1
|
Hyder A, Ali A, Buledi JA, Memon R, Al-Anzi BS, Memon AA, Kazi M, Solangi AR, Yang J, Thebo KH. A NiO-nanostructure-based electrochemical sensor functionalized with supramolecular structures for the ultra-sensitive detection of the endocrine disruptor bisphenol S in an aquatic environment. Phys Chem Chem Phys 2024; 26:10940-10950. [PMID: 38526327 DOI: 10.1039/d4cp00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Herein, NiO nanoparticles (NPs) functionalized with a para-hexanitrocalix[6]arene derivative (p-HNC6/NiO) were synthesized by using a facile method and applied as a selective electrochemical sensor for the determination of bisphenol S (BPS) in real samples. Moreover, the functional interactions, phase purities, surface morphologies and elemental compositions of the synthesized p-HNC6/NiO NPs were investigated via advanced analytical tools, such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX). Additionally, the synthesized p-HNC6/NiO NPs were cast on the surface of a bare glassy carbon electrode (GCE) via a drop casting method, which resulted in uniform deposition of p-HNC6/NiO/GCE over the surface of the GCE. Additionally, the developed p-HNC6/NiO/GCE sensor demonstrated an outstanding electrochemical response to BPS under optimized conditions, including a supporting electrolyte, a Briton-Robinson buffer electrolyte at pH 4, a scan rate of 110 mV s-1 and a potential window of between -0.2 and 1.0 V. The wide linear dynamic range was optimized to 0.8-70 μM to obtain a brilliant linear calibration curve for BPS. The limit of detection (LOD) and limit of quantification (LOQ) of the developed sensor were estimated to be 0.0059 and 0.019 μM, respectively, which are lower than those of reported sensors for BPS. The feasibility of the developed method was successfully assessed by analyzing the content of BPS in waste water samples, and good recoveries were achieved.
Collapse
Affiliation(s)
- Ali Hyder
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Akbar Ali
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jamil Ahmed Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Roomia Memon
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Bader S Al-Anzi
- Department of Environmental Sciences, Kuwait University, P.O. Box 5969, Safat, 13060, Kuwait.
| | - Ayaz Ali Memon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box-2457, Riyadh 11451, Saudi Arabia
| | - Amber Rehana Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Jun Yang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China.
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Khalid Hussain Thebo
- Institute of Metal Research (IMR), Chinese Academy of Science, 2 Wenhua Rood, Shenyang, China.
| |
Collapse
|
2
|
Raju CV, Manohara Reddy YV, Cho CH, Shin HH, Park TJ, Park JP. Highly sensitive electrochemical peptide-based biosensor for marine biotoxin detection using a bimetallic platinum and ruthenium nanoparticle-tethered metal-organic framework modified electrode. Food Chem 2023; 428:136811. [PMID: 37423105 DOI: 10.1016/j.foodchem.2023.136811] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/10/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Saxitoxin (STX) is a highly toxic small-molecule cyanotoxin that is water-soluble, stable in acidic media, and thermostable. STX is hazardous to human health and the environment in ocean, thus it is an important to detect it at very low concentrations. Herein, we developed an electrochemical peptide-based biosensor for the trace detection of STX in different sample matrix utilizing differential pulse voltammetry (DPV) signal. We synthesized the nanocomposite of zeolitic imidazolate framework-67 (ZIF-67) decorated bimetallic platinum (Pt) and ruthenium (Ru) nanoparticles (Pt-Ru@C/ZIF-67) using impregnation method. The nanocomposite modified with screen-printed electrode (SPE) was subsequently used to detect STX in the range of 1-1,000 ng mL-1, with a detection limit (LOD) of 26.7 pg mL-1. The developed peptide-based biosensor is highly selective and sensitive towards STX detection, thus it represents a promising strategy for the development of novel portable bioassay for monitoring various hazardous molecules in aquatic food chains.
