1
|
Smirnov AS, Katlenok EA, Mikherdov AS, Kryukova MA, Bokach NA, Kukushkin VY. Halogen Bonding Involving Isomeric Isocyanide/Nitrile Groups. Int J Mol Sci 2023; 24:13324. [PMID: 37686131 PMCID: PMC10487382 DOI: 10.3390/ijms241713324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
2,3,5,6-Tetramethyl-1,4-diisocyanobenzene (1), 1,4-diisocyanobenzene (2), and 1,4-dicyanobenzene (3) were co-crystallized with 1,3,5-triiodotrifluorobenzene (1,3,5-FIB) to give three cocrystals, 1·1,3,5-FIB, 2·2(1,3,5-FIB), and 3·2(1,3,5-FIB), which were studied by X-ray diffraction. A common feature of the three structures is the presence of I···Cisocyanide or I···Nnitrile halogen bonds (HaBs), which occurs between an iodine σ-hole and the isocyanide C-(or the nitrile N-) atom. The diisocyanide and dinitrile cocrystals 2·2(1,3,5-FIB) and 3·2(1,3,5-FIB) are isostructural, thus providing a basis for accurate comparison of the two types of noncovalent linkages of C≡N/N≡C groups in the composition of structurally similar entities and in one crystal environment. The bonding situation was studied by a set of theoretical methods. Diisocyanides are more nucleophilic than the dinitrile and they exhibit stronger binding to 1,3,5-FIB. In all structures, the HaBs are mostly determined by the electrostatic interactions, but the dispersion and induction components also provide a noticeable contribution and make the HaBs attractive. Charge transfer has a small contribution (<5%) to the HaB and it is higher for the diisocyanide than for the dinitrile systems. At the same time, diisocyanide and dinitrile structures exhibit typical electron-donor and π-acceptor properties in relation to the HaB donor.
Collapse
Affiliation(s)
- Andrey S. Smirnov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia; (A.S.S.); (E.A.K.); (A.S.M.); (M.A.K.); (N.A.B.)
| | - Eugene A. Katlenok
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia; (A.S.S.); (E.A.K.); (A.S.M.); (M.A.K.); (N.A.B.)
| | - Alexander S. Mikherdov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia; (A.S.S.); (E.A.K.); (A.S.M.); (M.A.K.); (N.A.B.)
| | - Mariya A. Kryukova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia; (A.S.S.); (E.A.K.); (A.S.M.); (M.A.K.); (N.A.B.)
| | - Nadezhda A. Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia; (A.S.S.); (E.A.K.); (A.S.M.); (M.A.K.); (N.A.B.)
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia; (A.S.S.); (E.A.K.); (A.S.M.); (M.A.K.); (N.A.B.)
- Laboratory of Crystal Engineering of Functional Materials, South Ural State University, 76, Lenin Av., 454080 Chelyabinsk, Russia
| |
Collapse
|
2
|
Marsan ES, Dreab A, Bayse CA. In silico insights into the dimer structure and deiodinase activity of type III iodothyronine deiodinase from bioinformatics, molecular dynamics simulations, and QM/MM calculations. J Biomol Struct Dyn 2023; 41:4819-4829. [PMID: 35579922 PMCID: PMC9878935 DOI: 10.1080/07391102.2022.2073271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/27/2022] [Indexed: 01/28/2023]
Abstract
The homodimeric family of iodothyronine deiodinases (Dios) regioselectively remove iodine from thyroid hormones. Currently, structural data has only been reported for the monomer of the mus type III thioredoxin (Trx) fold catalytic domain (Dio3Trx), but the mode of dimerization has not yet been determined. Various groups have proposed dimer structures that are similar to the A-type and B-type dimerization modes of peroxiredoxins. Computational methods are used to compare the sequence of Dio3Trx to related proteins known to form A-type and B-type dimers. Sequence analysis and in silico protein-protein docking methods suggest that Dio3Trx is more consistent with proteins that adopt B-type dimerization. Molecular dynamics (MD) simulations of the refined Dio3Trx dimer constructed using the SymmDock and GalaxyRefineComplex databases indicate stable dimer formation along the β4α3 interface consistent with other Trx fold B-type dimers. Free energy calculations show that the dimer is stabilized by interdimer interactions between the β-sheets and α-helices. A comparison of MD simulations of the apo and thyroxine-bound dimers suggests that the active site binding pocket is not affected by dimerization. Determination of the transition state for deiodination of thyroxine from the monomer structure using QM/MM methods provides an activation barrier consistent with previous small model DFT studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eric S Marsan
