1
|
Borji S, Sadeghian M, Golbon Haghighi M. Experimental and Theoretical Investigations for Revealing the Influence of Cyclometalated Ligand Type on Protonolysis of Pt-Carbon Sites. Inorg Chem 2024; 63:24274-24286. [PMID: 39660960 DOI: 10.1021/acs.inorgchem.4c04190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
This study investigates possible pathways arising from the reaction of anionic K[Pt(C^N)(p-MeC6H4)(CN)] complexes, C^N = 2-phenylpyridinate (ppy) and 7,8-benzo[h]quinolate (bzq), with trifluoroacetic acid (TFA), which has been employed in both experimental and computational approaches. Experimental studies clarify that the products of the protonolysis reaction can vary in the K[Pt(C^N)(p-MeC6H4)(CN)] complex depending on the type of the cyclometalated ligand. In the cyclometalated complex with ppy, only one product was observed, resulting from the cleavage of the Pt-Cppy bond of the cyclometalated ligand. Notably, when K[Pt(bzq)(p-MeC6H4)(CN)] reacts with trifluoroacetic acid, the protonolysis of both Pt-Cp-tolyl and Pt-Cbzq occurs in nearly equal proportions. The results indicate that the SE2 mechanism plays a primary role in the emergence of the products. Additionally, the experimental measurements did not detect any evidence for HCN creation, which is rooted in the high energy barrier and complex mechanism of protonation of the Pt-Csp(CN) in contrast to Pt-Csp2(p-MeC6H4) and Pt-Csp2(C^N) bonds. Comparison of the C-H bond protonolysis reaction on the Csp, Csp2, and Csp3 atoms in the investigated complexes has been carried out by substitution of the p-MeC6H4 ligand with a CH3 ligand to form a [Pt(ppy)(CH3)(CN)]- complex. According to our density functional theory (DFT) calculations, this substitution leads to protonolysis of the Pt-CC^N bond as the main product. The absence of the CH4 product is due to the increase of the reaction barrier for the Pt-CMe bond protonolysis and a decrease in steric hindrance by the presence of a CH3 ligand.
Collapse
Affiliation(s)
- Shabnam Borji
- Department of Chemistry, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mina Sadeghian
- Department of Chemistry, Shahid Beheshti University, Tehran 19839-69411, Iran
| | | |
Collapse
|
2
|
Wang FY, Yang LM, Wang SS, Lu H, Wang XS, Lu Y, Ni WX, Liang H, Huang KB. Cycloplatinated (II) Complex Based on Isoquinoline Alkaloid Elicits Ferritinophagy-Dependent Ferroptosis in Triple-Negative Breast Cancer Cells. J Med Chem 2024; 67:6738-6748. [PMID: 38526421 DOI: 10.1021/acs.jmedchem.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development and optimization of metal-based anticancer drugs with novel cytotoxic mechanisms have emerged as key strategies to overcome chemotherapeutic resistance and side effects. Agents that simultaneously induce ferroptosis and autophagic death have received extensive attention as potential modalities for cancer therapy. However, only a limited set of drugs or treatment modalities can synergistically induce ferroptosis and autophagic tumor cell death. In this work, we designed and synthesized four new cycloplatinated (II) complexes harboring an isoquinoline alkaloid C∧N ligand. On screening the in vitro activity of these agents, we found that Pt-3 exhibited greater selectivity of cytotoxicity, decreased resistance factors, and improved anticancer activity compared to cisplatin. Furthermore, Pt-3, which we demonstrate can initiate potent ferritinophagy-dependent ferroptosis, exhibits less toxic and better therapeutic activity than cisplatin in vivo. Our results identify Pt-3 as a promising candidate or paradigm for further drug development in cancer treatment.