Collapse
Affiliation(s)
- Chikkili Venkateswara Raju
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Y Veera Manohara Reddy
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Chae Hwan Cho
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyeon Ho Shin
- Library of Marine Samples, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Institute of Interdisciplinary Convergence Research, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jong Pil Park
- Basic Research Laboratory, Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
3
|
Rajeswari B, Sravani B, Cheffena M, Janraj Naik R, Veera Manohara Reddy Y, Madhavi G, Suresh Reddy K, Jong Kim M. Ethylene glycol-assisted synthesis of reduced graphene oxide-supported bimetallic Pt-Co nanoparticles for the ultra-sensitive detection of tert-butyl hydroquinone. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
Zhang X, Yan B, Peng L, Zhao J, Zheng J. Controllable synthesis of Pt nanoparticles on graphene oxide nanosheets and its application for electrochemical determination of dopamine. ChemistrySelect 2023. [DOI: 10.1002/slct.202204022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xinjin Zhang
- Shaanxi Province Engineering Laboratory of High Performance Concrete Shaanxi Railway Institute Weinan China
| | - Bo Yan
- Shaanxi Province Engineering Laboratory of High Performance Concrete Shaanxi Railway Institute Weinan China
| | - Lei Peng
- Shaanxi Province Engineering Laboratory of High Performance Concrete Shaanxi Railway Institute Weinan China
| | - Jie Zhao
- Shaanxi Province Engineering Laboratory of High Performance Concrete Shaanxi Railway Institute Weinan China
| | - Jianbin Zheng
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry Northwest University Xi'an Shaanxi 710069 China
| |
Collapse
|
5
|
Design of Bimetallic PtFe-Based Reduced Graphene Oxide as Efficient Catalyst for Oxidation Reduction Reaction. Catalysts 2022. [DOI: 10.3390/catal12121528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Oxygen reduction reaction (ORR) is a very important reaction that occurs at the cathodic side in proton exchange membrane fuel cells (PEMFCs). The high cost associated with frequently used Pt-based electrocatalysts for ORR limits the commercialization of PEMFCs. Through bifunctional and electronic effects, theoretical calculations have proved that alloying Pt with a suitable transition metal is likely to improve ORR mass activity when compared to Pt-alone systems. Herein, we demonstrate the preparation of bimetallic Pt–Fe nanoparticles supported on reduced graphene oxide sheets (RGOs) via a simple surfactant-free chemical reduction method. The present method produces PtFe/RGO catalyst particles with a 3.2 nm diameter without agglomeration. PtFe/RGO showed a noticeable positive half-wave potential (0.503 V vs. Ag/AgCl) compared with a commercial Pt/C catalyst (0.352 V vs. Ag/AgCl) with minimal Pt-loading on a glassy carbon electrode. Further, PtFe/RGO showed a higher ORR mass activity of 4.85 mA/cm2-geo compared to the commercial Pt/C (3.60 mA/cm2-geo). This work paves the way for designing noble−transition metal alloy electrocatalysts on RGO supports as high-performance electrocatalysts for ORR application.
Collapse
|
6
|
Wang H, Xie A, Li S, Wang J, Chen K, Su Z, Song N, Luo S. Three-dimensional g-C3N4/MWNTs/GO hybrid electrode as electrochemical sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. Anal Chim Acta 2022; 1211:339907. [DOI: 10.1016/j.aca.2022.339907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 12/31/2022]
|
7
|
Reddy YVM, Shin JH, Palakollu VN, Sravani B, Choi CH, Park K, Kim SK, Madhavi G, Park JP, Shetti NP. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv Colloid Interface Sci 2022; 304:102664. [PMID: 35413509 DOI: 10.1016/j.cis.2022.102664] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Graphene is an intriguing two-dimensional honeycomb-like carbon material with a unique basal plane structure, charge carrier mobility, thermal conductivity, wide electrochemical spectrum, and unusual physicochemical properties. Therefore, it has attracted considerable scientific interest in the field of nanoscience and bionanotechnology. The high specific surface area of graphene allows it to support high biomolecule loading for good detection sensitivity. As such, graphene, graphene oxide (GO), and reduced GO are excellent materials for the fabrication of new nanocomposites and electrochemical sensors. Graphene has been widely used as a chemical building block and/or scaffold with various materials to create highly sensitive and selective electrochemical sensing microdevices. Over the past decade, significant advancements have been made by utilizing graphene and graphene-based nanocomposites to design electrochemical sensors with enhanced analytical performance. This review focus on the synthetic strategies, as well as the structure-to-function studies of graphene, electrochemistry, novel multi nanocomposites combining graphene, limit of detection, stability, sensitivity, assay time. Finally, the review describes the challenges, strategies and outlook on the future development of graphene sensors technology that would be usable for the internet of things are also highlighted.
Collapse
|
8
|
Manohara Reddy YV, Shin JH, Hwang J, Kweon DH, Choi CH, Park K, Kim SK, Madhavi G, Yi H, Park JP. Fine-tuning of MXene-nickel oxide-reduced graphene oxide nanocomposite bioelectrode: Sensor for the detection of influenza virus and viral protein. Biosens Bioelectron 2022; 214:114511. [DOI: 10.1016/j.bios.2022.114511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022]
|
9
|
Simultaneous determination of citalopram and selegiline using an efficient electrochemical sensor based on ZIF-8 decorated with RGO and g-C3N4 in real samples. Anal Chim Acta 2022; 1203:339662. [DOI: 10.1016/j.aca.2022.339662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022]
|
10
|
Tapia MA, Gusmão R, Pérez-Ràfols C, Subirats X, Serrano N, Sofer Z, Díaz-Cruz JM. Enhanced voltammetric performance of sensors based on oxidized 2D layered black phosphorus. Talanta 2022; 238:123036. [PMID: 34801894 DOI: 10.1016/j.talanta.2021.123036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022]
Abstract
The exceptional properties of 2D layered black phosphorus (BP) make it a promising candidate for electrochemical sensing applications and, even though BP is considered unstable and tends to degrade by the presence of oxygen and moisture, its oxidation can be beneficial in some situations. In this work, we present an unequivocal demonstration that the exposition of BP-based working electrodes to normal ambient conditions can indeed be advantageous, leading to an enhancement of voltammetric sensing applications. This point was proved using a BP modified screen-printed carbon electrode (BP-SPCE) for the voltammetric determination of dopamine (DA) as a model target analyte. Oxidized BP-SPCE (up to 35% of PxOy at the surface) presented an enhanced analytical performance with a 5-fold and 2-fold increase in sensitivity, as compared to bare-SPCE and non-oxidized BP-SPCE stored in anhydrous atmosphere, respectively. Good detection limit, repeatability, reproducibility, stability, selectivity, and accuracy were also achieved. Overall, the results presented herein display the prominent possibilities of preparing and working with BP based-sensors in normal ambient settings and showcase their implementation under physiological conditions.
