1
|
George A, Jayaraman N. Carbohydrate-Functionalized Anthracene Carboximides as Multivalent Ligands and Bio-Imaging Agents. Chemistry 2024; 30:e202400941. [PMID: 38700909 DOI: 10.1002/chem.202400941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 05/23/2024]
Abstract
Anthracene carboximides (ACIs) conjugated with gluco-, galacto- and mannopyranosides are synthesized, by glycosylation of N-hydroxyethylanthracene carboximide acceptor with glycosyl donors. Glycoconjugation of anthracene carboximide increases the aq. solubility by more than 3-fold. The glycoconjugates display red-shifted absorption and emission, as compared to anthracene. Large Stokes shift (λabs/λem=445/525 nm) and high fluorescence quantum yields (Φ) of 0.86 and 0.5 occur in THF and water, respectively. The ACI-glycosides undergo facile photodimerization in aqueous solutions, leading to the formation of the head-to-tail dimer, as a mixture of syn and anti-isomers. Solution phase and solid-state characterizations by dynamic light scattering (DLS), microscopic imaging by atomic force (AFM) and transmission electron (TEM) microscopies reveal self-assembled vesicle structures of ACI glycosides. These self-assembled structures act as multivalent glycoclusters for ligand-specific lectin binding, as evidenced by the binding of Man-ACI to Con A, by fluorescence and turbidity assays. The conjugates do not show cellular cytotoxicity (IC50) till concentrations of 50 μM with HeLa and HepG2 cell lines and are cell-permeable, showing strong fluorescence inside the cells. These properties enable the glycoconjugates to be used in cell imaging. The non-selective cellular uptake of the glycoconjugates suggests a passive diffusion through the membrane.
Collapse
Affiliation(s)
- Anne George
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | | |
Collapse
|
2
|
Ndung’U C, Bobadova-Parvanova P, LaMaster DJ, Goliber D, Fronczek FR, Vicente MDGH. 8( meso)-Pyridyl-BODIPYs: Effects of 2,6-Substitution with Electron-Withdrawing Nitro, Chloro, and Methoxycarbonyl Groups. Molecules 2023; 28:4581. [PMID: 37375136 PMCID: PMC10303842 DOI: 10.3390/molecules28124581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The introduction of electron-withdrawing groups on 8(meso)-pyridyl-BODIPYs tends to increase the fluorescence quantum yields of this type of compound due to the decrease in electronic charge density on the BODIPY core. A new series of 8(meso)-pyridyl-BODIPYs bearing a 2-, 3-, or 4-pyridyl group was synthesized and functionalized with nitro and chlorine groups at the 2,6-positions. The 2,6-methoxycarbonyl-8-pyridyl-BODIPYs analogs were also synthesized by condensation of 2,4-dimethyl-3-methoxycarbonyl-pyrrole with 2-, 3-, or 4-formylpyridine followed by oxidation and boron complexation. The structures and spectroscopic properties of the new series of 8(meso)-pyridyl-BODIPYs were investigated both experimentally and computationally. The BODIPYs bearing 2,6-methoxycarbonyl groups showed enhanced relative fluorescence quantum yields in polar organic solvents due to their electron-withdrawing effect. However, the introduction of a single nitro group significantly quenched the fluorescence of the BODIPYs and caused hypsochromic shifts in the absorption and emission bands. The introduction of a chloro substituent partially restored the fluorescence of the mono-nitro-BODIPYs and induced significant bathochromic shifts.
Collapse
Affiliation(s)
- Caroline Ndung’U
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (F.R.F.)
| | - Petia Bobadova-Parvanova
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC 28608, USA; (P.B.-P.); (D.G.)
| | - Daniel J. LaMaster
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (F.R.F.)
| | - Dylan Goliber
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC 28608, USA; (P.B.-P.); (D.G.)
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (F.R.F.)
| | - Maria da Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (F.R.F.)