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Ana Dreab
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA
| |
Collapse
|
3
|
Arai K, Toba H, Yamamoto N, Ito M, Mikami R. Modeling Type-1 Iodothyronine Deiodinase with Peptide-Based Aliphatic Diselenides: Potential Role of Highly Conserved His and Cys Residues as a General Acid Catalyst. Chemistry 2023; 29:e202202387. [PMID: 36254793 DOI: 10.1002/chem.202202387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 11/07/2022]
Abstract
Type-1 iodothyronine deiodinase (ID-1) catalyzes the reductive elimination of 5'-I and 5-I on the phenolic and tyrosyl rings of thyroxine (T4), respectively. Chemically verifying whether I atoms with different chemical properties undergo deiodination through a common mechanism is challenging. Herein, we report the modeling of ID-1 using aliphatic diselenide (Se-Se) and selenenylsulfide (Se-S) compounds. Mechanistic investigations of deiodination using the ID-1-like reagents suggested that the 5'-I and 5-I deiodinations proceed via the same mechanism through an unstable intermediate containing a Se⋅⋅⋅I halogen bond between a selenolate anion, reductively produced from Se-Se (or Se-S) in the compound, and an I atom in T4. Moreover, imidazolium and thiol groups, which may act as general acid catalysts, promoted the heterolytic cleavage of the C-I bond in the Se⋅⋅⋅I intermediate, which is the rate-determining step, by donating a proton to the C atom.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry, School of Science, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.,Institute of Advanced Biosciences, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Haruka Toba
- Department of Chemistry, School of Science, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Nozomi Yamamoto
- Department of Chemistry, School of Science, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Mao Ito
- Department of Chemistry, School of Science, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Rumi Mikami
- Department of Chemistry, School of Science, Tokai University Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
4
|
Luo J, Dai H, Zeng C, Wu D, Cao M. A Theoretical Study of the Halogen Bond between Heteronuclear Halogen and Benzene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228078. [PMID: 36432179 PMCID: PMC9692316 DOI: 10.3390/molecules27228078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
Halogen bonds play an important role in many fields, such as biological systems, drug design and crystal engineering. In this work, the structural characteristics of the halogen bond between heteronuclear halogen XD (ClF, BrCl, IBr, ICl, BrF and IF) and benzene were studied using density functional theory. The structures of the complexes between heteronuclear halogen and benzene have Cs symmetry. The interaction energies of the complexes between heteronuclear halogen XD (ClF, BrCl, IBr, ICl, BrF and IF) and benzene range from -27.80 to -37.18 kJ/mol, increasing with the increases in the polarity between the atoms of X and D, and are proportional to the angles of a between the Z axis and the covalent bond of heteronuclear halogen. The electron density (ρ) and corresponding Laplacian (∇2ρ) values indicate that the interaction of the heteronuclear halogen and benzene is a typical long-range weak interaction similar to a hydrogen bond. Independent gradient model analysis suggests that the van der Waals is the main interaction between the complexes of heteronuclear halogen and benzene. Symmetry-adapted perturbation theory analysis suggests that the electrostatic interaction is the dominant part in the complexes of C6H6⋯ClF, C6H6⋯ICl, C6H6⋯BrF and C6H6⋯IF, and the dispersion interaction is the main part in the complexes of C6H6⋯BrCl, C6H6⋯IBr.
