and in vivo for activity against the intracellular apicomplexan parasite Toxoplasma gondii. While highly efficacious in vitro (EC50 = 2 nM), subcutaneous application of peptide 6027 (3 mg/kg/day for 5 days) in mice experimentally infected with T. gondii oocysts exacerbated the infection, caused mild clinical signs and elevated cerebral parasite load. Peptide 6027 also impaired the proliferation and viability of mouse splenocytes, most notably LPS-stimulated B cells, in vitro. To identify common potential targets in Toxoplasma and murine splenocytes, we performed differential affinity chromatography (DAC) with cell-free extracts from T. gondii tachyzoites and mouse spleens using peptide 6027 or an ineffective analogue (peptide 21,358) coupled to N-hydroxy-succinimide sepharose, followed by mass spectrometry. Proteins specifically binding to peptide 6027 were identified in eluates from the peptide 6027 column but not in peptide 21,358 nor the mock column eluates. In T. gondii eluates, 269 proteins binding specifically to peptide 6027 were identified, while in eluates from mouse spleen extracts 645 proteins specifically binding to this peptide were detected. Both datasets contained proteins involved in mitochondrial energy metabolism and in protein processing and secretion. These results suggest that peptide 6027 interacts with common targets in eukaryotes involved in essential pathways. Since this methodology can be applied to various compounds as well as target cell lines or organs, DAC combined with mass spectrometry and proteomic analysis should be considered a smart and 3R-relevant way to identify drug targets in pathogens and hosts, thereby eliminating compounds with potential side effects before performing tedious and costly safety and efficacy assessments in animals or humans.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Kai Hänggeli
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Noé Haudenschild
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland
| | - Luis-Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
11
|
|
12
|
Anghel N, Müller J, Serricchio M, Jelk J, Bütikofer P, Boubaker G, Imhof D, Ramseier J, Desiatkina O, Păunescu E, Braga-Lagache S, Heller M, Furrer J, Hemphill A. Cellular and Molecular Targets of Nucleotide-Tagged Trithiolato-Bridged Arene Ruthenium Complexes in the Protozoan Parasites Toxoplasma gondii and Trypanosoma brucei. Int J Mol Sci 2021; 22:ijms221910787. [PMID: 34639127 PMCID: PMC8509533 DOI: 10.3390/ijms221910787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/23/2022] Open
Abstract
Toxoplasma gondii is an apicomplexan parasite that infects and proliferates within many different types of host cells and infects virtually all warm-blooded animals and humans. Trypanosoma brucei is an extracellular kinetoplastid that causes human African trypanosomiasis and Nagana disease in cattle, primarily in rural sub-Saharan Africa. Current treatments against both parasites have limitations, e.g., suboptimal efficacy and adverse side effects. Here, we investigate the potential cellular and molecular targets of a trithiolato-bridged arene ruthenium complex conjugated to 9-(2-hydroxyethyl)-adenine (1), which inhibits both parasites with IC50s below 10−7 M. Proteins that bind to 1 were identified using differential affinity chromatography (DAC) followed by shotgun-mass spectrometry. A trithiolato-bridged ruthenium complex decorated with hypoxanthine (2) and 2-hydroxyethyl-adenine (3) were included as controls. Transmission electron microscopy (TEM) revealed distinct ultrastructural modifications in the mitochondrion induced by (1) but not by (2) and (3) in both species. DAC revealed 128 proteins in T. gondii and 46 proteins in T. brucei specifically binding to 1 but not 2 or 3. In T. gondii, the most abundant was a protein with unknown function annotated as YOU2. This protein is a homolog to the human mitochondrial inner membrane translocase subunit Tim10. In T. brucei, the most abundant proteins binding specifically to 1 were mitochondrial ATP-synthase subunits. Exposure of T. brucei bloodstream forms to 1 resulted in rapid breakdown of the ATP-synthase complex. Moreover, both datasets contained proteins involved in key steps of metabolism and nucleic acid binding proteins.