| |
Collapse
|
3
|
Gomez AM, Ventura J, Uriel C, Lopez JC. Synthesis of carbohydrate–BODIPY hybrids. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2023-0113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Abstract
Owing to the relevance of fluorescently labeled carbohydrates in the study of biological processes, we have investigated several routes for the preparation of saccharides covalently linked to borondipyrromethene (BODIPY) fluorophores. We have shown that BODIPY dyes can be used as aglycons through synthetic saccharide protocols. In particular, a per-alkylated 8-(2-hydroxy-methylphenyl)-4,4′-dicyano-BODIPY derivative, which withstands glycosylation and protection/deprotection reaction conditions without decomposition, has been used in the stepwise synthesis of two fluorescently labeled trisaccharides. These saccharides displayed high water solubility and a low tendency to (H-)aggregation, a phenomenon that causes loss of photophysical efficiency in BODIPYs. Two additional synthetic strategies toward glyco-BODIPYs have also been described. The first method relies on a Ferrier-type C-glycosylation of the BODIPY core, leading to linker-free carbohydrate–BODIPY hybrids. Secondly, the application of the Nicholas propargylation reaction to 1,3,5,7-tetramethyl BODIPYs provides access to 2,6-dipropargylated BODIPYs that readily undergo CuAAC reactions with azido-containing sugars. From a photophysical standpoint, the BODIPY-labeled saccharides could be used as stable and fluorescent water-soluble chromophores, thereby addressing one of the current challenges in molecular imaging.
Collapse
Affiliation(s)
- Ana M. Gomez
- Bioorganic Chemistry , IQOG-CSIC, Instituto Quimica Organica General , Juan de la Cierva 3, 28006 , Madrid , Spain
| | - Juan Ventura
- Bioorganic Chemistry , IQOG-CSIC, Instituto Quimica Organica General , Juan de la Cierva 3, 28006 , Madrid , Spain
| | - Clara Uriel
- Bioorganic Chemistry , IQOG-CSIC, Instituto Quimica Organica General , Juan de la Cierva 3, 28006 , Madrid , Spain
| | - Jose Cristobal Lopez
- Bioorganic Chemistry , IQOG-CSIC, Instituto Quimica Organica General , Juan de la Cierva 3, 28006 , Madrid , Spain
| |
Collapse
|
4
|
Ndung’u C, LaMaster DJ, Dhingra S, Mitchell NH, Bobadova-Parvanova P, Fronczek FR, Elgrishi N, Vicente MDGH. A Comparison of the Photophysical, Electrochemical and Cytotoxic Properties of meso-(2-, 3- and 4-Pyridyl)-BODIPYs and Their Derivatives. SENSORS (BASEL, SWITZERLAND) 2022; 22:5121. [PMID: 35890801 PMCID: PMC9315496 DOI: 10.3390/s22145121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Boron dipyrromethene (BODIPY) dyes bearing a pyridyl moiety have been used as metal ion sensors, pH sensors, fluorescence probes, and as sensitizers for phototherapy. A comparative study of the properties of the three structural isomers of meso-pyridyl-BODIPYs, their 2,6-dichloro derivatives, and their corresponding methylated cationic pyridinium-BODIPYs was conducted using spectroscopic and electrochemical methods, X-ray analyses, and TD-DFT calculations. Among the neutral derivatives, the 3Py and 4Py isomers showed the highest relative fluorescence quantum yields in organic solvents, which were further enhanced 2-4-fold via the introduction of two chlorines at the 2,6-positions. Among the cationic derivatives, the 2catPy showed the highest relative fluorescence quantum yield in organic solvents, which was further enhanced by the use of a bulky counter anion (PF6-). In water, the quantum yields were greatly reduced for all three isomers but were shown to be enhanced upon introduction of 2,6-dichloro groups. Our results indicate that 2,6-dichloro-meso-(2- and 3-pyridinium)-BODIPYs are the most promising for sensing applications. Furthermore, all pyridinium BODIPYs are highly water-soluble and display low cytotoxicity towards human HEp2 cells.
Collapse
Affiliation(s)
- Caroline Ndung’u
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Daniel J. LaMaster
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Simran Dhingra
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Nathan H. Mitchell
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Petia Bobadova-Parvanova
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, NC 28608, USA;
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| | - Maria da Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA; (C.N.); (D.J.L.); (S.D.); (N.H.M.); (F.R.F.); (N.E.)
| |
Collapse
|
5
|
Barattucci A, Gangemi CMA, Santoro A, Campagna S, Puntoriero F, Bonaccorsi P. Bodipy-carbohydrate systems: synthesis and bio-applications. Org Biomol Chem 2022; 20:2742-2763. [PMID: 35137764 DOI: 10.1039/d1ob02459k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent BODIPY-sugar probes have stimulated the attention of researchers for the potential applications of such molecular systems in bio-imaging. The presence of carbohydrate units confers unique structural and biological features, beside enhancement of water solubility and polarity. On the other hand, BODIPY (BOronDiPYrromethene) derivatives represent eclectic and functional luminescent molecules because of their outstanding photophysical properties. This article provides a review on the synthesis and applications of BODIPY-linked glycosyl probes in which the labelling of complex carbohydrates with BODIPY allowed the disclosing of their in vivo behaviour or where the sugar constitutes a recognition element for specific targeting probes, or, finally, in which the stereochemical characteristics of the carbohydrate hydroxyl groups play as structural elements for assembling more than one photoactive subunit, resulting in functional supramolecular molecules with modulable properties. We describe the methods we have used to construct various multiBODIPY molecular systems capable of functioning as artificial antennas exhibiting extremely efficient and fast photo-induced energy transfer. Some of these systems have been designed to allow the modulation of energy transfer efficiency and emission color, and intensity dependent on their position within a biological matrix. Finally, future perspectives for such BODIPY-based functional supramolecular sugar systems are also highlighted.