Collapse
Affiliation(s)
- María A Tapia
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Rui Gusmão
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic
| | - Clara Pérez-Ràfols
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Xavier Subirats
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| | - Núria Serrano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28, Prague 6, Czech Republic.
| | - José Manuel Díaz-Cruz
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain; Water Research Institute (IdRA), University of Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain
| |
Collapse
|
11
|
Direksilp C, Scheiger JM, Ariyasajjamongkol N, Sirivat A. A highly selective and sensitive electrochemical sensor for dopamine based on a functionalized multi-walled carbon nanotube and poly( N-methylaniline) composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:469-479. [PMID: 35029250 DOI: 10.1039/d1ay01943k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dopamine (DA) is an important neurotransmitter used for diagnosing various diseases from its abnormal concentrations in human fluids. Herein, an electrochemical sensor based on a composite of re-doped poly(N-methylaniline) (rePNMA) and modified multi-walled carbon nanotubes (fMWCNTs), termed fMWCNT-rePNMA, was developed to measure DA concentration. The successful modification of the fMWCNT surface was confirmed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Cyclic voltammetry (CV) displayed an excellent electrocatalytic activity of the fMWCNTs-rePNMA composite towards the oxidation of DA. The developed fMWCNTs-rePNMA composite demonstrated a broad linear range from 5 to 90 μmol L-1 with a low limit of detection (LOD) value of 2.23 μmol L-1, and a fast response with a high sensitivity of 251.5 nA μmol-1 L as determined from the calibration curve of the DA determination. In addition, the fMWCNTs-rePNMA composite selectively identified and quantified DA in the presence of ascorbic acid (AA) and uric acid (UA). Therefore, the fMWCNTs-rePNMA composite sensor shows potential to determine the level of DA in human urine.
Collapse
Affiliation(s)
- Chatrawee Direksilp
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Soi Chula 12, Phayathai Road, Bangkok 10330, Thailand
| | - Johannes M Scheiger
- Institute of Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, Karlsruhe 76131, Germany
| | - Nuttha Ariyasajjamongkol
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Anuvat Sirivat
- The Conductive and Electroactive Polymer Research Unit, The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University Research Building, Soi Chula 12, Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Rabie EM, Shamroukh AA, Khodari M. A Novel Electrochemical Sensor Based on Modified Carbon Paste Electrode with ZnO Nanorods for the Voltammetric Determination of Indole‐3‐acetic Acid in Plant Seed Extracts. ELECTROANAL 2022. [DOI: 10.1002/elan.202100420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- E. M. Rabie
- Chemistry Department Faculty of Science South Valley University 83523 Qena Egypt
| | - A. A. Shamroukh
- Chemistry Department Faculty of Science South Valley University 83523 Qena Egypt
| | - M. Khodari
- Chemistry Department Faculty of Science South Valley University 83523 Qena Egypt
| |
Collapse
|
13
|
Dhanya I, Heera S, Samuel M. S, Pisharady SK. Electrical conductivity studies and correlated barrier hopping transport in Europium-doped graphene oxide nanocomposites. NEW J CHEM 2022. [DOI: 10.1039/d1nj04443e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The thermoelectric properties of europium-doped graphene oxide nanocomposite and determination of barrier hopping transport parameters.
Collapse
Affiliation(s)
- I. Dhanya
- Department of Physics, Catholicate College, Pathanamthitta, Kerala, India
| | - S. Heera
- Department of Physics, Catholicate College, Pathanamthitta, Kerala, India
| | - Soosen Samuel M.
