1
|
Atrián-Blasco E, Sáez J, Rodriguez-Yoldi MJ, Cerrada E. Heteronuclear Complexes with Promising Anticancer Activity against Colon Cancer. Biomedicines 2024; 12:1763. [PMID: 39200227 PMCID: PMC11351612 DOI: 10.3390/biomedicines12081763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
This study investigates the activity of novel gold(I) and copper(I)/zinc(II) heteronuclear complexes against colon cancer. The synthesised heteronuclear Au(I)-Cu(I) and Au(I)-Zn(II) complexes were characterised and evaluated for their anticancer activity using human colon cancer cell lines (Caco-2). The complexes exhibited potent cytotoxicity, with IC50 values in the low micromolar range, and effectively induced apoptosis in cancer cells. In the case of complex [Cu{Au(Spy)(PTA)}2]PF6 (2), its cytotoxicity is ×10 higher than its mononuclear precursor, while showing low cytotoxicity towards differentiated healthy cells. Mechanistic studies revealed that complex 2 inhibits the activity of thioredoxin reductase, a key enzyme involved in redox regulation, leading to an increase in reactive oxygen species (ROS) levels and oxidative stress, in addition to an alteration in DNA's tertiary structure. Furthermore, the complexes demonstrated a strong binding affinity to bovine serum albumin (BSA), suggesting the potential for effective drug delivery and bioavailability. Collectively, these findings highlight the potential of the investigated heteronuclear Au(I)-Cu(I) and Au(I)-Zn(II) complexes as promising anticancer agents, particularly against colon cancer, through their ability to disrupt redox homeostasis and induce oxidative stress-mediated cell death.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea—ISQCH, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza, 50009 Zaragoza, Spain (J.S.)
| | - Javier Sáez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea—ISQCH, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza, 50009 Zaragoza, Spain (J.S.)
| | - Maria Jesús Rodriguez-Yoldi
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Facultad de Veterinaria, Ciber de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto Agroalimentario de Aragón (IA2), 50013 Zaragoza, Spain;
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea—ISQCH, Consejo Superior de Investigaciones Científicas, Universidad de Zaragoza, 50009 Zaragoza, Spain (J.S.)
| |
Collapse
|
2
|
Omondi RO, Jaganyi D, Ojwach SO. Electronic and ring size effects of N-heterocyclic carbenes on the kinetics of ligand substitution reactions and DNA/protein interactions of their palladium(II) complexes. Biometals 2023; 36:1109-1123. [PMID: 37184626 PMCID: PMC10545578 DOI: 10.1007/s10534-023-00507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
The synthesis, substitution kinetics and DNA/BSA interactions of four cationic Pd(II) complexes [Pd(1)Cl]BF4 (Pd1), [Pd(2)Cl]BF4 (Pd2), [Pd(3)Cl]BF4 (Pd3) and [Pd(4)Cl]BF4 (Pd4), derived from the reaction of [PdCl2(NCCH3)2] with ligands 2,6-bis(3-methylimidazolium-1-yl)pyridine dibromide (1), 2,6-bis(3-ethylimidazolium-1-yl)pyridine dibromide (2), 2,6-bis(1-methylimidazole-2-thione)pyridine (3), and 2,6-bis(1-ethylimidazole-2-thione)pyridine (4), respectively are reported. The complexes were characterised by various spectroscopic techniques and single crystal X-ray diffraction for compound Pd2. Kinetic reactivity of the complexes with the biologically relevant nucleophiles thiourea (Tu), L-methionine (L-Met) and guanosine 5'-monophosphate sodium salt (5'-GMP) was in the order: Pd1 > Pd2 > Pd3 > Pd4, which was largely dependent on the electronic and ring size of the chelate ligands, consistent with Density functional theory (DFT) simulations. The interactions of the complexes with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) binding titrations showed strong binding. Both the experimental and in silico data reveal CT-DNA intercalative binding mode.