Collapse
Affiliation(s)
- Anna Barattucci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Chiara M A Gangemi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Antonio Santoro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Sebastiano Campagna
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Fausto Puntoriero
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Paola Bonaccorsi
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Via F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
6
|
Blázquez-Moraleja A, Maierhofer L, Mann E, Prieto-Montero R, Oliden-Sánchez A, Celada L, Martínez-Martínez V, Chiara MD, Chiara JL. Acetoxymethyl-BODIPY dyes: a universal platform for the fluorescent labeling of nucleophiles. Org Chem Front 2022. [DOI: 10.1039/d2qo01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and robust methodology has been developed for the direct incorporation of a wide variety of C-, N-, P-, O-, S-, and halo-nucleophiles into functional BODIPY conjugates in a single reaction step.
Collapse
Affiliation(s)
| | - Larissa Maierhofer
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Mann
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ruth Prieto-Montero
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - Lucía Celada
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Virginia Martínez-Martínez
- Departamento de Química Física, Universidad del País Vasco-EHU, Facultad de Ciencia y Tecnología, Apartado 644, 48080 Bilbao, Spain
| | - María-Dolores Chiara
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), CIBERONC, Universidad de Oviedo, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Jose Luis Chiara
- Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
7
|
Martynov VI, Pakhomov AA. BODIPY derivatives as fluorescent reporters of molecular activities in living cells. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Fluorescent compounds have become indispensable tools for imaging molecular activities in the living cell. 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) is currently one of the most popular fluorescent reporters due to its unique photophysical properties. This review provides a general survey and presents a summary of recent advances in the development of new BODIPY-based cellular biomarkers and biosensors. The review starts with the consideration of the properties of BODIPY derivatives required for their application as cellular reporters. Then review provides examples of the design of sensors for different biologically important molecules, ions, membrane potential, temperature and viscosity defining the live cell status. Special attention is payed to BODPY-based phototransformable reporters.
The bibliography includes 339 references.
Collapse
|
8
|
Gomez AM, Lopez JC. Bringing Color to Sugars: The Chemical Assembly of Carbohydrates to BODIPY Dyes. CHEM REC 2021; 21:3112-3130. [PMID: 34472184 DOI: 10.1002/tcr.202100190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Indexed: 12/29/2022]
Abstract
The combination of carbohydrates with BODIPY fluorophores gives rise to a family of BODIPY-carbohydrate hybrids or glyco-BODIPYs, which mutually benefit from the encounter. Thus, from the carbohydrates standpoint, glyco-BODIPYs can be regarded as fluorescent glycoconjugate derivatives with application in imaging techniques, whereas from the fluorophore view the BODIPY-carbohydrate hybrids benefit from the biocompatibility, water-solubility, and reduced toxicity, among others, brought about by the sugar moiety. In this Account we have intended to present the collection of available methods for the synthesis of BODIPY-carbohydrate hybrids, with a focus on the chemical transformations on the BODIPY core.
Collapse
Affiliation(s)
- Ana M Gomez
- Bioorganic Chemistry Department, Instituto Quimica Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - J Cristobal Lopez
- Bioorganic Chemistry Department, Instituto Quimica Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
9
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
10
|
Gómez AM, Uriel C, Oliden-Sánchez A, Bañuelos J, Garcia-Moreno I, López JC. A Concise Route to Water-Soluble 2,6-Disubstituted BODIPY-Carbohydrate Fluorophores by Direct Ferrier-Type C-Glycosylation. J Org Chem 2021; 86:9181-9188. [PMID: 34156858 PMCID: PMC8279486 DOI: 10.1021/acs.joc.1c00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Novel, linker-free,
BODIPY-carbohydrate derivatives containing
sugar residues at positions C2 and C6 are efficiently obtained by,
hitherto unreported, Ferrier-type C-glycosylation
of 8-aryl-1,3,5,7-tetramethyl BODIPYs with commercially available
tri-O-acetyl-d-glucal followed by saponification.