Collapse
Affiliation(s)
- Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
- Correspondence: (J.M.); (A.H.)
| | - Mauro Serricchio
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Jennifer Jelk
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Peter Bütikofer
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland; (M.S.); (J.J.); (P.B.)
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Dennis Imhof
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Jessica Ramseier
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
| | - Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Sophie Braga-Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland; (S.B.-L.); (M.H.)
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3012 Bern, Switzerland; (S.B.-L.); (M.H.)
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland; (O.D.); (E.P.); (J.F.)
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland; (N.A.); (G.B.); (D.I.); (J.R.)
- Correspondence: (J.M.); (A.H.)
| |
Collapse
|
13
|
Synthesis and Antiparasitic Activity of New Conjugates—Organic Drugs Tethered to Trithiolato-Bridged Dinuclear Ruthenium(II)–Arene Complexes. INORGANICS 2021. [DOI: 10.3390/inorganics9080059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tethering known drugs to a metalorganic moiety is an efficient approach for modulating the anticancer, antibacterial, and antiparasitic activity of organometallic complexes. This study focused on the synthesis and evaluation of new dinuclear ruthenium(II)–arene compounds linked to several antimicrobial compounds such as dapsone, sulfamethoxazole, sulfadiazine, sulfadoxine, triclosan, metronidazole, ciprofloxacin, as well as menadione (a 1,4-naphtoquinone derivative). In a primary screen, 30 compounds (17 hybrid molecules, diruthenium intermediates, and antimicrobials) were assessed for in vitro activity against transgenic T. gondii tachyzoites constitutively expressing β-galactosidase (T. gondii β-gal) at 0.1 and 1 µM. In parallel, the cytotoxicity in noninfected host cells (human foreskin fibroblasts, HFF) was determined by an alamarBlue assay. When assessed at 1 µM, five compounds strongly impaired parasite proliferation by >90%, and HFF viability was retained at 50% or more, and they were further subjected to T. gondii β-gal dose-response studies. Two compounds, notably 11 and 13, amide and ester conjugates with sulfadoxine and metronidazole, exhibited low IC50 (half-maximal inhibitory concentration) values 0.063 and 0.152 µM, and low or intermediate impairment of HFF viability at 2.5 µM (83 and 64%). The nature of the anchored drug as well as that of the linking unit impacted the biological activity.
Collapse
|
14
|
Kladnik J, Coverdale JPC, Kljun J, Burmeister H, Lippman P, Ellis FG, Jones AM, Ott I, Romero-Canelón I, Turel I. Organoruthenium Complexes with Benzo-Fused Pyrithiones Overcome Platinum Resistance in Ovarian Cancer Cells. Cancers (Basel) 2021; 13:2493. [PMID: 34065335 PMCID: PMC8160969 DOI: 10.3390/cancers13102493] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Drug resistance to existing anticancer agents is a growing clinical concern, with many first line treatments showing poor efficacy in treatment plans of some cancers. Resistance to platinum agents, such as cisplatin, is particularly prevalent in the treatment of ovarian cancer, one of the most common cancers amongst women in the developing world. Therefore, there is an urgent need to develop next generation of anticancer agents which can overcome resistance to existing therapies. We report a new series of organoruthenium(II) complexes bearing structurally modified pyrithione ligands with extended aromatic scaffold, which overcome platinum and adriamycin resistance in human ovarian cancer cells. The mechanism of action of such complexes appears to be unique from that of cisplatin, involving G1 cell cycle arrest without generation of cellular ROS, as is typically associated with similar ruthenium complexes. The complexes inhibit the enzyme thioredoxin reductase (TrxR) in a model system and reduce cell motility towards wound healing. Importantly, this work highlights further development in our understanding of the multi-targeting mechanism of action exhibited by transition metal complexes.
Collapse
Affiliation(s)
- Jerneja Kladnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - James P. C. Coverdale
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| | - Hilke Burmeister
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.B.); (P.L.); (I.O.)
| | - Petra Lippman
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.B.); (P.L.); (I.O.)
| | - Francesca G. Ellis
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Alan M. Jones
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (H.B.); (P.L.); (I.O.)
| | - Isolda Romero-Canelón
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK; (J.P.C.C.); (F.G.E.); (A.M.J.)