Collapse
|
5
|
Aliyarova IS, Tupikina EY, Ivanov DM, Kukushkin VY. Metal-Involving Halogen Bonding Including Gold(I) as a Nucleophilic Partner. The Case of Isomorphic Dichloroaurate(I)·Halomethane Cocrystals. Inorg Chem 2022; 61:2558-2567. [DOI: 10.1021/acs.inorgchem.1c03482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Irina S. Aliyarova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Elena Yu. Tupikina
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M. Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| |
Collapse
|
6
|
Morales-Guevara R, Fuentes JA, Paez-Hernández D, Carreño A. The role of substituted pyridine Schiff bases as ancillary ligands in the optical properties of a new series of fac-rhenium(i) tricarbonyl complexes: a theoretical view. RSC Adv 2021; 11:37181-37193. [PMID: 35496390 PMCID: PMC9043815 DOI: 10.1039/d1ra05737e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 11/01/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, luminescent Re(i) tricarbonyl complexes have been increasingly proposed as fluorophores suitable for fluorescence microscopy to visualize biological structures and cells. In this sense, incorporating an asymmetrical pyridine Schiff base (PSB) as the ancillary ligand strongly modifies the staining and luminescent properties of Re(i) tricarbonyl complexes. In this work, we analyzed two series of Re(i) tricarbonyl complexes with their respective PSB ligands: (1) fac-[Re(CO)3(2,2'-bpy)(PSB)]1+ and (2) fac-[Re(CO)3(4,4'-bis(ethoxycarbonyl)-2,2'-bpy)(PSB)]1+, where the PSB exhibits substitutions at positions 4 or 6 in the phenolic ring with methyl or halogen substituents. Thus, we performed computational relativistic DFT and TDDFT studies to determine their optical properties. The ten complexes analyzed showed absorption in the visible light range. Furthermore, our analyses, including zero-field splitting (ZFS), allowed us to determine that the low-lying excited state locates below the 3LLCT states. Interestingly, seven of the ten analyzed complexes, whose corresponding PSB harbors an intramolecular hydrogen bond (IHB), exhibited luminescent emission that could be suitable for biological purposes: large Stokes shift, emission in the range 600-700 nm and τ in the order of 10-2 to 10-3 s. Conversely, the three complexes lacking the IHB due to two halogen substituents in the corresponding PSB showed a predicted emission with the lowest triplet excited state energy entering the NIR region. The main differences in the complexes' photophysical behavior have been explained by the energy gap law and time-resolved luminescence. These results emphasize the importance of choosing suitable substituents at the 4 and 6 positions in the phenolic ring of the PSB, which determine the presence of the IHB since they modulate the luminescence properties of the Re(i) core. Therefore, this study could predict Re(i) tricarbonyl complexes' properties, considering the desired emission features for biological and other applications.
Collapse
Affiliation(s)
- Rosaly Morales-Guevara
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello República 330 Santiago Chile
| | - Dayán Paez-Hernández
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| | - Alexander Carreño
- Universidad Andres Bello, Programa de Doctorado en Físicoquímica Molecular, Facultad de Ciencias Exactas Santiago Chile
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello República 330 Santiago Chile
| |
Collapse
|
7
|
Ivanov DM, Bokach NA, Yu Kukushkin V, Frontera A. Metal Centers as Nucleophiles: Oxymoron of Halogen Bond-Involving Crystal Engineering. Chemistry 2021; 28:e202103173. [PMID: 34623005 PMCID: PMC9298210 DOI: 10.1002/chem.202103173] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 02/06/2023]
Abstract
This review highlights recent studies discovering unconventional halogen bonding (HaB) that involves positively charged metal centers. These centers provide their filled d‐orbitals for HaB, and thus behave as nucleophilic components toward the noncovalent interaction. This role of some electron‐rich transition metal centers can be considered an oxymoron in the sense that the metal is, in most cases, formally cationic; consequently, its electron donor function is unexpected. The importance of Ha⋅⋅⋅d‐[M] (Ha=halogen; M is Group 9 (Rh, Ir), 10 (Ni, Pd, Pt), or 11 (Cu, Au)) interactions in crystal engineering is emphasized by showing remarkable examples (reported and uncovered by our processing of the Cambridge Structural Database), where this Ha⋅⋅⋅d‐[M] directional interaction guides the formation of solid supramolecular assemblies of different dimensionalities.
