1
|
Shao C, Liu J, Shen Y, Li L, Ma C, Hu Z, Kan Y, Chen P, Zhang T. Copper-promoted oxidative mono- and di-bromination of 8-aminoquinoline amides with HBr and DMSO. RSC Adv 2025; 15:8750-8756. [PMID: 40124911 PMCID: PMC11926796 DOI: 10.1039/d5ra00492f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
An efficient and convenient method for oxidative mono- and di-bromination of 8-aminoquinoline amides is presented, utilizing hydrogen bromide (HBr) as the brominating reagent and dimethyl sulfoxide (DMSO) as a mild oxidant. Copper salts act as Lewis acid catalysts, facilitating the bromination process. The formation of C5-monobrominated products is promoted by copper sulfate (CuSO4·5H2O), whereas the generation of C5, C7-dibrominated products necessitates the participation of copper nitrate (Cu(NO3)2·3H2O). A wide range of substrates bearing diverse functional groups undergo smooth transformation, resulting in brominated products with good to excellent yields.
Collapse
Affiliation(s)
- Changdong Shao
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an, 223300 Jiangsu China
| | - Jingyi Liu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an, 223300 Jiangsu China
| | - Yanan Shen
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an, 223300 Jiangsu China
| | - Li Li
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an, 223300 Jiangsu China
| | - Chen Ma
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an, 223300 Jiangsu China
| | - Zhengsong Hu
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an, 223300 Jiangsu China
| | - Yuhe Kan
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an, 223300 Jiangsu China
| | - Ping Chen
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an, 223300 Jiangsu China
| | - Tingting Zhang
- Jiangsu Provincial Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University Huai'an, 223300 Jiangsu China
| |
Collapse
|
2
|
Suresh S, Palla S, Chung DR, Chien HS, Du BX, Shinde J, Kavala V, Yao CF. Catalyst-free reactions of anilines with β-chloroenones: synthesis of α-chloroenaminones and 1,4-benzodiazepines. Org Biomol Chem 2024; 22:8857-8868. [PMID: 39189549 DOI: 10.1039/d4ob00954a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The Michael addition of anilines to β-chloroenones gives enaminones by the elimination of hydrochloric acid (HCl). These enaminones are transformed into α-chloroenaminones via in situ sp2 C-H functionalization. Anilines that are attached to an electron-donating group react more readily with β-chloroenone to give the corresponding products in excellent yields. A highly atom-economical method has been developed using dimethyl sulfoxide (DMSO) as a green oxidant and solvent. The desired α-functionalized enaminones are formed in good yields with excellent Z-selectivity. We have established the generality of this reaction with many substrates, and scaled-up reactions have been performed to showcase the practical applications. A catalyst-free double annulation of β-chloroenones with o-phenylenediamine has also been demonstrated for the synthesis of 1,4-benzodiazepine derivatives in moderate yields under mild reaction conditions.
Collapse
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Sowndarya Palla
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Dai-Ru Chung
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Hung-Sheng Chien
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Bo-Xun Du
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Jivan Shinde
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| |
Collapse
|
3
|
Peng M, Xie Y, Song S, Zhang Z, Wei Y, Hu H, Wang Y, Yu F. NBS-Mediated C(sp 2)-H Bond Chlorination of Enaminones: Using DCE as Chlorine Source. Int J Mol Sci 2024; 25:12073. [PMID: 39596141 PMCID: PMC11593413 DOI: 10.3390/ijms252212073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Commercial DCE is excavated as both a "Cl" source and a solvent for the vinyl C(sp2)-H chlorination. The strategy involves a metal-free NBS-mediated C(sp2)-H chlorination of enaminones, and affords diverse, functionalized α-chlorinated enaminones with a Z-configuration. This mild and effective approach not only advances the vinyl C(sp2)-H chlorination, employing DCE as the "Cl" source, but also provides a new strategy for accessing chlorinated enaminone derivatives.