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; (J.K.); (J.K.)
| |
Collapse
|
15
|
|
16
|
Mondal A, Sen U, Roy N, Muthukumar V, Sahoo SK, Bose B, Paira P. DNA targeting half sandwich Ru(II)- p-cymene-N^N complexes as cancer cell imaging and terminating agents: influence of regioisomers in cytotoxicity. Dalton Trans 2021; 50:979-997. [PMID: 33355328 DOI: 10.1039/d0dt03107k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
For diagnosing and annihilating cancer in the human body, herein, we have adopted a one pot convenient synthetic protocol to synthesize a library of half sandwich Ru(ii)-p-cymene-N^N complexes under continuous sonication and isolated their regioisomers by preparative thin layer chromatography followed by justification of stability using DFT. The present work has resulted in a library of ruthenium arene complexes and their isolated regioisomers following environmentally benign green processes and their screening of anticancer activity in terms of cytotoxicity and selectivity against cancer cell lines where [(η6-p-cymene)RuCl{2-(5,6-dichloro-1H-benzo[d]imidazole-2-yl)quinolone}] (11j) has been elicited to be significantly more potent as well as selective in Caco-2 and HeLa cell lines than the normal HEK-293 cell line compared to cisplatin and it has even shown marked cytotoxicity against the more aggressive HT-29 colorectal cancer cell line being capable of producing oxidative stress or arresting the cell cycle. Moreover, these types of Ru(ii)-arene complexes exhibited excellent binding efficacy with DNA and the compounds [(η6-p-cymene)RuCl{5-chloro-2-(6-(4-chlorophenyl)pyridin-2-yl)benzo[d]thiazole}]PF6 (8l4), [(η6-p-cymene)Ru-2-(6-(benzofuran-2-yl)pyridin-2-yl)-5-chlorobenzo[d]thiazole (8l9) and [(η6-p-cymene)RuCl{2-(6-nitro-1H-benzo[d]imidazol-2-yl)quinolone}]Cl (11f') and might be applied for cancer theranostic treatment due to their good fluorescence properties and remarkable potency.
Collapse
Affiliation(s)
- Ashaparna Mondal
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Utsav Sen
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Nilmadhab Roy
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Venkatesan Muthukumar
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| | - Suban Kumar Sahoo
- Department of Applied Chemistry, S.V. National Institute of Technology (SVNIT), Ichchanath, Surat, Gujrat-395 007, India.
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Priyankar Paira
- Department of Chemistry, School of advanced sciences, Vellore Institute of Technology Vellore, 632014, Tamilnadu, India.
| |
Collapse
|
17
|
Studer V, Anghel N, Desiatkina O, Felder T, Boubaker G, Amdouni Y, Ramseier J, Hungerbühler M, Kempf C, Heverhagen JT, Hemphill A, Ruprecht N, Furrer J, Păunescu E. Conjugates Containing Two and Three Trithiolato-Bridged Dinuclear Ruthenium(II)-Arene Units as In Vitro Antiparasitic and Anticancer Agents. Pharmaceuticals (Basel) 2020; 13:E471. [PMID: 33339451 PMCID: PMC7767221 DOI: 10.3390/ph13120471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
The synthesis, characterization, and in vitro antiparasitic and anticancer activity evaluation of new conjugates containing two and three dinuclear trithiolato-bridged ruthenium(II)-arene units are presented. Antiparasitic activity was evaluated using transgenic Toxoplasmagondii tachyzoites constitutively expressing β-galactosidase grown in human foreskin fibroblasts (HFF). The compounds inhibited T.gondii proliferation with IC50 values ranging from 90 to 539 nM, and seven derivatives displayed IC50 values lower than the reference compound pyrimethamine, which is currently used for treatment of toxoplasmosis. Overall, compound flexibility and size impacted on the anti-Toxoplasma activity. The anticancer activity of 14 compounds was assessed against cancer cell lines A2780, A2780cisR (human ovarian cisplatin sensitive and resistant), A24, (D-)A24cisPt8.0 (human lung adenocarcinoma cells wild type and cisPt resistant subline). The compounds displayed IC50 values ranging from 23 to 650 nM. In A2780cisR, A24 and (D-)A24cisPt8.0 cells, all compounds were considerably more cytotoxic than cisplatin, with IC50 values lower by two orders of magnitude. Irrespective of the nature of the connectors (alkyl/aryl) or the numbers of the di-ruthenium units (two/three), ester conjugates 6-10 and 20 exhibited similar antiproliferative profiles, and were more cytotoxic than amide analogues 11-14, 23, and 24. Polynuclear conjugates with multiple trithiolato-bridged di-ruthenium(II)-arene moieties deserve further investigation.