Collapse
Affiliation(s)
- Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg, 199034, Russian Federation.,Institute of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul, 656049, Russian Federation
| | - Antonio Frontera
- Department of Chemistry, Universitat de les Illes Balears, Palma de Mallorca (Baleares), 07122, Spain
| |
Collapse
|
8
|
Eliseeva A, Ivanov DM, Rozhkov AV, Ananyev IV, Frontera A, Kukushkin VY. Bifurcated Halogen Bonding Involving Two Rhodium(I) Centers as an Integrated σ-Hole Acceptor. JACS AU 2021; 1:354-361. [PMID: 34467299 PMCID: PMC8395620 DOI: 10.1021/jacsau.1c00012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 06/13/2023]
Abstract
The complexes [RhX(COD)]2 (X = Cl, Br; COD = 1,5-cyclooctadiene) form cocrystals with σ-hole iodine donors. X-ray diffraction studies and extensive theoretical considerations indicate that the d z 2-orbitals of two positively charged rhodium(I) centers provide sufficient nucleophilicity to form a three-center halogen bond (XB) with the σ-hole donors. The two metal centers function as an integrated XB acceptor, providing assembly via a metal-involving XB.
Collapse
Affiliation(s)
- Anastasiya
A. Eliseeva
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Daniil M. Ivanov
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Anton V. Rozhkov
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
| | - Ivan V. Ananyev
- A.
N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, 119991 Moscow, Russian Federation
| | - Antonio Frontera
- Department
of Chemistry, Universitat de les Illes Balears, Crts de Valldemossa km. 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Vadim Yu. Kukushkin
- Institute
of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russian Federation
- Laboratory
of Crystal Engineering of Functional Materials, South Ural State University, Lenin Av. 76, 454080 Chelyabinsk, Russian Federation
| |
Collapse
|
9
|
5-Iodo-1-Arylpyrazoles as Potential Benchmarks for Investigating the Tuning of the Halogen Bonding. CRYSTALS 2020. [DOI: 10.3390/cryst10121149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
5-Iodo-1-arylpyrazoles are interesting templates for investigating the halogen bond propensity in small molecules other than the already well-known halogenated molecules such as tetrafluorodiiodobenzene. Herein, we present six compounds with different substitution on the aryl ring attached at position 1 of the pyrazoles and investigate them in the solid state in order to elucidate the halogen bonding significance to the crystallographic landscape of such molecules. The substituents on the aryl ring are generally combinations of halogen atoms (Br, Cl) and various alkyl groups. Observed halogen bonding types spanned by these six 5-iodopyrazoles included a wide variety, namely, C–I⋯O, C–I⋯π, C–I⋯Br, C–I⋯N and C–Br⋯O interactions. By single crystal X-ray diffraction analysis combined with the descriptive Hirshfeld analysis, we discuss the role and influence of the halogen bonds among the intermolecular interactions.
Collapse
|
10
|
Abstract
Iodothyronine deiodinases (Dios) are important selenoproteins that control the concentration of the active thyroid hormone (TH) triiodothyronine through regioselective deiodination. The X-ray structure of a truncated monomer of Type III Dio (Dio3), which deiodinates TH inner rings through a selenocysteine (Sec) residue, revealed a thioredoxin-fold catalytic domain supplemented with an unstructured Ω-loop. Loop dynamics are driven by interactions of the conserved Trp207 with solvent in multi-microsecond molecular dynamics simulations of the Dio3 thioredoxin(Trx)-fold domain. Hydrogen bonding interactions of Glu200 with residues conserved across the Dio family anchor the loop’s N-terminus to the active site Ser-Cys-Thr-Sec sequence. A key long-lived loop conformation coincides with the opening of a cryptic pocket that accommodates thyroxine (T4) through an I⋯Se halogen bond to Sec170 and the amino acid group with a polar cleft. The Dio3-T4 complex is stabilized by an I⋯O halogen bond between an outer ring iodine and Asp211, consistent with Dio3 selectivity for inner ring deiodination. Non-conservation of residues, such as Asp211, in other Dio types in the flexible portion of the loop sequence suggests a mechanism for regioselectivity through Dio type-specific loop conformations. Cys168 is proposed to attack the selenenyl iodide intermediate to regenerate Dio3 based upon structural comparison with related Trx-fold proteins.