Collapse
Affiliation(s)
- Reinner O Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Private Bag X01, Pietermaritzburg, 3209, South Africa
| | - Deogratius Jaganyi
- School of Pure and Applied Sciences, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya
- Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Stephen O Ojwach
- School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Private Bag X01, Pietermaritzburg, 3209, South Africa.
| |
Collapse
|
3
|
Gurgul I, Mazuryk O, Rutkowska-Zbik D, Łomzik M, Krasowska A, Pietrzyk P, Stochel G, Brindell M. Microwave-assisted synthesis and photodynamic activity of tris-heteroleptic Ru(II) complexes with asymmetric polypyridyl ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Bellam R, Jaganyi D, Robinson RS. Heterodinuclear Ru-Pt Complexes Bridged with 2,3-Bis(pyridyl)pyrazinyl Ligands: Studies on Kinetics, Deoxyribonucleic Acid/Bovine Serum Albumin Binding and Cleavage, In Vitro Cytotoxicity, and In Vivo Toxicity on Zebrafish Embryo Activities. ACS OMEGA 2022; 7:26226-26245. [PMID: 35936428 PMCID: PMC9352169 DOI: 10.1021/acsomega.2c01845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Di- and poly-homo/heteronuclear complexes have great potential as anticancer drugs. Here, we report their reactivity, deoxyribonucleic acid (DNA)/bovine serum albumin (BSA) binding and cleavage interactions, in vitro cytotoxicity, and in vivo zebrafish embryo toxicity of [(phen)2Ru(μ-L)PtCl2]2+ (phen = 1,10-phenanthroline and L = 2,3-bis(2-pyridyl)pyrazine, bpp, C1 ; 2,3-bis(2-pyridyl)quinoxaline, bpq, C2ial ; 2,3-bis(2-pyridyl)benzo[g]quinoxaline, bbq, C3 ) anticancer prodrugs. The substitution reactivity increases from C1 to C3 owing to an increase in the π-conjugation on the bridging chelate which facilitates π-back bonding. As a result, the electrophilicity index on the C3 complex increases than that on the complex C2 followed by C1 which leads to higher rates of substitution and thus the reactivity order follows C1 < C2 < C3 . The coordination of Ru at one end of each of the complexes enhances water solubility. Moreover, the charge addition of the two metal ions increases their reactivity toward substitution in addition to ensuring electrostatic interactions at target sites such as the DNA/BSA. Spectroscopic (UV-vis absorption and fluorescence quenching) titration and viscosity measurement results of the interactions of C1/2/3 with CT-DNA established the formation of stable, nonconvent C1/2/3 -DNA adducts with DNA most likely via the intercalative binding mode. Furthermore, studies with BSA showed a good binding affinity of these complexes owing to hydrophobic interactions with the coordinated ligands. The interactions of these complexes with DNA/BSA are in line with the reactivity trend, and all these experimental findings were further supported by molecular docking analysis. In vitro MTT cytotoxic activities on human breast cancer cell line MCF-7 revealed that all the complexes have high cytotoxicity activity (IC50 > 9 μM); furthermore, the selectivity index and SI values were higher (>3). Complex C3 showed the highest cytotoxicity with IC50 = 3.1 μM and SI value (5.55) against MCF7 cell lines and these values were comparable to those of the cisplatin (IC50 and SI values are 5.0 μM and 4.02, respectively). In vivo toxicological assessments on zebrafish embryos revealed that all the Ru-Pt complexes (CI/2/3 ) have poor embryo acute toxic effects over 96 h postfertilization, hpf with LC50 > 65.2 μM. The complex C3 has shown the lowest embryo toxicity (LC50 = 148.8 μM), which is comparable to that of commercial cisplatin (LC50 = 181.1 μM). Based on the cytotoxicity results, complexes C2 and C3 could be considered for further development as chemotherapeutic agents against MCF breast cancer cells.
Collapse
Affiliation(s)
- Rajesh Bellam
- School
of Chemistry and Physics, University of
KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
- Reseda
Lifesciences Pvt. Ltd., 11th Main, 46th Cross, 5th Block, Jayanagar, Bangalore 560041, Karnataka, India
| | - Deogratius Jaganyi
- School
of Pure and Applied Sciences, Mount Kenya
University, P. O. Box
342-01000, Thika, Kenya
- Department
of Chemistry, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Ross Stuart Robinson
- School
of Chemistry and Physics, University of
KwaZulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa
| |
Collapse
|
5
|
Mazuryk O, Janczy-Cempa E, Łagosz J, Rutkowska-Zbik D, Machnicka A, Krasowska A, Pietrzyk P, Stochel G, Brindell M. Relevance of the electron transfer pathway in photodynamic activity of Ru(II) polypyridyl complexes containing 4,7-diphenyl-1,10-phenanthroline ligands under normoxic and hypoxic conditions. Dalton Trans 2022; 51:1888-1900. [PMID: 35018930 DOI: 10.1039/d1dt02908h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The purpose of this study was to investigate the correlation between the spectroscopic and photophysical properties of Ru(II) polypyridyl complexes and their photodynamic activity in vitro. A series of Ru(II) polypyridyl complexes with 4,7-diphenyl-1,10-phenanthroline (dip) and 2,3-bis(2-pyridyl)quinoxaline (dpq) and its derivatives were synthesized and characterized regarding their photophysical, biological, and photodynamic properties. The complexes were evaluated not only in the context of 1O2 generation but also regarding other types of reactive oxygen species (ROS) to assess the possibility of Ru(II) complexes to induce phototoxicity via various ROS using fluorescence and EPR spectroscopy. The compounds were found to be moderately cytotoxic with IC50 values ranging from 1 to 35 μM and retained their cytotoxic activity under hypoxic conditions. The unraveled phototoxic activity is based mainly on the generation of H2O2 and 1O2, highlighting the importance of electron-transfer processes in the observed photodynamic activity of Ru polypyridyl complexes. A combination of photodynamic activity with cytotoxicity under decreased dioxygen concentrations may help overcome the current photodynamic therapy (PDT) limitation. The findings highlight the need for broadening the scope of tested Ru-based photosensitizers.