Collapse
Affiliation(s)
- Menglin Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (M.P.); (Y.X.); (S.S.); (Z.Z.); (Y.W.); (H.H.)
| | - Yunhua Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (M.P.); (Y.X.); (S.S.); (Z.Z.); (Y.W.); (H.H.)
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (M.P.); (Y.X.); (S.S.); (Z.Z.); (Y.W.); (H.H.)
| | - Zhilai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (M.P.); (Y.X.); (S.S.); (Z.Z.); (Y.W.); (H.H.)
| | - Yuanzheng Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (M.P.); (Y.X.); (S.S.); (Z.Z.); (Y.W.); (H.H.)
| | - Huimin Hu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (M.P.); (Y.X.); (S.S.); (Z.Z.); (Y.W.); (H.H.)
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming 650092, China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (M.P.); (Y.X.); (S.S.); (Z.Z.); (Y.W.); (H.H.)
| |
Collapse
|
4
|
Zhou J, Huang X, Yu X, Yang L, Han JY, Lhazom T, Cui HL. HCl/DMSO/HFIP-Mediated Chlorination of Pyrrolo[2,1- a]isoquinolines and Other Electron-Rich Heteroarenes. J Org Chem 2024; 89:9789-9799. [PMID: 38920085 DOI: 10.1021/acs.joc.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
An efficient oxidative chlorination of pyrrolo[2,1-a]isoquinolines has been established using HCl (aq) as the chlorine source and DMSO as the terminal oxidant in HFIP at ambient temperature. A variety of chlorinated pyrrolo[2,1-a]isoquinoline derivatives have been prepared readily in 23 to 99% yields. This chlorination strategy can be expanded to the functionalization of other electron-rich heteroarenes including substituted pyrroles, indoles, and naphthols.
Collapse
Affiliation(s)
- Jing Zhou
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Xiang Huang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Xin Yu
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Liu Yang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Jia-Yi Han
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Tsesong Lhazom
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
5
|
Ying J, Zhou T, Liu Y, Zhou L, Wan JP. Transition-Metal-Free C-H Trifluoromethylthiolation of N,N-Disubstituted Enaminones To Access CF 3S-Functionalized Enaminones and Their Application in the Synthesis of CF 3S-Heteroaryls. J Org Chem 2024; 89:9078-9085. [PMID: 38830227 DOI: 10.1021/acs.joc.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The α-C-H trifluoromethylthiolation of N,N-disubstituted enaminones has been achieved with simple and cheap CF3SO2Na as the CF3S source. The reactions were run at mild temperature (0 °C to rt) using POCl3 as the only reducing reagent. The work represents the first example on the synthesis of α-trifluoromethylthio enaminones via direct C-H functionalization. In addition, the resulting CF3S-functionalized enaminones have been proven as useful building blocks in the synthesis of various CF3S-functionalized heteroaromatic compounds by simple annulation reactions.
Collapse
Affiliation(s)
- Jinbiao Ying
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330033, China
| | - Tao Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330033, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330033, China
| | - Liyun Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330033, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330033, China
| |
Collapse
|
6
|
Xie Y, Zhang Z, Zhang B, He N, Peng M, Song S, Wang B, Yu F. Oxidative Free-Radical C(sp 2)-H Bond Chlorination of Enaminones with LiCl: Access to Highly Functionalized α-Chlorinated Enaminones. J Org Chem 2024; 89:8521-8530. [PMID: 38828704 DOI: 10.1021/acs.joc.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
An oxidative free-radical C(sp2)-H bond chlorination strategy of enaminones has been developed by using LiCl as a chlorinating reagent and K2S2O8 as an oxidant. This transformation provides a new and straightforward synthetic methodology to afford highly functionalized α-chlorinated enaminones with a Z-configuration in good to excellent yields.