Collapse
Affiliation(s)
- Feng-Yang Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Liang-Mei Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shan-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hui Lu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Xu-Sheng Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Yuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
3
|
Break SY, Hossan A, Farouk A. Synthesis, characterization, and anticancer evaluation of novel 4-hydrazinothiazole analogs. LUMINESCENCE 2023; 38:1864-1871. [PMID: 37555740 DOI: 10.1002/bio.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/19/2023] [Accepted: 08/06/2023] [Indexed: 08/10/2023]
Abstract
Single-step synthesis of novel 4-hydrazinothiazole derivatives 6a-e was achieved under mild conditions using the sequential four-components method involving isothiocyanate, aminoguanidine, carbonyl adduct, and α-haloketone derivatives. Deprotection of these hydrazinothiazoles was influenced by acylation, providing a novel group of diacylated molecular structures with a broader scope for the design of thiazolyl-containing drugs 7a and 7b. FTIR, 1 H/13 C NMR, LC-MS spectroscopy, and CHN elemental analyses were used to study the compound chemical structures. Using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on human periodontal ligament fibroblast (HPDLF) cells, the 4-hydrazinothiazole derivatives were screened for cytotoxicity in an in vitro cytotoxicity investigation. The 4-hydrazinothiazole compound 6b bearing an isopropylidene-hydrazino group demonstrated strongly potent cytotoxicity against CAKI1 (IC50 = 1.65 ± 0.24 μM) and A498 (IC50 of 0.85 ± 0.24 μM). Furthermore, the chloroacetyl-containing thiazole compound 7a displayed efficient inhibition of growth against the test cell lines CAKI1 and A498 at low micromolar concentrations, IC50 0.78 and 0.74 μM, respectively.
Collapse
Affiliation(s)
- Shorook Yasser Break
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Aisha Hossan
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Asmaa Farouk
- National Research Center, Textile Research and Technology Institute, Cairo, Egypt
| |
Collapse
|
4
|
Ugwu DI, Conradie J. Anticancer properties of complexes derived from bidentate ligands. J Inorg Biochem 2023; 246:112268. [PMID: 37301166 DOI: 10.1016/j.jinorgbio.2023.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Cancer is the abnormal division and multiplication of cells in an organ or tissue. It is the second leading cause of death globally. There are various types of cancer such as prostate, breast, colon, lung, stomach, liver, skin, and many others depending on the tissue or organ where the abnormal growth originates. Despite the huge investment in the development of anticancer agents, the transition of research to medications that improve substantially the treatment of cancer is less than 10%. Cisplatin and its analogs are ubiquitous metal-based anticancer agents notable for the treatment of various cancerous cells and tumors but unfortunately accompanied by large toxicities due to low selectivity between cancerous and normal cells. The improved toxicity profile of cisplatin analogs bearing bidentate ligands has motivated the synthesis of vast metal complexes of bidentate ligands. Complexes derived from bidentate ligands such as β-diketones, diolefins, benzimidazoles and dithiocarbamates have been reported to possess 20 to 15,600-fold better anticancer activity, when tested on cell lines, than some known antitumor drugs currently on the market, e.g. cisplatin, oxaliplatin, carboplatin, doxorubicin, and 5-fluorouracil. This work discusses the anticancer properties of various metal complexes derived from bidentate ligands, for possible application in chemotherapy. The results discussed were evaluated by the IC50 values as obtained from cell line tests on various metal-bidentate complexes. The structure-activity relationship study of the complexes discussed, revealed that hydrophobicity is a key factor that influences anticancer properties of molecules.
Collapse
Affiliation(s)
- David Izuchukwu Ugwu
- Department of Chemistry, University of the Free State, South Africa; Department of Pure and Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, South Africa.