Collapse
Affiliation(s)
- Olga Mazuryk
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Ewelina Janczy-Cempa
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Justyna Łagosz
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Dorota Rutkowska-Zbik
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Agata Machnicka
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Aneta Krasowska
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Piotr Pietrzyk
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Grażyna Stochel
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Małgorzata Brindell
- Department of Inorganic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Krakow, Poland.
| |
Collapse
|
6
|
Ma L, Li L, Zhu G. Platinum-containing heterometallic complexes in cancer therapy: advances and perspectives. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00205a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum-based anticancer drugs are among the most widely used antineoplastics in clinical settings. Their therapeutic applications and outcomes are, however, greatly hampered by drug resistance, systemic toxicity, and the lack...
Collapse
|
7
|
Loftus LM, Olson EC, Stewart DJ, Phillips AT, Arumugam K, Cooper TM, Haley JE, Grusenmeyer TA. Zn Coordination and the Identity of the Halide Ancillary Ligand Dramatically Influence the Excited-State Dynamics and Bimolecular Reactions of 2,3-Di(pyridin-2-yl)benzo[ g]quinoxaline. Inorg Chem 2021; 60:16570-16583. [PMID: 34662517 DOI: 10.1021/acs.inorgchem.1c02484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The optical properties of coordination complexes with ligands containing nitrogen heterocycles have been extensively studied for decades. One subclass of these materials, metal complexes utilizing substituted pyrazines and quinoxalines as ligands, has been employed in a variety of photochemical applications ranging from photodynamic therapy to organic light-emitting diodes. A vast majority of this work focuses on characterization of the metal-to-ligand charge-transfer states in these metal complexes; however, literature reports rarely investigate the photophysics of the parent pyrazine or quinoxaline ligand or perform control experiments utilizing metal complexes that lack low-lying charge-transfer (CT) states in order to determine how metal-atom coordination influences the photophysical properties of the ligand. With this in mind, we examined the steady-state and time-resolved photophysics of 2,3-di(pyridin-2-yl)benzo[g]quinoxaline (dpb) and explored how the coordination of ZnX2 (X = Cl-, Br-, I-) affects the photophysical properties of dpb. In dpb, we find that the dominant mode of deactivation from the singlet excited state is intersystem crossing (ISC). Coordination of ZnX2 perturbs the relative energies of the ππ* and nπ* excited states of dpb, leading to drastically different rates of ISC as well as radiative and nonradiative decay in the [Zn(dpb)X2] complexes compared to dpb. These differences in the rates change the dominant singlet-excited-state decay pathway from ISC in dpb to a mixture of ISC and fluorescence in [Zn(dpb)Cl2] and [Zn(dpb)Br2] and to nonradiative decay in [Zn(dpb)I2]. Coordination of ZnX2 and the choice of the halide ligand also have profound effects on the rate constants for excited-state bimolecular reactions, including triplet-triplet annihilation and oxygen quenching. These results demonstrate that metal coordination, even in complexes lacking low-lying CT states, and the choice of the ancillary ligand can dramatically alter the photophysical properties of chromophores containing nitrogen heterocycles.