Collapse
Affiliation(s)
- Yunhua Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhilai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Biao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Nengqin He
- Yunnan Key Laboratory for Pollution Processes and Control of Plateau Lake-Watersheds, Yunnan Academy of Ecological and Environmental Sciences, Kunming 650500, P. R. China
| | - Menglin Peng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Baoqu Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
7
|
Cui HL. Recent advances in oxidative chlorination. Org Biomol Chem 2024; 22:1580-1601. [PMID: 38312070 DOI: 10.1039/d3ob02012f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Considering the wide occurrence and extensive application of organic chlorides in many research fields, the development of easy, practical and green chlorination methodologies is much needed. In the oxidative chlorination strategy, active chlorinating species can be in situ formed by the interaction of easily accessible chlorides such as NaCl, HCl, KCl, CHCl3, etc. and suitable oxidants. Among the established chlorination approaches, this strategy is an attractive one as it features the use of readily available, cheap and safe inorganic or organic chlorides, good atom economy of chlorine, and multiple choices of oxidants. This review summarizes the representative methodologies in the field of oxidative chlorination, covering 2013 to 2023.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing, 402160, PR China.
| |
Collapse
|
8
|
Neto JSS, Coelho FT, Doerner CV, Braga AL, Lião LM, Coelho FL. 3-Halochromones Through Oxidative α-Halogenation of Enaminones and its Photophysical Investigation: Another Case of Photo-induced Partially Aromatised Intramolecular Charge Transfer? Chem Asian J 2024; 19:e202300852. [PMID: 38102074 DOI: 10.1002/asia.202300852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
A versatile synthesis strategy for fluorescent 3-halo-4H-chromen-4-one derivatives is reported. The method involves the oxidative α-halogenation of enaminones performed by an efficient and sustainable oxidation system. The use of Oxone® in combination with KCl, KBr, or KI enables the preparation of 3-chloro-, 3-bromo-, or 3-iodo-4H-chromen-4-one in good to excellent yields, with great functional group tolerance where the protocol is amenable to gram-scale synthesis. The analysis of the photophysical properties of the presented 4H-chromen-4-one showed absorption in the UV region and fluorescence emission in the violet-to-cyan region with a relatively large Stokes shift. In solution, all compounds present a dual fluorescence emission, regardless of the solvent, assigned to a partially aromatised intramolecular charge transfer mechanism, considering the presence of a pseudo-aromatic ring in the chromone scaffold and the absence of the influence of substituent electronic features in optical behaviour.
Collapse
Affiliation(s)
- José S S Neto
- Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Filipe T Coelho
- Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Carlos V Doerner
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| | - Antonio L Braga
- Departamento de Química, Universidade Federal de Santa Catarina, 88040-970, Florianópolis, SC, Brazil
| | - Luciano M Lião
- Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| | - Felipe L Coelho
- Universidade Federal de Goiás, 74690-900, Goiânia, GO, Brazil
| |
Collapse
|
9
|
Abstract
We have developed a mild sulfenylation of pyrrolo[2,1-a]isoquinolines with acetyl bromide and dimethyl sulfoxide. A wide range of functionalized pyrrolo[2,1-a]isoquinolines could be prepared efficiently through the formation of a C-S bond with thiophenols (27 examples, 36-94% yields). The current strategy can also be utilized for functionalization of pyrrolo[1,2-a]quinolines and indole.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
10
|
Gond KK, Maddani MR. Addition of sulfonylphthalides to para-quinone methides: Selective 1,6-additions and oxidative annulations. Org Biomol Chem 2023; 21:2504-2508. [PMID: 36897072 DOI: 10.1039/d2ob02134j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
KOtBu mediated addition of sulfonylphthalides to p-quinone methides led to the selective synthesis of isochroman-1,4-diones and addition products. Interestingly, isochroman-1,4-diones were obtained via an unprecedented oxidative annulation pathway. The present work highlights a wide variety of substrates, good yields, shorter reaction time and ambient reaction conditions. Furthermore, a few addition products were transformed into functionalized heterocyclic molecules. Additionally, the scale-up experiment suggests the practical feasibility of preparing isochroman-1,4-diones in higher-scale reactions.