| |
Collapse
|
5
|
Thi Thanh Chi N, Van Thong P, Tuan Cuong N, Van Meervelt L. Reaction Pathways of Diplatinum Complexes Bearing a Phenylpropene‐ Derived π/σ‐Chelator with Weak/Strong
σ
‐Donor Neutral Ligands. ChemistrySelect 2022. [DOI: 10.1002/slct.202203087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nguyen Thi Thanh Chi
- Department of Chemistry Hanoi National University of Education 136 Xuan Thuy Cau Giay Hanoi Vietnam
| | - Pham Van Thong
- Department of Chemistry Hanoi National University of Education 136 Xuan Thuy Cau Giay Hanoi Vietnam
| | - Ngo Tuan Cuong
- Department of Chemistry Hanoi National University of Education 136 Xuan Thuy Cau Giay Hanoi Vietnam
| | - Luc Van Meervelt
- Chemistry Department, KU Leuven Celestijnenlaan 200F Box 2404, B-3001 Leuven Belgium
| |
Collapse
|
6
|
Yang J, Chen DL, Wang PC, Yang B, Gao CZ. NIR phosphorescent cyclometalated platinum (II) complexes with CAIX targeted and nuclear penetration as potent anticancer theragnostic agents. Eur J Med Chem 2022; 243:114702. [DOI: 10.1016/j.ejmech.2022.114702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
|
7
|
Antiproliferative activity and DNA binding studies of cyclometalated complexes of platinum(II) containing 2-vinylpyridine. Biometals 2022; 35:617-627. [PMID: 35445906 DOI: 10.1007/s10534-022-00392-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
The cytotoxic activity of four cyclometalated platinum(II) complexes [PtMe(vpy)(L)], containing 2-vinylpyridine (vpy) and the phosphine ligands (L) PMe2Ph (1a), PPh3 (1b), PMePh2 (1c), and P(c-Hex)3 (1d), were evaluated against human breast cancer (MDA-MB-231), human lung cancer (A549), human colon cancer (SW1116), and non-tumor epithelial breast (MCF-10 A) cell lines. The highest activity was found for 1c with IC50 values of 21.10 µM, 23.36 µM, and 12.96 µM, compared to cisplatin, which was 10.12 µM, 47.57 µM, and 19.50 µM against the A549, SW1116, and MDA-MB-231 cell lines, respectively. 1a-d showed a higher selectivity index (SI) than cisplatin. Docking studies confirmed interaction to the DNA minor groove for all complexes. Genotoxicity studies on 1c showed interactions with the genomic content of malignant cells. Compared with cisplatin as a positive control, a slight shift was found in the electrophoresis mobility, which was utilized further to study the direct interaction of 1c with DNA.
Collapse
|
8
|
Nahaei A, Mandegani Z, Chamyani S, Fereidoonnezhad M, Shahsavari HR, Kuznetsov NY, Nabavizadeh SM. Half-Sandwich Cyclometalated Rh III Complexes Bearing Thiolate Ligands: Biomolecular Interactions and In Vitro and In Vivo Evaluations. Inorg Chem 2022; 61:2039-2056. [PMID: 35023727 DOI: 10.1021/acs.inorgchem.1c03218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A class of cyclometalated RhIII complexes [Cp*Rh(ppy)(SR)] bearing thiolate ligands, Cp* = pentamethylcyclopentadienyl, ppy = 2-phenylpyridinate, and R = pyridyl (Spy, 2), pyrimidyl (SpyN, 3), benzimidazolyl (Sbi, 4), and benzothiazolyl (Sbt, 5), were produced and identified by means of spectroscopic methods. The in vitro cytotoxicity of the RhIII compounds in three different human mortal cancerous cell lines (ovarian, SKOV3; breast, MCF-7; lung, A549) and a normal lung (MRC-5) cell line were evaluated, indicating the selectivity of these cyclometalated RhIII complexes to cancer cells. Complex 5, selected for in vivo experiment, has shown an effective inhibition of tumor growth in SKOV3 xenograft mouse model relative to control (p-values < 0.05 and < 0.01). Importantly, the outcomes of H&E (hematoxylin and eosin) staining and hematological analysis revealed negligible toxicity of 5 compared to cisplatin on a functioning of the main organs of mouse. Molecular docking, UV-vis, and emission spectroscopies (fluorescence, 3D fluorescence, synchronous) techniques were carried out on 1-5 to peruse the mechanism of the anticancer activities of these complexes. The obtained data help to manifest the binding affinity between the rhodium compounds and calf thymus DNA (CT-DNA) through the interaction by DNA minor groove and moderate binding affinity with bovine serum albumin (BSA), particularly with the cavity in the subdomain IIA. It can be concluded that the Rh-thiolate complexes are highly promising leads for the development of novel effective DNA-targeted anticancer drugs.