Collapse
Affiliation(s)
- Valentin Studer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Nicoleta Anghel
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Oksana Desiatkina
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Timo Felder
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Ghalia Boubaker
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Yosra Amdouni
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
- Laboratoire de Parasitologie, Institution de la Recherche et de l’Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia
| | - Jessica Ramseier
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Martin Hungerbühler
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Christoph Kempf
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Johannes Thomas Heverhagen
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Andrew Hemphill
- Vetsuisse Faculty, Institute of Parasitology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland; (N.A.); (G.B.); (Y.A.); (J.R.)
| | - Nico Ruprecht
- Department of BioMedical Research, Experimental Radiology, University of Bern, CH-3008 Bern, Switzerland; (M.H.); (C.K.); (J.T.H.)
- Department of Diagnostic, Interventional and Pediatric Radiology, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| | - Emilia Păunescu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland; (V.S.); (O.D.); (T.F.)
| |
Collapse
|
18
|
Primasová H, Ninova S, de Capitani M, Daepp J, Aschauer U, Furrer J. Dinuclear thiolato-bridged arene ruthenium complexes: from reaction conditions and mechanism to synthesis of new complexes. RSC Adv 2020; 10:40106-40116. [PMID: 35520857 PMCID: PMC9057517 DOI: 10.1039/d0ra08146a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/21/2020] [Indexed: 11/27/2022] Open
Abstract
Several dinuclear thiophenolato-bridged arene ruthenium complexes [(η6-p-MeC6H4Pri)2Ru2(μ2-SC6H4-R)3]+ (R = H, NO2, F) could so far only be obtained in fair yields using the synthetic route established in the early 2000s. With much less reactive aliphatic thiols or with bulky thiols, the reactions become even less efficient and the desired complexes are obtained with low yields or not at all. We employed density functional theory (DFT) calculations to gain a fundamental understanding of the reaction mechanisms leading to the formation of dithiolato and trithiolato complexes starting from the dichloro(p-cymene)ruthenium(ii) dimer [(η6-p-MeC6H4Pri)Ru(μ2-Cl)Cl]2. The results of the DFT study enabled us to rationalise the experimental results and allowed us, via a modified synthetic route, to synthesise previously unreported and hitherto considered as unrealistic complexes. Our study opens up possibilities for the synthesis of so far inaccessible thiolato-bridged dinuclear arene ruthenium(ii) complexes but more generally, also the synthesis of other thiolato-bridged dinuclear group 8 and 9 metal complexes could be reexamined.