Collapse
Affiliation(s)
- Kavyashree Kuppayya Gond
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri-574199, India.
| | - Mahagundappa Rachappa Maddani
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri-574199, India.
| |
Collapse
|
11
|
Abstract
A mild bromination of pyrrolo[2,1-a]isoquinolines has been achieved using acetyl bromide and dimethyl sulfoxide. A series of brominated pyrrolo[2,1-a]isoquinolines could be obtained in moderate to excellent yields (46-99%) at room temperature. This strategy can also be expanded to the facile bromination of polysubstituted pyrroles, indoles, electron-rich phenols, aniline, and 2-naphthol.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
12
|
Liu N, Cuan X, Li H, Duan X. Progress in the Study of α-Functionalization of Enaminone. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
13
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
14
|
Cui HL. Recent Advances in DMSO-Based Direct Synthesis of Heterocycles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238480. [PMID: 36500564 PMCID: PMC9738701 DOI: 10.3390/molecules27238480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Besides serving as a low-toxicity, inexpensive and easily accessible solvent, dimethyl sulfoxide (DMSO) has also been extensively used as a versatile reagent for the synthesis of functionalized molecules. Dimethyl sulfoxide can not only be utilized as a carbon source, a sulfur source and an oxygen source, but also be employed as a crucial oxidant enabling various transformations. The past decade has witnessed a large number of impressive achievements on the direct synthesis of heterocycles as well as modifications of heterocyclic compounds by applying DMSO as a reagent. This review summarized the DMSO-based direct heterocycle constructions from 2012 to 2022.
Collapse
Affiliation(s)
- Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| |
Collapse
|
15
|
Latha Duda M, Velidandi A. Halogenation followed by Deformylation of 3-Formylchromones: A Novel Approaches for Synthesis of 3-Halochromones with Oxone and NaX. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
16
|
Chen XH, Li WZ, Zhang W, Wang ZD, Cui HL. Modification of Pyrroloisoquinolines with 2‐Bromoketones and Dimethyl Sulfoxide through Bromination. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao-Hui Chen
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis CHINA
| | - Wan-Zhen Li
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis CHINA
| | - Wei Zhang
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis CHINA
| | - Zhao-Dong Wang
- Chongqing University of Arts and Sciences Key Laboratory of Environmental Materials & Remediation Technologies CHINA
| | - Hai-Lei Cui
- Chongqing University of Arts and Sciences Laboratory of Asymmetric Synthesis 319 Honghe Ave, Yongchuan, Chongqing 402160 Chongqing CHINA
| |
Collapse
|
17
|
Metal-free oxidative activation of enaminone C=C bond by ammonium halide and DMSO: an access to synthetic pyridines. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Kurutos A, Minkovska S, Nedialkov PT, Fedorov YV. Facile and environmentally benign synthetic approach to the selective mono‐chlorination and mono‐bromination of benzo[
d
]oxazol‐2(
3H
)‐ones. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Atanas Kurutos
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences Sofia Bulgaria
| | - Stela Minkovska
- Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 11, Sofia Bulgaria
| | - Paraskev T. Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy Medical University of Sofia 2 Dunav str., Sofia Bulgaria
| | - Yury V. Fedorov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences 119991, Vavilova str., 28, Moscow Russia
| |
Collapse
|
19
|
Van Kerrebroeck R, Horsten T, Stevens CV. BROMIDE OXIDATION: A SAFE STRATEGY FOR ELECTROPHILIC BROMINATIONS. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Tomas Horsten
- Ghent University: Universiteit Gent Green Chemistry and Technology BELGIUM
| | | |
Collapse
|
20
|
Dalai P, Palit K, Panda N. Generation of Dimethyl Sulfoxide Coordinated Thermally Stable Halogen Cation Pools for C‐H Halogenation. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Rai V, P K, Harmalkar SS, Dhuri SN, Maddani MR. 1,6-Addition of 1,2,3-NH triazoles to para-quinone methides: Facile access to highly selective N 1 and N 2 substituted triazoles. Org Biomol Chem 2022; 20:345-351. [PMID: 34908078 DOI: 10.1039/d1ob01717a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regioselective syntheses of N1 and N2 substituted triazoles through a 1,6-addition reaction of 1,2,3-NH triazoles to p-quinone methide were achieved under mild reaction conditions. The present reactions showed superior results in terms of selectivity, mild reaction conditions, short reaction time and broad substrate scope with good functional-group compatibility. Considering the high synthetic value of N1- and N2-substituted compounds and p-QM related research, the present strategy will greatly benefit researchers in various fields.