Collapse
Affiliation(s)
- Asma Nahaei
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Zeinab Mandegani
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Samira Chamyani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center; Department of Medicinal Chemistry, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Nikolai Yu Kuznetsov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov st. 28, 119991 Moscow, Russian Federation
| | - S Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| |
Collapse
|
9
|
Hajipour F, Mahdavinia M, Fereidoonnezhad M. Half-lantern Cyclometalated Platinum(II) Complexes as Anticancer Agents: Molecular docking, Apoptosis, Cell Cycle Analysis and Cytotoxic Activity Evaluations. Anticancer Agents Med Chem 2021; 22:1149-1158. [PMID: 34259151 DOI: 10.2174/1871520621666210713112105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE In the design of modern metal-based anticancer drugs, platinum-based complexes have gained growing interest. In this study, the anticancer activity of half-lantern cyclometalated Pt(II)‒Pt(II) complexes were was evaluated using MTT, apoptosis, cell cycle analysis, and DNA binding studies. MATERIALS AND METHODS The cytotoxicity of Pt(II)‒Pt(II) complexes were evaluated against different cancer cell lines such as human lung (A549), breast (MCF-7, and MDA-MB-231), ovarian (SKOV-3), and colon (HT-29) as well as normal breast (MCF-10A), and human lung fibroblast MRC-5 cells using MTT assay. BioLegend's PE Annexin V Apoptosis Detection Kit with 7AAD was applied to assess the apoptotic effects of 1A, and 1B compound against MCF-7, and A549 cell lines. Cell cycle analysis was determined using the flowcytometry method. The interaction of compounds with four different DNA structures with PDB codes (1BNA, 1LU5, 3CO3, and 198D) has been investigated by molecular docking. To achieve binding to DNA experimentally, the electrophoresis mobility shift assay and comet assay was applied. RESULTS In the evaluation of cytotoxic effects, 1A showed the highest cytotoxicity among the studied compounds, and it showed higher potency with more selectivity against normal cell lines than cisplatin. This compound had IC50 of 7.24, 2.21, 1.18, 2.71, 10.65, 18.32 and 49.21 μM against A549, SKOV3, HT29, MCF-7, MDA-MB-231, MRC-5, and MCF-10A, respectively, whereas cisplatin had IC50 of 9.75, 19.02, 107.23, 15.20, 18.09, 14.36, and 24.21 μm, respectively, on the same cell lines. In order to check the DNA binding activity of 1A, and 1B, electrophoretic mobility was also conducted, which indicated that the binding of these compounds led to a slight change in electrophoretic mobility to DNA. The migration of chromosomal DNA from the nucleus in the form of a tail or comet was executed in the comet assay of 1A on MCF-7. Examination of apoptosis of 1A, and 1B on the MCF-7 cancer cell line, showed that it could increase induction of apoptosis in this cancerous cell in a concentration-dependent manner. Investigating the effect of 1A using cell cycle analysis on MCF-7 cancer cell line showed that this complex affects the stage G1 and S of the cell cycle. CONCLUSION 1A has the potential to play a significant role in future biopharmaceutical studies.