Collapse
Affiliation(s)
- Hedvika Primasová
- Department of Chemistry and Biochemistry, Universität Bern Freiestrasse 3 CH-3012 Switzerland
| | - Silviya Ninova
- Department of Chemistry and Biochemistry, Universität Bern Freiestrasse 3 CH-3012 Switzerland
| | - Mario de Capitani
- Department of Chemistry and Biochemistry, Universität Bern Freiestrasse 3 CH-3012 Switzerland
| | - Jana Daepp
- Department of Chemistry and Biochemistry, Universität Bern Freiestrasse 3 CH-3012 Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry, Universität Bern Freiestrasse 3 CH-3012 Switzerland
| | - Julien Furrer
- Department of Chemistry and Biochemistry, Universität Bern Freiestrasse 3 CH-3012 Switzerland
| |
Collapse
|
19
|
Primasová H, Vermathen M, Furrer J. Interactions of Cationic Diruthenium Trithiolato Complexes with Phospholipid Membranes Studied by NMR Spectroscopy. J Phys Chem B 2020; 124:8822-8834. [PMID: 32930600 DOI: 10.1021/acs.jpcb.0c05133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To apprehend the possible mechanisms involved in the cellular uptake and the membrane interactions of cytotoxic dinuclear p-cymene trithiolato ruthenium(II) complexes, the interactions of the complexes [(η6-p-MeC6H4Pri)2Ru2(R1)2(R2)]+ (R1 = R2 = SC6H4-m-Pri:1; R1 = SC6H4-p-OMe, R2 = SC6H4-p-OH:2; R1 = SCH2C6H4-p-OMe, R2 = SC6H4-p-OH:3) with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) micelles were studied using nuclear magnetic resonance (NMR) spectroscopy. 1H NMR, nuclear Overhauser effect (NOE), diffusion ordered spectroscopy (DOSY), and T1 and T2 relaxation data provided information on interactions between the complexes and the model membranes and on the submolecular localization of the complexes at the membrane interface. The results suggest that (a) the interaction takes place without new covalent adduct formation, (b) the cationic diruthenium complexes interact with DOPC head groups most likely involving electrostatic interactions while remaining structurally unchanged, (c) the changes indicating interactions are more pronounced for the most lipophilic complex 1, and (d) the diruthenium complexes remain at the exterior vesicle surface and are unlikely inserted between the phospholipid chains. The complexes also interact with micellar/free DHPC and seem to induce micellization or aggregation in solutions below critical micelle concentration (CMC). Our study suggests high affinity of the Ru complexes for the membrane surface that likely plays a key role in cellular uptake and possibly also in redistribution in mitochondria.
Collapse
Affiliation(s)
- Hedvika Primasová
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
20
|
Desiatkina O, Păunescu E, Mösching M, Anghel N, Boubaker G, Amdouni Y, Hemphill A, Furrer J. Coumarin-Tagged Dinuclear Trithiolato-Bridged Ruthenium(II)⋅Arene Complexes: Photophysical Properties and Antiparasitic Activity. Chembiochem 2020; 21:2818-2835. [PMID: 32347622 PMCID: PMC7586963 DOI: 10.1002/cbic.202000174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/28/2020] [Indexed: 11/06/2022]
Abstract
The synthesis, characterization, photophysical and biological properties of 13 new conjugate coumarin-diruthenium(II)⋅arene complexes against Toxoplasma gondii are presented. For all conjugate organometallic unit/coumarins, an almost complete loss of fluorescence efficacy was observed. However, the nature of the fluorophore, the type of bonding, the presence and length of a linker between the coumarin dye and the ruthenium(II) moiety, and the number of dye units influenced their biological properties. The in vitro activity against a transgenic T. gondii strain grown in human foreskin fibroblasts (HFF) leads to IC50 values for T. gondii β-gal from 105 to 735 nM. Of note is that nine compounds displayed lower IC50 than the standard drug pyrimethamine. One compound applied at its IC50 did not affect B-cell proliferation but had an impact on T-cell proliferation in murine splenocyte cultures. Transmission electron microscopy of T. gondii β-gal-infected HFF showed that treatment predominantly affected the parasites' mitochondrion.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Emilia Păunescu