- Department of Physics, Catholicate College, Pathanamthitta, Kerala, India
| | | |
Collapse
|
14
|
Chen J, Wang J, Ye R, Huang D, Chen S. An electrochemical sensor based on a glassy carbon electrode modified with sandwich structured ZIF-67@rGO for bisphenol A measurement. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5777-5786. [PMID: 34825246 DOI: 10.1039/d1ay01542g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The low conductivity of metal-organic frameworks seriously impedes their electrocatalytic performance. In this study, we prepared a fabricated sandwich structure composed of a Co-based zeolitic imidazolate framework (ZIF-67) and reduced graphene oxide (rGO) through a facile and simple one-pot hydrothermal reaction. This framework of nanocomposites, which are modified with a glassy carbon electrode, constructed a bisphenol A (BPA) electrochemical sensor for the first time. Operational parameters such as pH, electrolytes, the amount of modifiers, deposition potentials and deposition time were optimised for the sensitive detection of BPA. The performance of electrodes was evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction and transmission electron microscopy. With differential pulse voltammetry, the detection concentration of BPA ranged from 0.05 μmol L-1 to 100 μmol L-1. The results revealed that the hierarchical nanocomposites demonstrated better electrocatalytic performance with large electrochemically active surface areas, high sensitivity and a low limit of detection (5.2 nmol L-1), compared with a physical mixture of ZIF-67 and rGO at the same ratio. These impressive features originate from the synergistic effects of ZIF-67 and rGO. This study presents a new strategy using metal-organic framework composite materials for the sensitive detection of BPA.
Collapse
Affiliation(s)
- Jinyang Chen
- Fujian Polytechnic Normal University, Food Flexible Packaging Technology Fujian University Engineering Research Center, Fuqing, Fujian 350300, China.
- Fujian Normal University, Collge of Life sciences, Fuzhou 350117, Fujian, China
| | - Jiamei Wang
- Fujian Polytechnic Normal University, Food Flexible Packaging Technology Fujian University Engineering Research Center, Fuqing, Fujian 350300, China.
| | - Ruihong Ye
- Fujian Polytechnic Normal University, Food Flexible Packaging Technology Fujian University Engineering Research Center, Fuqing, Fujian 350300, China.
| | - Dihui Huang
- Fujian Polytechnic Normal University, Food Flexible Packaging Technology Fujian University Engineering Research Center, Fuqing, Fujian 350300, China.
| | - Sheng Chen
- Fujian Polytechnic Normal University, Food Flexible Packaging Technology Fujian University Engineering Research Center, Fuqing, Fujian 350300, China.
| |
Collapse
|
15
|
Vernekar PR, Shanbhag MM, G M, Shetti NP, Mascarenhas RJ. Silica‐gel incorporated carbon paste sensor for the electrocatalytic oxidation of famotidine and its application in biological sample analysis. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Mahesh Mohan Shanbhag
- Department of Chemistry K.L.E. Institute of Technology, Gokul Hubballi Karnataka India
| | - Manasa G
- Electrochemistry Research Group St. Joseph's College Bangalore Karnataka India
| | | | | |
Collapse
|
16
|
Lu X, Zhang F, Sun Y, Yu K, Guo W, Qu F. A 2D/2D NiCo-MOF/Ti 3C 2 heterostructure for the simultaneous detection of acetaminophen, dopamine and uric acid by differential pulse voltammetry. Dalton Trans 2021; 50:16593-16600. [PMID: 34746941 DOI: 10.1039/d1dt03208a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2D/2D NiCo-MOF/Ti3C2 heterojunction is constructed as a non-enzymatic biosensor for the simultaneous electrochemical detection of acetaminophen (AP), dopamine (DA), and uric acid (UA) via differential pulse voltammetry. Benefiting from the synergistic effects of the high electrocatalytic activity of NiCo-MOF, the outstanding conductivity of Ti3C2, and the improved specific surface area of NiCo-MOF/Ti3C2, NiCo-MOF/Ti3C2 displays high sensing performance toward AP (0.01-400 μM), DA (0.01-300 μM), and UA (0.01-350 μM) in 0.1 M phosphate buffer (PB, pH 7.4) at working potentials of 0.346 V vs. SCE for AP, 0.138 V vs. SCE for DA, and 0.266 V vs. SCE for UA. Furthermore, the well-separated oxidation peak potentials allow for the simultaneous detection of the analytes, with detection limits of 0.008, 0.004, and 0.006 μM (S/N = 3), respectively. As a result of its considerable reproducibility and anti-interference and anti-fouling properties, NiCo-MOF/Ti3C2 was also developed into a practical sensing platform to detect AP, DA, and UA in serum and urine, presenting excellent recoveries of 98.1-102.2 %.
Collapse
Affiliation(s)
- Xing Lu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Harbin Normal University, Harbin 150025, P. R. China.
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Harbin Normal University, Harbin 150025, P. R. China. .,Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P. R. China
| | - Yimeng Sun
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Harbin Normal University, Harbin 150025, P. R. China.
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Harbin Normal University, Harbin 150025, P. R. China.