Collapse
|
11
|
Cesario D, Fortino M, Marino T, Nunzi F, Russo N, Sicilia E. The role of the halogen bond in iodothyronine deiodinase: Dependence on chalcogen substitution in naphthyl-based mimetics. J Comput Chem 2020; 40:944-951. [PMID: 30681189 DOI: 10.1002/jcc.25775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 11/06/2022]
Abstract
The effects on the activity of thyroxine (T4) due to the chalcogen replacement in a series of peri-substituted naphthalenes mimicking the catalytic function of deiodinase enzymes are computationally examined using density functional theory. In particular, T4 inner-ring deiodination pathways assisted by naphthyl-based models bearing two tellurols and a tellurol-thiol pair in peri-position are explored and compared with the analogous energy profiles for the naphthalene mimic having two selenols. The presence of a halogen bond (XB) in the intermediate formed in the first step and involved in the rate-determining step of the reaction is assumed to facilitate the process increasing the rate of the reaction. The rate-determining step calculated energy barrier heights allow rationalizing the experimentally observed superior catalytic activity of tellurium containing mimics. Charge displacement analysis is used to ascertain the presence and the role of the electron density charge transfer occurring in the rate-determining step of the reaction, suggesting the incipient formation or presence of a XB interaction. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego Cesario
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Center for Multiscale Modeling, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.,Department of Chemistry, Biology and Biotechnology, University of Perugia, I-06123, Perugia, Italy
| | - Mariagrazia Fortino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87030, Arcavacata di Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87030, Arcavacata di Rende, Italy
| | - Francesca Nunzi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, I-06123, Perugia, Italy.,Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM-CNR), I-06123, Perugia, Italy.,Consortium for Computational Molecular and Materials Sciences (CMS)2, I-06123, Perugia, Italy
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87030, Arcavacata di Rende, Italy
| | - Emilia Sicilia
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, I-87030, Arcavacata di Rende, Italy
| |
Collapse
|
12
|
Katlenok EA, Haukka M, Levin OV, Frontera A, Kukushkin VY. Supramolecular Assembly of Metal Complexes by (Aryl)I⋅⋅⋅d[PtII] Halogen Bonds. Chemistry 2020; 26:7692-7701. [DOI: 10.1002/chem.202001196] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Eugene A. Katlenok
- Institute of ChemistrySaint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Matti Haukka
- Department of ChemistryUniversity of Jyväskylä P.O. Box 35 40014 Jyväskylä Finland
| | - Oleg V. Levin
- Institute of ChemistrySaint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
| | - Antonio Frontera
- Department de QuímicaUniversitat de les Illes Balears Crta. de Valldemossa km 7.5 07122 Palma, de Mallorca Baleares Spain
| | - Vadim Yu. Kukushkin
- Institute of ChemistrySaint Petersburg State University Universitetskaya Nab. 7/9 199034 Saint Petersburg Russian Federation
- South Ural State University Lenin Av. 76 454080 Chelyabinsk Russian Federation
| |
Collapse
|
13
|
Marsan ES, Bayse CA. Halogen Bonding Interactions of Polychlorinated Biphenyls and the Potential for Thyroid Disruption. Chemistry 2020; 26:5200-5207. [PMID: 31849117 PMCID: PMC8812442 DOI: 10.1002/chem.201903904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/13/2019] [Indexed: 11/21/2023]
Abstract
Polychlorinated biphenyl (PCB) flame retardants are persistent pollutants and inhibit neurodevelopment, particularly in the early stages of life. Halogen bonding (XB) to the iodothyronine deiodinases (Dio) that modulate thyroid hormones (THs) is a potential mechanism for endocrine disruption. Cl⋅⋅⋅Se XB interactions of PCBs with SeMe- , a small model of the Dio active site selenocysteine, are compared with previous results on polybrominated diphenylethers (PBDEs) and THs using density functional theory. PCBs generally display weaker XB interactions compared to PBDEs and THs, consistent with the dependence of XB strength on the size of the halogen (I>Br>Cl). PCBs also do not meet a proposed energy threshold for substrates to undergo dehalogenation, suggesting they may behave as competitive inhibitors of Dio in addition to other mechanisms of endocrine disruption. XB interactions in PCBs are position-dependent, with ortho interactions slightly more favorable than meta and para interactions, suggesting that PCBs may have a greater effect on certain classes of Dio. Flexibility of PCBs around the biphenyl C-C bond is limited by ortho substitutions relative to the biphenyl linkage, which may contribute to the ability to inhibit Dio and other TH-related proteins.