Collapse
Affiliation(s)
- Fatemeh Hajipour
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masood Fereidoonnezhad
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
10
|
Synthesis, structures and anticancer potentials of five platinum(II) complexes with benzothiazole-benzopyran targeting mitochondria. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Shahsavari HR, Hu J, Chamyani S, Sakamaki Y, Babadi Aghakhanpour R, Salmon C, Fereidoonnezhad M, Mojaddami A, Peyvasteh P, Beyzavi H. Fluorinated Cycloplatinated(II) Complexes Bearing Bisphosphine Ligands as Potent Anticancer Agents. Organometallics 2020; 40:72-82. [PMID: 34334870 DOI: 10.1021/acs.organomet.0c00728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A family of cationic cycloplatinated(II) complexes [Pt(dfppy)(P^P)]Cl, dfppy = 2-(2,4-difluorophenyl)pyridine, incorporating bisphosphine ligands, P^P = bis(diphenylphosphino)methane (1, dppm), 1,2-bis(diphenylphosphino)ethane (2, dppe) and 1,2-bis(diphenylphosphino)benzene (3, dppbz), was prepared. The complexes were characterized by means of several analytical and spectroscopic methods. These complexes displayed acceptable stability in the biological environments which was confirmed by NMR, HR ESI-MS and UV-vis techniques. The antiproliferative properties of these complexes were evaluated by National Cancer Institute (NCI) at National Institutes of Health (NIH) against 60 different human tumor cell lines such as leukemia, melanoma, lung, colon, brain, ovary, breast, prostate and kidney. These complexes showed higher cytotoxicity than cisplatin against a wide variety of cancer cell lines such as K-562 (leukemia), HOP-92 (lung), HCT-116 (colon), OVCAR-8 (ovarian), PC-3 (prostate), MDA-MB-468 (breast), and melanoma cancer cell lines. Complex 3 as the most potent compound in this study furnished an excellent anti-proliferative activity compared to the cisplatin against Hela, SKOV3, and MCF-7 cancer cell lines. The main mode of the interaction of 1-3 with DNA was also determined using molecular docking studies.
Collapse
Affiliation(s)
- Hamid R Shahsavari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran; Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, 72701, United States
| | - Jiyun Hu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, 72701, United States
| | - Samira Chamyani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Yoshie Sakamaki
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, 72701, United States
| | - Reza Babadi Aghakhanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Christopher Salmon
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, 72701, United States
| | - Masood Fereidoonnezhad
- Department of Medicinal Chemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Ayyub Mojaddami
- Department of Medicinal Chemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Parnian Peyvasteh
- Department of Medicinal Chemistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 61357-15794, Iran
| | - Hudson Beyzavi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, 72701, United States
| |
Collapse
|
12
|
Bavi M, Nabavizadeh SM, Hosseini FN, Niknam F, Hamidizadeh P, Hoseini SJ, Raoof F, Abu-Omar MM. Ligand-Mediated C-Br Oxidative Addition to Cycloplatinated(II) Complexes and Benzyl-Me C-C Bond Reductive Elimination from a Cycloplatinated(IV) Complex. ACS OMEGA 2020; 5:28621-28631. [PMID: 33195914 PMCID: PMC7658948 DOI: 10.1021/acsomega.0c03573] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Reaction of the Pt(II) complexes [PtMe2(pbt)], 1a, (pbt = 2-(2-pyridyl)benzothiazole) and [PtMe(C^N)(PPh2Me)] [C^N = deprotonated 2-phenylpyridine (ppy), 1b, or deprotonated benzo[h]quinoline (bhq), 1c] with benzyl bromide, PhCH2Br, is studied. The reaction of 1a with PhCH2Br gave the Pt(IV) product complex [PtBr(CH2Ph)Me2(pbt)]. The major trans isomer is formed in a trans oxidative addition (2a), while the minor cis products (2a' and 2a″) resulted from an isomerization process. A solution of Pt(II) complex 1a in the presence of benzyl bromide in toluene at 70 °C after 7 days gradually gave the dibromo Pt(IV) complex [Pt(Br)2Me2(pbt)], 4a, as determined by NMR spectroscopy and single-crystal XRD. The reaction of complexes 1b and 1c with PhCH2Br gave the Pt(IV) complexes [PtMeBr(CH2Ph)(C^N)(PPh2Me)] (C^N = ppy; 2b; C^N = bhq, 2c), in which the phosphine and benzyl ligands are trans. Multinuclear NMR spectroscopy ruled out other isomers. Attempts to grow crystals of the cycloplatinated(IV) complex 2b yielded a previously reported Pt(II) complex [PtBr(ppy)(PPh2Me)], 3b, presumably from reductive elimination of ethylbenzene. UV-vis spectroscopy was used to study the kinetics of reaction of Pt(II) complexes 1a-1c with benzyl bromide. The data are consistent with a second-order SN2 mechanism and the first order in both the Pt complex and PhCH2Br. The rate of reaction decreases along the series 1a ≫ 1c > 1b. Density functional theory calculations were carried out to support experimental findings and understand the formation of isomers.