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Harbin Normal University, Harbin 150025, P. R. China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Harbin Normal University, Harbin 150025, P. R. China. .,Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P. R. China
| |
Collapse
|
17
|
Islam S, Shaheen Shah S, Naher S, Ali Ehsan M, Aziz MA, Ahammad AJS. Graphene and Carbon Nanotube-based Electrochemical Sensing Platforms for Dopamine. Chem Asian J 2021; 16:3516-3543. [PMID: 34487610 DOI: 10.1002/asia.202100898] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Indexed: 12/24/2022]
Abstract
Dopamine (DA) is an important neurotransmitter, which is created and released from the central nervous system. It plays a crucial role in human activities, like cognition, emotions, and response to anything. Maladjustment of DA in human blood serum results in different neural diseases, like Parkinson's and Schizophrenia. Consequently, researchers have started working on DA detection in blood serum, which is undoubtedly a hot research area. Electrochemical sensing techniques are more promising to detect DA in real samples. However, utilizing conventional electrodes for selective determination of DA encounters numerous problems due to the coexistence of other materials, such as uric acid and ascorbic acid, which have an oxidation potential close to DA. To overcome such problems, researchers have put their focus on the modification of bare electrodes. The aim of this review is to present recent advances in modifications of most used bare electrodes with carbonaceous materials, especially graphene, its derivatives, and carbon nanotubes, for electrochemical detection of DA. A brief discussion about the mechanistic phenomena at the electrode interface has also been included in this review.
Collapse
Affiliation(s)
- Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shamsun Naher
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
18
|
Simultaneous determination of ascorbic acid, dopamine, and uric acid with polyaniline/hemin/reduced graphite oxide composite. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
An ultra-sensitive rifampicin electrochemical sensor based on titanium nanoparticles (TiO2) anchored reduced graphene oxide modified glassy carbon electrode. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125533] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Gopi PK, Kesavan G, Chen SM, Ravikumar CH. Cadmium sulfide quantum dots anchored on reduced graphene oxide for the electrochemical detection of metronidazole. NEW J CHEM 2021. [DOI: 10.1039/d0nj05501h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this research, the metal–organic-based synthesis of cadmium sulfide quantum dots (CdS QDs) was performed.
Collapse
Affiliation(s)
- Praveen Kumar Gopi
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Ganesh Kesavan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Chandan Hunsur Ravikumar
- Pilot Plant Development and Training Institute
- King Mongkut's University of Technology Thonburi
- Bangkok 10150
- Thailand
- Centre for Nano and Material Sciences
| |
Collapse
|
21
|
Dong Y, Liu J, Zheng J. A sensitive dopamine electrochemical sensor based on hollow zeolitic imidazolate framework. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125617] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Nickel decorated graphite oxide and carbon nanofiber surface for electrochemical detection of dopamine. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Synthesis of a magnetic sorbent and its application in extraction of different pesticides from water, fruit, and vegetable samples prior to their determination by gas chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1635:461718. [PMID: 33229005 DOI: 10.1016/j.chroma.2020.461718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/20/2022]
Abstract
In this investigation, an efficient sorbent based on Fe3O4@polyphenols magnetic nanoparticles has been prepared using the extract of Mentha piperita leaves for the first time. The main purposes of this study were synthesis of economically affordable and environmentally friendly sorbent using the extract of Mentha piperita leaves and evaluating its application as a sorbent in magnetic solid phase extraction. The functional groups, magnetic property, size, and shape of the synthesized sorbent were characterized. The sorbent was utilized for the extraction and preconcentration of various pesticides (chlorpyrifos, fenazaquin, penconazole, diniconazole, oxadiazon, haloxyfop-methyl, hexaconazole, clodinafop-propargyl, tebuconazole, and fenoxaprop-p-ethyl) from vegetable, fruit, and water samples. After magnetic solid phase extraction, a dispersive liquid-liquid microextraction method was done to achieve low detection limits. The enriched pesticides were monitored by gas chromatography-tandem mass spectrometry. The synthesized sorbent was characterized by Fourier transform infrared, scanning electron microscopy, energy-dispersive x-ray spectroscopy, x-ray diffraction, and vibrating sample magnetometer techniques, which confirmed the successful synthesis of the magnetic nanoparticles. The effective parameters such as the sorbent weight, ionic strength, pH, vortex time, and kind and volume of elution and extraction solvents were studied. Under optimum extraction conditions, the method showed broad linear ranges (0.05-1000 µg L-1) with low limits of detection (0.27-4.13 ng L-1) and quantification (0.91-13.8 ng L-1). Extraction recoveries and enrichment factors were in the ranges of 54-89 % and 491-811, respectively.