Collapse
Affiliation(s)
- Eric S Marsan
- Department of Chemistry and Biochemistry, Old Dominion University, 1 Old Dominion University, Norfolk, VA, 23529, USA
| | - Craig A Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, 1 Old Dominion University, Norfolk, VA, 23529, USA
| |
Collapse
|
14
|
Symmetrical Noncovalent Interactions Br···Br Observed in Crystal Structure of Exotic Primary Peroxide. Symmetry (Basel) 2020. [DOI: 10.3390/sym12040637] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
4-Bromobenzamidrazone reacts with cyclopentanone giving 3-(4-bromophenyl)-5-(4-peroxobutyl)-1,2,4-triazole, which precipitated as pale-yellow crystals during the reaction. The intermolecular noncovalent interactions Br···Br in the single-crystal XRD structure of the peroxo compound were studied theoretically using quantum chemical calculations (ωB97XD/x2c-TZVPPall) and quantum theory of atoms in molecules (QTAIM) analysis. These attractive intermolecular noncovalent interactions Br···Br is type I halogen···halogen contacts and their estimated energy is 2.2–2.5 kcal/mol. These weak interactions are suggested to be one of the driving forces (albeit surely not the main one) for crystallization of the peroxo compound during the reaction and thus its stabilization in the solid state.
Collapse
|
15
|
A Halogen Bonding Perspective on Iodothyronine Deiodinase Activity. Molecules 2020; 25:molecules25061328. [PMID: 32183289 PMCID: PMC7144113 DOI: 10.3390/molecules25061328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022] Open
Abstract
Iodothyronine deiodinases (Dios) are involved in the regioselective removal of iodine from thyroid hormones (THs). Deiodination is essential to maintain TH homeostasis, and disruption can have detrimental effects. Halogen bonding (XB) to the selenium of the selenocysteine (Sec) residue in the Dio active site has been proposed to contribute to the mechanism for iodine removal. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are known disruptors of various pathways of the endocrine system. Experimental evidence shows PBDEs and their hydroxylated metabolites (OH-BDEs) can inhibit Dio, while data regarding PCB inhibition are limited. These xenobiotics could inhibit Dio activity by competitively binding to the active site Sec through XB to prevent deiodination. XB interactions calculated using density functional theory (DFT) of THs, PBDEs, and PCBs to a methyl selenolate (MeSe−) arrange XB strengths in the order THs > PBDEs > PCBs in agreement with known XB trends. THs have the lowest energy C–X*-type unoccupied orbitals and overlap with the Se lp donor leads to high donor-acceptor energies and the greatest activation of the C–X bond. The higher energy C–Br* and C–Cl* orbitals similarly result in weaker donor-acceptor complexes and less activation of the C–X bond. Comparison of the I···Se interactions for the TH group suggest that a threshold XB strength may be required for dehalogenation. Only highly brominated PBDEs have binding energies in the same range as THs, suggesting that these compounds may inhibit Dio and undergo debromination. While these small models provide insight on the I···Se XB interaction itself, interactions with other active site residues are governed by regioselective preferences observed in Dios.
Collapse
|
16
|
Rozhkov AV, Ivanov DM, Novikov AS, Ananyev IV, Bokach NA, Kukushkin VY. Metal-involving halogen bond Ar–I⋯[dz2PtII] in a platinum acetylacetonate complex. CrystEngComm 2020. [DOI: 10.1039/c9ce01568j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The observed and confirmed theoretically metal-involving halogen bond Ar–I⋯[dz2PtII] provides experimental evidence favoring a XB formation step upon oxidative addition of ArI to PtII.