Collapse
Affiliation(s)
- Lauren M Loftus
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,General Dynamics Information Technology, 5100 Springfield Pike, Dayton, Ohio 45431, United States
| | - Emma C Olson
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - David J Stewart
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Alexis T Phillips
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States.,Southwestern Ohio Council for Higher Education, Dayton, Ohio 45420, United States
| | - Kuppuswamy Arumugam
- Wright State University, Department of Chemistry, 3640 Colonel Glenn Highway, Dayton, Ohio 45435, United States
| | - Thomas M Cooper
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Joy E Haley
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Tod A Grusenmeyer
- Materials and Manufacturing Directorate, Functional Materials Division, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433-7750, United States
| |
Collapse
|
8
|
Peng YB, Tao C, Tan CP, Zhao P. Inhibition of Aβ peptide aggregation by ruthenium(II) polypyridyl complexes through copper chelation. J Inorg Biochem 2021; 224:111591. [PMID: 34450410 DOI: 10.1016/j.jinorgbio.2021.111591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is known as a complex multifactorial syndrome and both metal chelators and amyloid β peptide (Aβ) inhibitors show promise against AD. Herein, four small hybrid compounds have been designed and synthesized utilizing 8-hydroxyquinoline, pyridine or imidazole as chelators and benzimidazole as the recognition moiety for AD treatment. These conjugates can capture Cu2+ from Aβ and become dimers upon Cu2+ coordination and show high efficiency for both Cu2+ elimination and Aβ assembly inhibition. Besides, these designed complexes can inhibit the production of Aβ-induced reactive oxygen species (ROS), protect mitochondria from damage, and improve the survival rate of neuron cells. Our work provides a new strategy to combine hydrophobic interaction and metal ion chelation to design amyloid inhibitors.
Collapse
Affiliation(s)
- Yan-Bo Peng
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - Can Tao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, PR China.
| | - Ping Zhao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Education Mega Centre, No. 280, Waihuandong Road, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Understanding the role of flexible alkyl-α,ω-diamine linkers on the substitution behaviour of dinuclear trans-platinum(II) complexes: A kinetic and mechanistic study. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Cd(II) coordination polymer of fumaric acid and pyridyl-hydrazide Schiff base: Structure, photoconductivity and theoretical interpretation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Omondi RO, Sibuyi NRS, Fadaka AO, Meyer M, Jaganyi D, Ojwach SO. Role of π-conjugation on the coordination behaviour, substitution kinetics, DNA/BSA interactions, and in vitro cytotoxicity of carboxamide palladium(II) complexes. Dalton Trans 2021; 50:8127-8143. [PMID: 34027534 DOI: 10.1039/d1dt00412c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Treatments of N-(pyridin-2-ylmethyl)pyrazine-2-carboxamide (L1), N-(quinolin-8-yl)pyrazine-2-carboxamide (L2), N-(quinolin-8-yl)picolinamide (L3) and N-(quinolin-8-yl)quinoline-2-carboxamide (L4) with [PdCl2(NCMe)]2 afforded the corresponding Pd(ii) complexes, [Pd(L1)Cl] (PdL1); [Pd(L2)Cl] (PdL2); [Pd(L3)Cl] (PdL3); and [Pd(L4)Cl] (PdL4) in moderate yields. Structural characterisation of the compounds was achieved by NMR and FT-IR spectroscopies, elemental analyses and single crystal X-ray crystallography. The solid-state structures of complexes PdL2-PdL4 established the presence of one tridentate carboxamide and Cl ligands around the Pd(ii) coordination sphere, to give distorted square planar complexes. Electrochemical investigations of PdL1-PdL4 showed irreversible one-electron oxidation reactions. Kinetics reactivity of the complexes towards bio-molecules, thiourea (Tu), l-methionine (L-Met) and guanosine 5'-diphosphate disodium salt (5'-GMP) decreased in the order: PdL1 > PdL2 > PdL3 > PdL4, in tandem with the density functional theory (DFT) data. The complexes bind favourably to calf thymus (CT-DNA), and bovine serum albumin (BSA), and the order of their interactions agrees with the substitution kinetics trends. The in vitro cytotoxic activities of PdL1-PdL4 were examined in cancer cell lines A549, PC-3, HT-29, Caco-2, and HeLa, and a normal cell line, KMST-6. Overall, PdL1 and PdL3 displayed potent cytotoxic effects on A549, PC-3 HT-29 and Caco-2 comparable to cisplatin. All the investigated complexes exhibited lower toxicity on normal cells than cisplatin.