Collapse
Affiliation(s)
- Marzieh Bavi
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S. Masoud Nabavizadeh
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | | | - Fatemeh Niknam
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Peyman Hamidizadeh
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - S. Jafar Hoseini
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Fatemeh Raoof
- Professor Rashidi
Laboratory of Organometallic Chemistry, Department of Chemistry, College
of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Mahdi M. Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
13
|
The history of organoplatinum chemistry in Iran: 40-year research. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01892-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Odachowski M, Marschner C, Blom B. A review on 1,1-bis(diphenylphosphino)methane bridged homo- and heterobimetallic complexes for anticancer applications: Synthesis, structure, and cytotoxicity. Eur J Med Chem 2020; 204:112613. [PMID: 32784095 DOI: 10.1016/j.ejmech.2020.112613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
Herein, we review developments in synthesis, structure, and biological (anti-cancer) activities of 1,1-bis(diphenylphosphino)methane (dppm) bridged homo- and heterobimetallic systems of the type LmM(μ2-dppm)M'Ln (M and M' are transition metals which may be different or the same and Ln,m are co-ligands) since the first such reported bimetallic system in 1987 until the present time (2020). As the simplest diphosphine, dppm enables facile formation of bimetallic complexes, where, given the short spacer between the PPh2 groups, close spatial proximity of the metal centres is ensured. We concentrate on complexes bearing no M-M interaction and contrast biological activities of these complexes with mononuclear counterparts and positive control agents such as cisplatin, in an attempt to elucidate patterns in the biological activities of these complexes.
Collapse
Affiliation(s)
- Matylda Odachowski
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
15
|
Shahsavari HR, Giménez N, Lalinde E, Moreno MT, Fereidoonnezhad M, Babadi Aghakhanpour R, Khatami M, Kalantari F, Jamshidi Z, Mohammadpour M. Heterobimetallic PtII
-AuI
Complexes Comprising Unsymmetrical 1,1-Bis(diphenylphosphanyl)methane Bridges: Synthesis, Photophysical, and Cytotoxic Studies. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801297] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hamid R. Shahsavari
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Nora Giménez
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ); Universidad de La Rioja; 26006 Logroño Spain
| | - Elena Lalinde
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ); Universidad de La Rioja; 26006 Logroño Spain
| | - M. Teresa Moreno
- Departamento de Química-Centro de Síntesis Química de La Rioja (CISQ); Universidad de La Rioja; 26006 Logroño Spain
| | - Masood Fereidoonnezhad
- Toxicology Research Center; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
- Department of Medicinal Chemistry; Student Research Committee; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Reza Babadi Aghakhanpour
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Mehri Khatami
- Department of Chemistry; Institute for Advanced Studies in Basic Sciences (IASBS); 45137-66731 Zanjan Iran
| | - Foroogh Kalantari
- Department of Medicinal Chemistry; Student Research Committee; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - Zahra Jamshidi
- Student Research Committee; Chemistry & Chemical Engineering Research Center of Iran; 14968-13151 Tehran Iran
| | - Mozhdeh Mohammadpour
- Student Research Committee; Chemistry & Chemical Engineering Research Center of Iran; 14968-13151 Tehran Iran
| |
Collapse
|