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Martin Mösching
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 33012BernSwitzerland
| | - Nicoleta Anghel
- Institute of Parasitology Vetsuisse FacultyUniversity of BernLänggass-Strasse 1223012BernSwitzerland
| | - Ghalia Boubaker
- Institute of Parasitology Vetsuisse FacultyUniversity of BernLänggass-Strasse 1223012BernSwitzerland
| | - Yosra Amdouni
- Institute of Parasitology Vetsuisse FacultyUniversity of BernLänggass-Strasse 1223012BernSwitzerland
| | - Andrew Hemphill
- Institute of Parasitology Vetsuisse FacultyUniversity of BernLänggass-Strasse 1223012BernSwitzerland
| | - Julien Furrer
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
21
|
Müller J, Winzer PA, Samby K, Hemphill A. In Vitro Activities of MMV Malaria Box Compounds against the Apicomplexan Parasite Neospora caninum, the Causative Agent of Neosporosis in Animals. Molecules 2020; 25:molecules25061460. [PMID: 32213892 PMCID: PMC7145303 DOI: 10.3390/molecules25061460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Neospora caninum is a major cause of abortion in cattle and represents a veterinary health problem of great economic significance. In order to identify novel chemotherapeutic agents for the treatment of neosporosis, the Medicines for Malaria Venture (MMV) Malaria Box, a unique collection of anti-malarial compounds, were screened against N. caninum tachyzoites, and the most efficient compounds were characterized in more detail. (2) Methods: A N. caninum beta-galactosidase reporter strain grown in human foreskin fibroblasts was treated with 390 compounds from the MMV Malaria Box. The IC50s of nine compounds were determined, all of which had been previously been shown to be active against another apicomplexan parasite, Theileria annulata. The effects of three of these compounds on the ultrastructure of N. caninum tachyzoites were further investigated by transmission electron microscopy at different timepoints after initiation of drug treatment. (3) Results: Five MMV Malaria Box compounds exhibited promising IC50s below 0.2 µM. The compound with the lowest IC50, namely 25 nM, was MMV665941. This compound and two others, MMV665807 and MMV009085, specifically induced distinct alterations in the tachyzoites. More specifically, aberrant structural changes were first observed in the parasite mitochondrion, and subsequently progressed to other cytoplasmic compartments of the tachyzoites. The pharmacokinetic (PK) data obtained in mice suggest that treatment with MMV665941 could be potentially useful for further in vivo studies. (4) Conclusions: We have identified five novel compounds with promising activities against N. caninum, the effects of three of these compounds were studies by transmission electron microscopy (TEM). Their modes of action are unknown and require further investigation.
Collapse
Affiliation(s)
- Joachim Müller
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence: (J.M.); (A.H.); Tel.: 0041-31-631-23-84 (J.M. & A.H.); Fax: 0041-31-631-24-76 (J.M. & A.H.)
| | - Pablo A. Winzer
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland;
| | - Kirandeep Samby
- Medicines for Malaria Venture (MMV), 20, Route de Pré-Bois, 1215 Geneva 15, Switzerland;
| | - Andrew Hemphill
- Department of Infectious Diseases and Pathobiology, Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3012 Bern, Switzerland
- Correspondence: (J.M.); (A.H.); Tel.: 0041-31-631-23-84 (J.M. & A.H.); Fax: 0041-31-631-24-76 (J.M. & A.H.)
| |
Collapse
|
22
|
Khan TA, Bhar K, Thirumoorthi R, Roy TK, Sharma AK. Design, synthesis, characterization and evaluation of the anticancer activity of water-soluble half-sandwich ruthenium(ii) arene halido complexes. NEW J CHEM 2020. [DOI: 10.1039/c9nj03663f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synthesis, crystal structure determination, DFT studies, experimental and theoretical evaluation of DNA/BSA interactions and cytotoxicity studies of three piano-stool Ru(ii)(p-cymene)chloride complexes (1–3) are presented herein.