Collapse
|
24
|
Veerakumar P, Manavalan S, Chen SM, Pandikumar A, Lin KC. Ultrafine Bi-Sn nanoparticles decorated on carbon aerogels for electrochemical simultaneous determination of dopamine (neurotransmitter) and clozapine (antipsychotic drug). NANOSCALE 2020; 12:22217-22233. [PMID: 33141140 DOI: 10.1039/d0nr06028c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This present study describes the synthesis of ultrafine Bi-Sn nanoparticles decorated on carbon aerogels (Bi-Sn NP/CAG) as a nanocomposite for the electrochemical simultaneous determination of dopamine (DA) and clozapine (CLZ). The typical characterization techniques, such as XRD, Raman, BET, FT-IR, TGA, XPS, and FE-SEM/TEM, showed useful insights into the crystal phase and morphology of Bi-Sn NP/CAG. Integrated Bi-Sn NP/CAG built into a cost-effective screen printed carbon electrode (SPCE) offers a high electrochemical surface area (ECSA) compared to unmodified, Bi-Sn, and CAG/SPCEs, such that it favourably allowed the binding of DA and CLZ molecules onto the surface at the Bi-Sn/CAG, which was demonstrated by cyclic and differential pulse voltammetry techniques. As a result, the DA and CLZ sensing exhibited low detection limits (DL, 4.6 and 97.6 nM (S/N = 3)), and sensitivity (3.402 and 0.4 μA μM-1 cm-2) over a wide linear range (0.02-97.59 and 0.5-2092 μM), respectively. To go a step further, the Bi-Sn NP/CAG/SPCE was applied for the simultaneous determination of DA and CLZ which featured lower DL (23.1 and 31.3 nM (S/N = 3)), and sensitivity (0.4979 and 0.04 μA μM-1 cm-2) over a wide linear range (2-182 and 10-910 μM), respectively. The selectivity for DA and CLZ in the presence of a 10-fold concentration of their potentially interfering active species was demonstrated. Finally, this sensing methodology enables the rapid electrochemical determination of the amount of DA and CLZ in a rat brain region serum sample with successful recovery outcomes.
Collapse
Affiliation(s)
- Pitchaimani Veerakumar
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|
25
|
Highly sensitive detection of dopamine based on hierarchical nanoporous NiCoO2/Ni composite. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Fredj Z, Ben Ali M, Abbas MN, Dempsey E. Simultaneous determination of ascorbic acid, uric acid and dopamine using silver nanoparticles and copper monoamino-phthalocyanine functionalised acrylate polymer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3883-3891. [PMID: 32716418 DOI: 10.1039/d0ay01183e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A silver nanoparticle and copper monoamino-phthalocyanine-acrylate (Cu-MAPA) polymer modified glassy carbon electrode was developed for the simultaneous detection of dopamine (DOP), ascorbic acid (AA) and uric acid (UA) using voltammetric techniques. Silver nanoparticles (AgNPs) were synthesised according to the citrate reduction method. Following synthesis and characterisation the copper phthalocyanine polymer was co-deposited with AgNPs realising a surface with enhanced electron transfer which lowered the overpotential required for analyte electro-oxidation. Differential pulse voltammetry (DPV) was employed for the simultaneous determination of dopamine (DOP), ascorbic acid (AA) and uric acid (UA) at AgNP/Cu-MAPA modified surfaces at <μM ranges. The peak potential separations for DOP-AA and DOP-UA were ca. 181 mV and 168 mV respectively. The chemical sensor was also capable of individual quantitation of DOP, UA and AA with detection limits of 0.7, 2.5 and 5.0 nM respectively. Overall, the approach realised a simple and effective electrode modifier for the selective discrimination and quantitation of DOP in the presence of physiological levels of AA and UA.
Collapse
Affiliation(s)
- Zina Fredj
- University of Sousse, Higher Institute of Applied Sciences and Technology of Sousse, GREENS-ISSAT, 4003 Ibn Khaldoun Sousse, Tunisia
| | | | | | | |
Collapse
|
27
|
Ibrahim M, Ibrahim H, Almandil NB, Sayed MA, Kawde A, Aldaqdouq Y. A Novel Platform Based on Au−CeO
2
@MWCNT Functionalized Glassy Carbon Microspheres for Voltammetric Sensing of Valrubicin as Bladder Anticancer Drug and its Interaction with DNA. ELECTROANAL 2020. [DOI: 10.1002/elan.202060125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mohamed Ibrahim
- Department of Clinical Pharmacy Research Institute for Research and Medical Consultations Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Hossieny Ibrahim
- Chemistry Department Faculty of Science Assiut University Assiut Egypt
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research Institute for Research and Medical Consultations Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| | - Marwa A. Sayed
- Department of Industrial Pharmacy Faculty of Pharmacy Assiut University Assiut 71526 Egypt
| | - Abdel‐Nasser Kawde
- Chemistry Department College of Sciences King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Yaqeen Aldaqdouq
- College of Clinical Pharmacy Imam Abdulrahman Bin Faisal University P.O. Box 1982 Dammam 31441 Saudi Arabia
| |
Collapse
|
28
|
Tawade AK, Kamble BB, Sharma KKK, Tayade SN. Simultaneous electrochemical investigations of dopamine and uric acid by in situ amino functionalized reduced grahene oxide. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2806-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
29
|
Synergistic effect of carbon nanotubes, copper and silver nanoparticles as an efficient electrochemical sensor for the trace recognition of amlodipine besylate drug. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2807-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
30
|
Xu S, Dai B, Zhao W, Jiang L, Huang H. Electrochemical detection of β-lactoglobulin based on a highly selective DNA aptamer and flower-like Au@BiVO 4 microspheres. Anal Chim Acta 2020; 1120:1-10. [PMID: 32475386 DOI: 10.1016/j.aca.2020.04.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022]
Abstract
Beta-lactoglobulin is a natural milk protein and the main cause of infant milk allergy. In this work, a sensitive, selective and inexpensive electrochemical biosensor for the detection of β-lactoglobulin was developed. In this sensor, a DNA aptamer was used instead of an expensive antibody as the recognition group highly selective for β-lactoglobulin. The flower-like BiVO4 microspheres were firstly found to have peroxidase mimic catalytic activity and used to amplify the electrochemical signal. The aptamer can bind β-lactoglobulin and fall off from the working electrode, after which the DNA2/Au/BiVO4 probe can be fixed to the DNA1/AuNPs/ITO working electrode by the hybridization of DNA2 with DNA1. Therefore, a higher concentration of β-lactoglobulin leads to increased fabrication of the DNA2/Au/BiVO4 probe on the surface of the working electrode, and thereby increases the electrochemical signal. This electrochemical biosensor exhibited a wide detection range from 0.01 to 1000 ng mL-1, with a limit of detection (LOD) of 0.007 ng mL-1, which indicates a good potential application in the field of food analysis.