Collapse
Affiliation(s)
- Anton V. Rozhkov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Daniil M. Ivanov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Alexander S. Novikov
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Nadezhda A. Bokach
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
| | - Vadim Yu. Kukushkin
- Institute of Chemistry
- Saint Petersburg State University
- 199034 Saint Petersburg
- Russian Federation
- Institute of Macromolecular Compounds
| |
Collapse
|
17
|
Kashina MV, Kinzhalov MA, Smirnov AS, Ivanov DM, Novikov AS, Kukushkin VY. Dihalomethanes as Bent Bifunctional XB/XB-Donating Building Blocks for Construction of Metal-involving Halogen Bonded Hexagons. Chem Asian J 2019; 14:3915-3920. [PMID: 31550070 DOI: 10.1002/asia.201901127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 12/20/2022]
Abstract
The dihalomethanes CH2 X2 (X=Cl, Br, I) were co-crystallized with the isocyanide complexes trans-[MXM 2 (CNC6 H4 -4-XC )2 ] (M=Pd, Pt; XM =Br, I; XC =F, Cl, Br) to give an extended series comprising 15 X-ray structures of isostructural adducts featuring 1D metal-involving hexagon-like arrays. In these structures, CH2 X2 behave as bent bifunctional XB/XB-donating building blocks, whereas trans-[MXM 2 (CNC6 H4 -4-XC )2 ] act as a linear XB/XB acceptors. Results of DFT calculations indicate that all XCH2 -X⋅⋅⋅XM -M contacts are typical noncovalent interactions with estimated strengths in the range of 1.3-3.2 kcal mol-1 . A CCDC search reveals that hexagon-like arrays are rather common but previously overlooked structural motives for adducts of trans-bis(halide) complexes and halomethanes.
Collapse
Affiliation(s)
- Maria V Kashina
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Mikhail A Kinzhalov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Andrey S Smirnov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Daniil M Ivanov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Alexander S Novikov
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| |
Collapse
|
18
|
Kryukova MA, Ivanov DM, Kinzhalov MA, Novikov AS, Smirnov AS, Bokach NA, Yu Kukushkin V. Four-Center Nodes: Supramolecular Synthons Based on Cyclic Halogen Bonding. Chemistry 2019; 25:13671-13675. [PMID: 31232494 DOI: 10.1002/chem.201902264] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Indexed: 12/30/2022]
Abstract
The isocyanide trans-[PdBr2 (CNC6 H4 -4-X')2 ] (X'=Br, I) and nitrile trans-[PtX2 (NCC6 H4 -4-X')2 ] (X/X'=Cl/Cl, Cl/Br, Br/Cl, Br/Br) complexes exhibit similar structural motif in the solid state, which is determined by hitherto unreported four-center nodes formed by cyclic halogen bonding. Each node is built up by four Type II C-X'⋅⋅⋅X-M halogen-bonding contacts and include one Type I M-X⋅⋅⋅X-M interaction, thus giving the rhombic-like structure. These nodes serve as supramolecular synthons to form 2D layers or double chains of molecules linked by a halogen bond. Results of DFT calculations indicate that all contacts within the nodes are typical noncovalent interactions with the estimated strengths in the range 0.6-2.9 kcal mol-1 .
Collapse
Affiliation(s)
- Mariya A Kryukova
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Daniil M Ivanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Mikhail A Kinzhalov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Alexander S Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Andrey S Smirnov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Nadezhda A Bokach
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034, Saint Petersburg, Russian Federation
| |
Collapse
|
19
|
Abstract
In addition to the underlying basic concepts and early recognition of halogen bonding, this paper reviews the conflicting views that consistently appear in the area of noncovalent interactions and the ability of covalently bonded halogen atoms in molecules to participate in noncovalent interactions that contribute to packing in the solid-state. It may be relatively straightforward to identify Type-II halogen bonding between atoms using the conceptual framework of σ-hole theory, especially when the interaction is linear and is formed between the axial positive region (σ-hole) on the halogen in one monomer and a negative site on a second interacting monomer. A σ-hole is an electron density deficient region on the halogen atom X opposite to the R–X covalent bond, where R is the remainder part of the molecule. However, it is not trivial to do so when secondary interactions are involved as the directionality of the interaction is significantly affected. We show, by providing some specific examples, that halogen bonds do not always follow the strict Type-II topology, and the occurrence of Type-I and -III halogen-centered contacts in crystals is very difficult to predict. In many instances, Type-I halogen-centered contacts appear simultaneously with Type-II halogen bonds. We employed the Independent Gradient Model, a recently proposed electron density approach for probing strong and weak interactions in molecular domains, to show that this is a very useful tool in unraveling the chemistry of halogen-assisted noncovalent interactions, especially in the weak bonding regime. Wherever possible, we have attempted to connect some of these results with those reported previously. Though useful for studying interactions of reasonable strength, IUPAC’s proposed “less than the sum of the van der Waals radii” criterion should not always be assumed as a necessary and sufficient feature to reveal weakly bound interactions, since in many crystals the attractive interaction happens to occur between the midpoint of a bond, or the junction region, and a positive or negative site.