This transformation, which involves the electrophilic aromatic substitution
(SEAr) of the dipyrrin framework with an allylic oxocarbenium
ion, provides easy access to BODIPY-carbohydrate hybrids with excellent
photophysical properties and a weaker tendency to aggregate in concentrated
water solutions.
Collapse
Affiliation(s)
- Ana M Gómez
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Clara Uriel
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del Pais Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain
| | - Jorge Bañuelos
- Departamento de Química Física, Universidad del Pais Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain
| | | | - J Cristobal López
- Instituto de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
11
|
Biagiotti G, Purić E, Urbančič I, Krišelj A, Weiss M, Mravljak J, Gellini C, Lay L, Chiodo F, Anderluh M, Cicchi S, Richichi B. Combining cross-coupling reaction and Knoevenagel condensation in the synthesis of glyco-BODIPY probes for DC-SIGN super-resolution bioimaging. Bioorg Chem 2021; 109:104730. [PMID: 33621778 DOI: 10.1016/j.bioorg.2021.104730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
Lectins are involved in a wide range of carbohydrate mediated recognition processes. Therefore, the availability of highly performant fluorescent tools tailored for lectin targeting and able to efficiently track events related to such key targets is in high demand. We report here on the synthesis of the glyco-BODIPYs 1 and 2, based on the efficient combination of a Heck-like cross coupling and a Knoevenagel condensation, which revealed efficient in addressing lectins. In particular, glyco-BODIPY 1 has two glycosidase stable C-mannose residues, which act as DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) targeting modules. By using live-cell fluorescence microscopy, we proved that BODIPY-mannose 1 was efficiently taken up by immune cells expressing DC-SIGN receptors. Super-resolution stimulated emission depletion (STED) microscopy further revealed that the internalized 1 localized in membranes of endosomes, proving that 1 is a reliable tool also in STED applications. Of note, glyco-BODIPY 1 contains an aryl-azido group, which allows further functionalization of the glycoprobe with bioactive molecules, thus paving the way for the use of 1 for tracking lectin-mediated cell internalization in diverse biological settings.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 3/13, 50019 Sesto Fiorentino FI, Italy
| | - Edvin Purić
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics, Department Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Ana Krišelj
- Laboratory of Biophysics, Condensed Matter Physics, Department Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Matjaž Weiss
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Janez Mravljak
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Cristina Gellini
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 3/13, 50019 Sesto Fiorentino FI, Italy
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, via Golgi 19, 20133 Milan, Italy
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, Netherlands; Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, NA, Italy
| | - Marko Anderluh
- University of Ljubljana, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Aškerčeva 7, SI-1000 Ljubljana, Slovenia.
| | - Stefano Cicchi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 3/13, 50019 Sesto Fiorentino FI, Italy.
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 3/13, 50019 Sesto Fiorentino FI, Italy.
| |
Collapse
|
12
|
Uriel C, Permingeat C, Ventura J, Avellanal-Zaballa E, Bañuelos J, García-Moreno I, Gómez AM, Lopez JC. BODIPYs as Chemically Stable Fluorescent Tags for Synthetic Glycosylation Strategies towards Fluorescently Labeled Saccharides. Chemistry 2020; 26:5388-5399. [PMID: 31999023 DOI: 10.1002/chem.201905780] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Indexed: 12/11/2022]
Abstract
A series of fluorescent boron-dipyrromethene (BODIPY, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) dyes have been designed to participate, as aglycons, in synthetic oligosaccharide protocols. As such, they served a dual purpose: first, by being incorporated at the beginning of the process (at the reducing-end of the growing saccharide moiety), they can function as fluorescent glycosyl tags, facilitating the detection and purification of the desired glycosidic intermediates, and secondly, the presence of these chromophores on the ensuing compounds grants access to fluorescently labeled saccharides. In this context, a sought-after feature of the fluorescent dyes has been their chemical robustness. Accordingly, some BODIPY derivatives described in this work can withstand the reaction conditions commonly employed in the chemical synthesis of saccharides; namely, glycosylation and protecting-group manipulations. Regarding their photophysical properties, the BODIPY-labeled saccharides obtained in this work display remarkable fluorescence efficiency in water, reaching quantum yield values up to 82 %, as well as notable lasing efficiencies and photostabilities.