Collapse
Affiliation(s)
- Tanveer A. Khan
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- District Ajmer
- India
| | - Kishalay Bhar
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- District Ajmer
- India
| | - Ramalingam Thirumoorthi
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- District Ajmer
- India
| | - Tapta Kanchan Roy
- Department of Chemistry & Chemical Sciences
- Central University of Jammu
- Jammu-181143
- India
| | - Anuj K. Sharma
- Department of Chemistry
- School of Chemical Sciences and Pharmacy
- Central University of Rajasthan
- District Ajmer
- India
| |
Collapse
|
23
|
Hajji L, Saraiba-Bello C, Segovia-Torrente G, Scalambra F, Romerosa A. CpRu Complexes Containing Water Soluble Phosphane PTA and Natural Purines Adenine, Guanine and Theophylline: Synthesis, Characterization, and Antiproliferative Properties. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lazhar Hajji
- Área de Química Inorgánica-CIESOL; Universidad de Almería; Carretera Sacramento s/n 40120 Almería Spain
| | - Cristobal Saraiba-Bello
- Área de Química Inorgánica-CIESOL; Universidad de Almería; Carretera Sacramento s/n 40120 Almería Spain
| | - Gaspar Segovia-Torrente
- Área de Química Inorgánica-CIESOL; Universidad de Almería; Carretera Sacramento s/n 40120 Almería Spain
| | - Franco Scalambra
- Área de Química Inorgánica-CIESOL; Universidad de Almería; Carretera Sacramento s/n 40120 Almería Spain
| | - Antonio Romerosa
- Área de Química Inorgánica-CIESOL; Universidad de Almería; Carretera Sacramento s/n 40120 Almería Spain
| |
Collapse
|
24
|
Jelk J, Balmer V, Stibal D, Giannini F, Süss-Fink G, Bütikofer P, Furrer J, Hemphill A. Anti-parasitic dinuclear thiolato-bridged arene ruthenium complexes alter the mitochondrial ultrastructure and membrane potential in Trypanosoma brucei bloodstream forms. Exp Parasitol 2019; 205:107753. [DOI: 10.1016/j.exppara.2019.107753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 01/28/2023]
|
25
|
|
26
|
Primasová H, Paul LEH, Diserens G, Primasová E, Vermathen P, Vermathen M, Furrer J. 1H HR-MAS NMR-Based Metabolomics of Cancer Cells in Response to Treatment with the Diruthenium Trithiolato Complex [( p-MeC 6H 4iPr) 2Ru 2(SC 6H 4- p-Bu t) 3] + (DiRu-1). Metabolites 2019; 9:E146. [PMID: 31323867 PMCID: PMC6680816 DOI: 10.3390/metabo9070146] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/01/2023] Open
Abstract
The trithiolato bridged diruthenium complex DiRu-1 [(p-MeC6H4iPr)2Ru2(SC6H4-p-But)3]+ is highly cytotoxic against various cancer cell lines, but its exact mode of action remains unknown. The present 1H HR-MAS NMR-based metabolomic study was performed on ovarian cancer cell line A2780, on its cis-Pt resistant variant A2780cisR, and on the cell line HEK-293 treated with 0.03 µM and 0.015 µM of DiRu-1 corresponding to full and half IC50 doses, respectively, to investigate the mode of action of this ruthenium complex. The resulting changes in the metabolic profile of the cell lines were studied using HR-MAS NMR of cell lysates and a subsequent statistical analysis. We show that DiRu-1 in a 0.03 µM dose has significant impact on the levels of a number of metabolites, such as glutamine, glutamate, glutathione, cysteine, lipid, creatine, lactate, and acetate, especially pronounced in the A2780cisR cell line. The IC50/2 dose shows some significant changes, but full IC50 appears to be necessary to observe the full effect. Overall, the metabolic changes observed suggest that redox homeostasis, the Warburg effect, and the lipid metabolism are affected by DiRu-1.
Collapse
Affiliation(s)
- Hedvika Primasová
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Lydia E H Paul
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Gaëlle Diserens
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, Erlachstrasse 9a, 3012 Bern, Switzerland
| | - Ester Primasová
- Faculty of Information Technology, Czech Technical University in Prague, Thákurova 9, 16000 Prague, Czech Republic
| | - Peter Vermathen
- Department of BioMedical Research and Radiology, University of Bern and Inselspital, Erlachstrasse 9a, 3012 Bern, Switzerland
| | - Martina Vermathen
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| | - Julien Furrer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland.
| |
Collapse
|