Collapse
Affiliation(s)
- Vishakha Rai
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore, Karnataka, India.
| | - Kavyashree P
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | | | - Sundar N Dhuri
- School of Chemical Sciences, Goa University, Goa 403206, India
| | - Mahagundappa R Maddani
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore, Karnataka, India.
| |
Collapse
|
22
|
Sun R, Yang X, Ge Y, Zheng X, Yuan M, Li R, Fu H, Chen H. Visible Light Induced Synthesis of (Z)-β-iodoenamides from N-Vinyl Amides Mediated by Ion Pair Charge Transfer State. Org Chem Front 2022. [DOI: 10.1039/d2qo00050d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile and novel approach for high chemo- and stereoselective synthesis of (Z)-β-iodoenamides from N-vinyl amides has been developed based on a visible-light-induced ion pair charge transfer state derived from...
Collapse
|
23
|
Pascual J, Di Girolamo D, Flatken MA, Aldamasy MH, Li G, Li M, Abate A. Lights and Shadows of DMSO as Solvent for Tin Halide Perovskites. Chemistry 2021; 28:e202103919. [PMID: 34878203 PMCID: PMC9302133 DOI: 10.1002/chem.202103919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 12/03/2022]
Abstract
In 2020 dimethyl sulfoxide (DMSO), the ever‐present solvent for tin halide perovskites, was identified as an oxidant for SnII. Nonetheless, alternatives are lacking and few efforts have been devoted to replacing it. To understand this trend it is indispensable to learn the importance of DMSO on the development of tin halide perovskites. Its unique properties have allowed processing compact thin‐films to be integrated into tin perovskite solar cells. Creative approaches for controlling the perovskite crystallization or increasing its stability to oxidation have been developed relying on DMSO‐based inks. However, increasingly sophisticated strategies appear to lead the field to a plateau of power conversion efficiency in the range of 10–15 %. And, while DMSO‐based formulations have performed in encouraging means so far, we should also start considering their potential limitations. In this concept article, we discuss the benefits and limitations of DMSO‐based tin perovskite processing.
Collapse
Affiliation(s)
- Jorge Pascual
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, SE-AMIP, Hahn-Meitner-Platz 1, 14109, Berlin, GERMANY
| | - Diego Di Girolamo
- University of Naples Federico II: Universita degli Studi di Napoli Federico II, Department of Chemical, Materials and Production Engineering, ITALY
| | - Marion A Flatken
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, SE-AMIP, GERMANY
| | - Mahmoud H Aldamasy
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, SE-AMIP, GERMANY
| | - Guixiang Li
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, SE-AMIP, GERMANY
| | - Meng Li
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, SE-AMIP, GERMANY
| | - Antonio Abate
- Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH, SE-AMIP, GERMANY
| |
Collapse
|
24
|
Suresh S, Bhimrao Patil P, Yu P, Fang C, Weng Y, Kavala V, Yao C. A Study of the Reactions of 3‐Bromopropenals with Anilines for the Synthesis of α‐Bromo Enaminones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Prakash Bhimrao Patil
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Pao‐Hsing Yu
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Chia‐Chi Fang
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Yin‐Zhi Weng
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Ching‐Fa Yao
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| |
Collapse
|
25
|
Luo T, Wu H, Liao LH, Wan JP, Liu Y. Synthesis of 3,3-Dihalogenated 2-Aminochromanones via Tandem Dihalogenation and Cyclization of o-Hydroxyarylenaminones with NXS (X = Cl or Br). J Org Chem 2021; 86:15785-15791. [PMID: 34645268 DOI: 10.1021/acs.joc.1c01851] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An unprecedented method for the synthesis of dichlorinated and dibrominated 2-amino-substituted chromanones is developed by employing enaminones and NCS/NBS as starting materials under microwave irradiation. The reactions proceed quickly to deliver products without using any catalyst or additive, thus providing practical access to 3,3-dihalogenated 2-aminochromanones.