Collapse
Affiliation(s)
- Shengpan Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, PR China; Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, PR China
| | - Benlin Dai
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, PR China
| | - Wei Zhao
- Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian, Jiangsu, 223300, PR China
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, 211800, PR China.
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, PR China.
| |
Collapse
|
31
|
Qi H, Song J, Fu Y, Wu X, Qi H. Highly dispersive Pt-Pd nanoparticles on graphene oxide sheathed carbon fiber microelectrodes for electrochemical detection of H 2O 2 released from living cells. NANOTECHNOLOGY 2020; 31:135503. [PMID: 31825903 DOI: 10.1088/1361-6528/ab60ce] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a facile strategy for the synthesis of surfactant-free, small and highly dispersive Pt-Pd nanoparticles on graphene oxide (Pt-Pd NPs/GO) by an electroless deposition method, which is sheathed on carbon fiber microelectrodes (CFMs) as an electrochemical sensing platform for highly sensitive and selective detection of hydrogen peroxide (H2O2) released from the living cells. GO serves as the reducing agent and stabilizer for electroless deposition of Pd NPs on the surface of GO owing to its low work function (4.38 eV) and highly conjugated electronic structure. The obtained Pd NPs/GO have a relatively high work function (4.64 eV), and thereby could be used as stabilizer for synthesis of surfactant-free, small and highly dispersive Pt-Pd NPs/GO by chemical reduction of K2PtCl4. The obtained Pt-Pd NPs have a uniform size of 4.0 ± 0.6 nm on the surface of GO. Moreover, the Pt-Pd NPs/GO sheathed CFMs exhibit an excellent electrocatalytic activity for the reduction of H2O2 with a low detection limit of 0.3 μM and good selectivity. These good properties enable the modified microelectrode to detect the H2O2 released from living cells.
Collapse
Affiliation(s)
- Hetong Qi
- Institute of Analytical Science, Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Wang Y, Meng XN, Cao JL. Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120944. [PMID: 31382132 DOI: 10.1016/j.jhazmat.2019.120944] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/18/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Unloaded and Pt-loaded ZnO nanosheets with 120-170 nm sizes were successfully synthesized by a facile one-pot hydrothermal route followed by a calcination treatment. The as-synthesized samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). It can be clearly observed that Pt nanoparticles with the diameter of 3-5 nm were uniformly loaded on the surface of ZnO nanosheets. A contrastive study based on CO gas sensing performance of bare ZnO and Pt/ZnO was carried out. According to the measurement results, the loading of Pt remarkably upgraded the sensing capability toward CO. The 0.50 at.% Pt/ZnO based gas sensor exhibited an obvious response value of 3.57 toward 50 ppm CO and fast response/recovery time (6/19 s). Besides, the detection limit was as low as 0.10 ppm and the optimal operating temperature was decreased from 210 °C to 180 °C. The enhanced CO sensing performance by Pt nanoparticles could be attributed to the combination of chemical sensitization and electronic sensitization. The 0.50 at.% Pt/ZnO is an efficient sensor material for rapidly detecting low-concentration CO.
Collapse
Affiliation(s)
- Yan Wang
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Xiao-Ning Meng
- The Collaboration Innovation Center of Coal Safety Production of Henan Province, College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Jian-Liang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China.