Collapse
|
20
|
Varadwaj A, Marques HM, Varadwaj PR. Is the Fluorine in Molecules Dispersive? Is Molecular Electrostatic Potential a Valid Property to Explore Fluorine-Centered Non-Covalent Interactions? Molecules 2019; 24:E379. [PMID: 30678158 PMCID: PMC6384640 DOI: 10.3390/molecules24030379] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/23/2022] Open
Abstract
Can two sites of positive electrostatic potential localized on the outer surfaces of two halogen atoms (and especially fluorine) in different molecular domains attract each other to form a non-covalent engagement? The answer, perhaps counterintuitive, is yes as shown here using the electronic structures and binding energies of the interactions for a series of 22 binary complexes formed between identical or different atomic domains in similar or related halogen-substituted molecules containing fluorine. These were obtained using various computational approaches, including density functional and ab initio first-principles theories with M06-2X, RHF, MP2 and CCSD(T). The physical chemistry of non-covalent bonding interactions in these complexes was explored using both Quantum Theory of Atoms in Molecules and Symmetry Adapted Perturbation Theories. The surface reactivity of the 17 monomers was examined using the Molecular Electrostatic Surface Potential approach. We have demonstrated inter alia that the dispersion term, the significance of which is not always appreciated, which emerges either from an energy decomposition analysis, or from a correlated calculation, plays a structure-determining role, although other contributions arising from electrostatic, exchange-repulsion and polarization effects are also important. The 0.0010 a.u. isodensity envelope, often used for mapping the electrostatic potential is found to provide incorrect information about the complete nature of the surface reactive sites on some of the isolated monomers, and can lead to a misinterpretation of the results obtained.
Collapse
Affiliation(s)
- Arpita Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku 113-8656, Japan.
- National Institute of Advanced Industrial Science and Technology, 1 Chome-1-1 Umezono, Tsukuba, Ibaraki Prefecture, Ibaraki 305-8560, Japan.
| | - Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Pradeep R Varadwaj
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku 113-8656, Japan.
- National Institute of Advanced Industrial Science and Technology, 1 Chome-1-1 Umezono, Tsukuba, Ibaraki Prefecture, Ibaraki 305-8560, Japan.
| |
Collapse
|
21
|
Torubaev YV, Dolgushin FM, Skabitsky IV, Popova AE. Isomorphic substitution in molecular crystals and geometry of hypervalent tellurium: comments inspired by a case study of RMeTeI 2 and [RMe 2Te] +I − (R = Ph, Fc). NEW J CHEM 2019. [DOI: 10.1039/c9nj02318f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Unusual isomorphic substitution in the crystals of [FcMe2Te]+I− with an admixture of Te–I ionized [FcMeTeI+]I− supports the 3c-4e as a general, seamless bonding model for the hypervalent tellurium in both the isolated molecules and crystals.
Collapse
Affiliation(s)
- Yury V. Torubaev
- N.S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
- Moscow
- Russia
| | - Fedor M. Dolgushin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russia
| | - Ivan V. Skabitsky
- N.S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
- Moscow
- Russia
| | - Alexandra E. Popova
- N.S. Kurnakov Institute of General and Inorganic Chemistry of Russian Academy of Sciences
- Moscow
- Russia
| |
Collapse
|