Collapse
Affiliation(s)
- Tian Luo
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Haozhi Wu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Li-Hua Liao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
26
|
Li JQ, Chen XH, Wang XX, Cui HL. Bromination of phenyl ether and other aromatics with bromoisobutyrate and dimethyl sulfoxide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Lin Y, Jin J, Wang C, Wan JP, Liu Y. Electrochemical C-H Halogenations of Enaminones and Electron-Rich Arenes with Sodium Halide (NaX) as Halogen Source for the Synthesis of 3-Halochromones and Haloarenes. J Org Chem 2021; 86:12378-12385. [PMID: 34392684 DOI: 10.1021/acs.joc.1c01347] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Without employing an external oxidant, the simple synthesis of 3-halochromones and various halogenated electron-rich arenes has been realized with electrode oxidation by employing the simplest sodium halide (NaX, X = Cl, Br, I) as halogen source. This electrochemical method is advantageous for the simple and mild room temperature operation, environmental friendliness as well as broad substrate scope in both C-H bond donor and halogen source components.
Collapse
Affiliation(s)
- Yan Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jun Jin
- BioDuro-Sundia, 233 North FuTe Road, Shanghai200131, People's Republic of China
| | - Chaoli Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang330022, People's Republic of China
| |
Collapse
|
28
|
Rai V, Sorabad GS, Maddani MR. Efficient and Direct Selenocyanation of Ketene Dithioacetals Using Malononitrile‐SeO
2
Under Transition‐Metal‐Free Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202101208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vishakha Rai
- Department of Chemistry Mangalore University, Mangalgangothri- 574199 Karnataka India
| | - Ganesh S. Sorabad
- Department of Chemistry Mangalore University, Mangalgangothri- 574199 Karnataka India
| | | |
Collapse
|
29
|
Abstract
C-X (X = halogen) bonds are indispensable functional groups in organic synthesis
by mediating a massive number of important organic reactions. While a variety of different
catalytic strategies are available for generating C-X bonds, those methods enabling the C-X
bond formation under transition metal-free conditions via the C-H bond functionalization are
particularly interesting because of the inherent atom economy and environmental friendliness
associated with such methods. Herein, the advancements in the transition metal-free halogenation
of C(2)-H bond are reviewed.
Collapse
Affiliation(s)
- Tian Luo
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Shanghui Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
30
|
Rai V, Sorabad GS, Maddani MR. Facile and direct halogenation of 1,2,3-triazoles promoted by a KX–oxone system under transition metal free conditions. NEW J CHEM 2021. [DOI: 10.1039/d0nj05170e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A convenient and efficient oxidative halogenation of 4-aryl 1,2,3-triazoles is realized at ambient temperature under transition metal free conditions.
Collapse
Affiliation(s)
- Vishakha Rai
- Department of Chemistry
- Mangalore University
- Mangalore
- India
| | | | | |
Collapse
|
31
|
Rai V, Sorabad GS, Maddani MR. Transition metal free, green and facile halogenation of ketene dithioacetals using a KX–oxidant system. NEW J CHEM 2021. [DOI: 10.1039/d0nj03737k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A facile oxidative halogenation of α-oxo ketene dithioacetals is achieved by using a potassium halide and an oxidant combination under transition metal free conditions at ambient temperature.