Collapse
Affiliation(s)
- Reinner O Omondi
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| | - Nicole R S Sibuyi
- Department of Biotechnology, University of the Western Cape, Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Adewale O Fadaka
- Department of Biotechnology, University of the Western Cape, Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Mervin Meyer
- Department of Biotechnology, University of the Western Cape, Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Deogratius Jaganyi
- School of Pure and Applied Sciences, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya and Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Stephen O Ojwach
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| |
Collapse
|
12
|
Bellam R, Jaganyi D, Mambanda A, Robinson R, BalaKumaran MD. Seven membered chelate Pt(ii) complexes with 2,3-di(2-pyridyl)quinoxaline ligands: studies of substitution kinetics by sulfur donor nucleophiles, interactions with CT-DNA, BSA and in vitro cytotoxicity activities. RSC Adv 2019; 9:31877-31894. [PMID: 35530785 PMCID: PMC9072748 DOI: 10.1039/c9ra06488e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/18/2019] [Indexed: 11/21/2022] Open
Abstract
Dichloro platinum(ii) complexes coordinated with 2,3-di(2-pyridyl)quinoxaline ligands which form seven-membered chelates namely, bpqPtCl2, dmbpqPtCl2 and bbqPtCl2 (where bpq, dmbpq and bbq are 2,3-di(2-pyridyl)quinoxaline, 6,7-dimethyl-2,3-di(2-pyridyl)quinoxaline and 2,3-bis(2'pyriyl)benzo[g]quinoxaline, respectively) were synthesized, characterised and their respective hydrated product complexes namely, bpqPt(OH2)2 2+, dmbpqPt(OH2)2 2+ and bbqPt(OH2)2 2+ were prepared by chloride metathesis. The substitution kinetics of the aquated cations by thiourea nucleophiles indicated that the two aqua ligands are substituted simultaneously according to the rate law: k obs = k 2[Nu]. This is followed by a forced dechelation of the ligands from the Pt (II) to form Pt(Nu)4 2+ species. The dechelation step is considerably slow to be monitored reliably. The rate of substitution is marginally enhanced by introducing two methyl groups and by extending the π-conjugation on the bpq core ligand. The reactivity order increased as bpqPt(OH2)2 2+ < dmbpqPt(OH2)2 2+ < bbqPt(OH2)2 2+. Reactivity trends were well supported by theoretical computed DFT electronic descriptors. The interactions of the Pt(ii) complexes with CT-DNA and BSA were also examined spectroscopically in tris buffers at pH 7.2. Spectroscopic and viscosity measurements suggested strong associative interactions between the Pt(ii) complexes and CT-DNA, most likely through groove binding. In silico theoretical binding studies showed energetically stable poses through associative non-covalent interactions. In vitro MTT cytotoxicity IC50 values of the Pt(ii) complexes on human liver carcinoma cells (HepG2) cancer cell lines revealed bbqPtCl2 as the least active. The fluorescence staining assays revealed the morphological changes suggested early apoptotic induction as well as non-specific necrosis.
Collapse
Affiliation(s)
- Rajesh Bellam
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01, Scottsville Pietermaritzburg 3209 South Africa
| | - Deogratius Jaganyi
- School of Science, College of Science and Technology, University of Rwanda P.O. Box 4285 Kigali Rwanda
- Department of Chemistry, Durban University of Technology P.O. Box 1334 Durban 4000 South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01, Scottsville Pietermaritzburg 3209 South Africa
| | - Ross Robinson
- School of Chemistry and Physics, University of KwaZulu-Natal Private Bag X01, Scottsville Pietermaritzburg 3209 South Africa
| | | |
Collapse
|
13
|
Liu B, Lystrom L, Cameron CG, Kilina S, McFarland SA, Sun W. Monocationic Iridium(III) Complexes with Far‐Red Charge‐Transfer Absorption and Near‐IR Emission: Synthesis, Photophysics, and Reverse Saturable Absorption. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900156] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingqing Liu
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| | - Levi Lystrom
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| | - Colin G. Cameron
- Department of Chemistry and Biochemistry University of North Carolina at Greensboro Greensboro North Carolina 27402‐6170 USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| | - Sherri A. McFarland
- Department of Chemistry and Biochemistry University of North Carolina at Greensboro Greensboro North Carolina 27402‐6170 USA
| | - Wenfang Sun
- Department of Chemistry and Biochemistry North Dakota State University Fargo North Dakota 58108‐6050 USA
| |
Collapse
|
14
|
Jayamani A, Bellam R, Gopu G, Ojwach SO, Sengottuvelan N. Copper(II) complexes of bidentate mixed ligands as artificial nucleases: Synthesis, crystal structure, characterization and evaluation of biological properties. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Adsorption of U(VI) by Elodea nuttallii: equilibrium, kinetic and mechanism analysis. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6346-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|