| |
Collapse
|
33
|
Sajid M, Baig N, Alhooshani K. Chemically modified electrodes for electrochemical detection of dopamine: Challenges and opportunities. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Jia H, Zhao J, Qin L, Zhao M, Liu G. The fabrication of an Ni 6MnO 8 nanoflake-modified acupuncture needle electrode for highly sensitive ascorbic acid detection. RSC Adv 2019; 9:26843-26849. [PMID: 35528607 PMCID: PMC9070663 DOI: 10.1039/c9ra03850g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/09/2019] [Indexed: 11/29/2022] Open
Abstract
The current work describes the use of a steel acupuncture needle as an electrode substrate in order to construct an Ni6MnO8 nanoflake layer-modified microneedle sensor for highly sensitive ascorbic acid detection. For the purpose of constructing the functionalized acupuncture needle, first, a carbon film was layered on the needle surface as the seed layer. Subsequently, a straightforward hydrothermal reaction-calcination process was employed for the growth of Ni6MnO8 nanoflakes on the needle to function as a sensing interface. Electrochemical investigations illustrated the fact that the Ni6MnO8 nanoflake-altered acupuncture needle electrode manifested outstanding efficiency toward the amperometric identification of ascorbic acid. In addition, the electrode manifested elevated sensitivity of 3106 μA mM-1 cm-2, detection limit of 0.1 μM, and a broad linear range between 1.0 μM and 2.0 mM. As demonstrated by the results, the Ni6MnO8 nanoflake-modified acupuncture needle constitutes a potentially fresh platform to construct non-enzymatic ascorbic acid sensors.
Collapse
Affiliation(s)
- Hongliang Jia
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China +86 23 68254608 +86 23 68252355
| | - Jianwei Zhao
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China +86 23 68254608 +86 23 68252355
| | - Lirong Qin
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China +86 23 68254608 +86 23 68252355
| | - Min Zhao
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China +86 23 68254608 +86 23 68252355
| | - Gang Liu
- School of Physical Science and Technology, Southwest University Chongqing 400715 P. R. China +86 23 68254608 +86 23 68252355
| |
Collapse
|
35
|
Li L, Zhang P, Li Z, Li D, Han B, Tu L, Li B, Wang Y, Ren L, Yang P, Ke S, Ye S, Shi W. CuS/Prussian blue core-shell nanohybrid as an electrochemical sensor for ascorbic acid detection. NANOTECHNOLOGY 2019; 30:325501. [PMID: 30947158 DOI: 10.1088/1361-6528/ab1613] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Affiliation(s)
- Lihuang Li
- Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Madhuri C, Manohara Reddy YV, Prabhakar Vattikuti S, Švorc Ľ, Shim J, Madhavi G. Trace-level determination of amlodipine besylate by immobilization of palladium-silver bi-metallic nanoparticles on reduced graphene oxide as an electrochemical sensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Structural regulation of NiFe2O4 colloidal nanocrystal assembly and their magnetic and electrocatalytic properties. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Shi Y, Xu H, Gu Z, Wang C, Du Y. Sensitive detection of caffeic acid with trifurcate PtCu nanocrystals modified glassy carbon electrode. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Facile decoration of graphene oxide with Cu(II)/1H-benzotriazole complex via π–π interaction for sensitive determination of hydrogen peroxide and hydroxylamine. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01653-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Zhao M, Zhao J, Qin L, Jia H, Liu S. Synthesis of Ta/Ni microcavity array film for highly sensitive uric acid detection. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.12.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Arancibia V, Penagos-Llanos J, Nagles E, García-Beltrán O, Hurtado JJ. Development of a microcomposite with single-walled carbon nanotubes and Nd 2O 3 for determination of paracetamol in pharmaceutical dosage by adsorptive voltammetry. J Pharm Anal 2018; 9:62-69. [PMID: 30740259 PMCID: PMC6355469 DOI: 10.1016/j.jpha.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/02/2022] Open
Abstract
This study presents for the first time a new composite of carbon paste (CP), single-walled carbon nanotubes (SWCNTs) and Nd2O3 (NdOX). This versatile composite (NdOX-SWCNT/CPE) was applied to the oxidation of paracetamol (PCM). The newly formed surface was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The results showed greater conductivity and a higher surface area for the composite than those of the carbon paste alone. Moreover, the anodic peak currents for PCM increased from 1.6 to 3.6 µA with CPE and NdOX-SWCNT/CPE, indicating an increase of nearly 51.0% for the anodic peak current. On the other hand, the anodic peak potentials shifted from 0.67 to 0.57 V. The detection limits were 0.05 µmol/L with NdOX-SWCNT/CPE and 0.50 µmol/L with SWCNT/CPE. The relative standard deviations (RSDs) were 1.5% (n = 7). The accuracy and interference of the methods were evaluated with a urine chemistry control spiked with known quantities of PCM, uric acid, dopamine, ascorbic acid, caffeine, acetylsalicylic acid, tartrazine, sunset yellow, allure red, rutin, morin and metal ions. Finally, the novelty and usefulness of the composite were evaluated to quantify PCM in pharmaceutical dosage forms such as tablets, powders and syrups for children.
Collapse
Affiliation(s)
- Verónica Arancibia
- Pontificia Universidad Católica de Chile, Facultad de Química, Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Johisner Penagos-Llanos
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, 730001 Ibagué, Colombia
| | - Edgar Nagles
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, 730001 Ibagué, Colombia
| | - Olimpo García-Beltrán
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, 730001 Ibagué, Colombia
| | - John J Hurtado
- Departamento de Química, Universidad de los Andes, Carrera 1 No. 18A-12, Bogotá, Colombia
| |
Collapse
|