Collapse
Affiliation(s)
- Vishakha Rai
- Department of Chemistry
- Mangalore University
- 574199 Mangalore
- India
| | | | | |
Collapse
|
32
|
Zhu S, Wang B, Li H, Xiao W, Teng F, Shen H, Gui Q, Li Z, Jiang H. Halogenation of Imidazo[1,2‐
α
]pyridines with DXDMH (X=Cl, Br and I) Using DMSO as a Solvent and an Oxidant. ChemistrySelect 2020. [DOI: 10.1002/slct.202003161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sha Zhu
- School of Chemistry and Materials Science Hunan Agricultural University Changsha 410128 People's Republic of China
| | - Binbin Wang
- School of Chemistry and Materials Science Hunan Agricultural University Changsha 410128 People's Republic of China
| | - Huiqin Li
- School of Chemistry and Materials Science Hunan Agricultural University Changsha 410128 People's Republic of China
| | - Wending Xiao
- Hunan Jiudian Pharmaceutical Co. Changsha 410009 People's Republic of China
| | - Fan Teng
- School of Chemistry and Materials Science Hunan Agricultural University Changsha 410128 People's Republic of China
| | - Haicheng Shen
- School of Chemistry and Materials Science Hunan Agricultural University Changsha 410128 People's Republic of China
| | - Qing‐Wen Gui
- School of Chemistry and Materials Science Hunan Agricultural University Changsha 410128 People's Republic of China
| | - Zhouchao Li
- School of Chemistry and Materials Science Hunan Agricultural University Changsha 410128 People's Republic of China
| | - Hongmei Jiang
- School of Chemistry and Materials Science Hunan Agricultural University Changsha 410128 People's Republic of China
| |
Collapse
|
33
|
Rai V, Sorabad GS, Maddani MR. CuX
2
Mediated Facile Halocyclization of
N
‐Allyl Thioureas. ChemistrySelect 2020. [DOI: 10.1002/slct.202000593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vishakha Rai
- Department of ChemistryMangalore University Mangalagangothri 574199 Mangalore Karnataka India
| | | | | |
Collapse
|
34
|
Development of large-scale oxidative Bromination with HBr-DMSO by using a continuous-flow microwave system for the subsequent synthesis of 4-Methoxy-2-methyldiphenylamine. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00094-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
|
36
|
Zhang Q, Hu B, Zhao Y, Zhao S, Wang Y, Zhang B, Yan S, Yu F. Synthesis of N
-Sulfonyl Pyrazoles Through Cyclization Reactions of Sulfonyl Hydrazines with Enaminones Promoted by p
-TSA. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901886] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiaohe Zhang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Biao Hu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Yuxuan Zhao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Siyun Zhao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Yanqin Wang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Biao Zhang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| | - Shengjiao Yan
- School of Chemical Science and Technology; Yunnan University; 650500 Kunming P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; 650504 Kunming P. R. China
| |
Collapse
|
37
|
Lin Y, Wan JP, Liu Y. Synthesis of 3-halochromones with simple KX halogen sources enabled by in situ halide oxidation. NEW J CHEM 2020. [DOI: 10.1039/d0nj00825g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An in situ oxidation strategy for generating molecular halogen has been developed for the synthesis of 3-halochromones by employing simple potassium halides as halogen sources.
Collapse
Affiliation(s)
- Yan Lin
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
- Nanchang 330022
- P. R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University
- Nanchang 330022
- P. R. China
| |
Collapse
|
38
|
Sorabad GS, Maddani MR. Facile, regioselective oxidative selenocyanation of N-aryl enaminones under transition-metal-free conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj05845a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present selenocyanation is applied for the synthesis of selenocyanated chromones, indoles and anilines in good to excellent yields.
Collapse
Affiliation(s)
- Ganesh Shivayogappa Sorabad
- Department of Post-Graduate Studies and Research in Chemistry Mangalore University
- Mangalgangothri-574199
- India
| | | |
Collapse
|
39
|
Sorabad GS, Maddani MR. Metal‐Free, Facile Synthesis of Sulfenylated Chromones and Indoles Promoted by an Aqueous HBr−DMSO System. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900402] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Ma X, Yu J, Jiang M, Wang M, Tang L, Wei M, Zhou Q. Mild and Regioselective Bromination of Phenols with TMSBr. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Jing Yu
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Mengyuan Jiang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Mengyu Wang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Lin Tang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Mengmeng Wei
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| |
Collapse
|