Collapse
Affiliation(s)
- Clara Uriel
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Caterina Permingeat
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Juan Ventura
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | | | - Jorge Bañuelos
- Dpto. Química Física, Universidad del País Vasco (UPV/EHU), Aptdo. 644, 48080, Bilbao, Spain
| | | | - Ana M Gómez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - J Cristobal Lopez
- Instituto de Química Organica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
13
|
Thomas B, Yan KC, Hu XL, Donnier-Maréchal M, Chen GR, He XP, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev 2020; 49:593-641. [DOI: 10.1039/c8cs00118a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent glycoconjugates are discussed for their applications in biology in vitro, in cell assays and in animal models. Advantages and limitations are presented for each design using a fluorescent core conjugated with glycosides, or vice versa.
Collapse
Affiliation(s)
- Baptiste Thomas
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Marion Donnier-Maréchal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Sébastien Vidal
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
- Laboratoire de Chimie Organique 2-Glycochimie
- UMR 5246
- CNRS and Université Claude Bernard Lyon 1
- Université de Lyon
| |
Collapse
|
14
|
Water soluble thioglycosylated BODIPYs for mitochondria targeted cytotoxicity. Bioorg Chem 2019; 91:103139. [DOI: 10.1016/j.bioorg.2019.103139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
|
15
|
Kaufman NEM, Meng Q, Griffin KE, Singh SS, Dahal A, Zhou Z, Fronczek FR, Mathis JM, Jois SD, Vicente MGH. Synthesis, Characterization, and Evaluation of Near-IR Boron Dipyrromethene Bioconjugates for Labeling of Adenocarcinomas by Selectively Targeting the Epidermal Growth Factor Receptor. J Med Chem 2019; 62:3323-3335. [PMID: 30835998 DOI: 10.1021/acs.jmedchem.8b01746] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of five boron dipyrromethene (BODIPY) bioconjugates containing an epidermal growth factor receptor (EGFR)-targeted pegylated LARLLT peptide and/or a glucose or biotin ethylene diamine group were synthesized, and the binding capability of the new conjugates to the extracellular domain of EGFR was investigated using molecular modeling, surface plasmon resonance, fluorescence microscopy, competitive binding assays, and animal studies. The BODIPY conjugates with a LARLLT peptide were found to bind specifically to EGFR, whereas those lacking the peptide bound weakly and nonspecifically. All BODIPY conjugates showed low cytotoxicity (IC50 > 94 μM) in HT-29 cells, both in the dark and upon light activation (1.5 J/cm2). Studies of nude mice bearing subcutaneous human HT-29 xenografts revealed that only BODIPY conjugates bearing the LARLLT peptide showed tumor localization 24 h after intravenous administration. The results of our studies demonstrate that BODIPY bioconjugates bearing the EGFR-targeting peptide 3PEG-LARLLT show promise as near-IR fluorescent imaging agents for colon cancers overexpressing EGFR.
Collapse
Affiliation(s)
- Nichole E M Kaufman
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Qianli Meng
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Kaitlin E Griffin
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy , University of Louisiana at Monroe , Monroe , Louisiana 71201 , United States
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy , University of Louisiana at Monroe , Monroe , Louisiana 71201 , United States
| | - Zehua Zhou
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Frank R Fronczek
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - J Michael Mathis
- Department of Comparative Biomedical Sciences , Louisiana State University School of Veterinary Medicine , Baton Rouge , Louisiana 70803 , United States
| | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy , University of Louisiana at Monroe , Monroe , Louisiana 71201 , United States
| | - M Graça H Vicente
- Department of Chemistry , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
16
|
LaMaster DJ, Kaufman NEM, Bruner AS, Vicente MGH. Structure Based Modulation of Electron Dynamics in meso-(4-Pyridyl)-BODIPYs: A Computational and Synthetic Approach. J Phys Chem A 2018; 122:6372-6380. [PMID: 30016866 PMCID: PMC6693353 DOI: 10.1021/acs.jpca.8b05153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of structural modification on the electronic structure and electron dynamics of cationic meso-(4-pyridyl)-BODIPYs were investigated. A library of 2,6-difunctionalized meso-(4-pyridyl)-BODIPYs bearing various electron-withdrawing substituents was designed, and DFT calculations were used to model the redox properties, while TDDFT was used to determine the effects of functionalization on the excited states. Structural modification was able to restructure the low-lying molecular orbitals to effectively inhibit d-PeT. A new meso-(4-pyridyl)-BODIPY bearing 2,6-dichloro groups was synthesized and shown to exhibit enhanced charge recombination fluorescence. The fluorescence enhancement was determined to be the result of functionalization modulating the kinetics of the excited state dynamics.
Collapse
Affiliation(s)
- Daniel J. LaMaster
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Nichole E. M. Kaufman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Adam S. Bruner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|