1
|
Wei X, Ning W, McCadden CA, Alsup TA, Li Z, Łomowska-Keehner DP, Nafie J, Qu T, Opoku MO, Gillia GR, Xu B, Icenhour DG, Rudolf JD. Exploring and expanding the natural chemical space of bacterial diterpenes. Nat Commun 2025; 16:3721. [PMID: 40253449 PMCID: PMC12009305 DOI: 10.1038/s41467-025-57145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/12/2025] [Indexed: 04/21/2025] Open
Abstract
Terpenoids are the largest family of natural products but relatively rare in bacteria. Genome mining reveals widespread prevalence of terpene synthases, the enzymes responsible for constructing the hydrocarbon skeletons, in bacteria. Here, we show that 125 (37%) of 334 terpene synthases from 8 phyla, 17 classes, and 83 genera of bacteria are active as diterpene synthases. Isolation and structural elucidation of 28 diterpenes from 31 terpene synthases reveal three previously unreported terpene skeletons, skeletons of natural products from other organisms with unknown biosynthetic pathways, diterpenes that are known in other organisms but to the best of our knowledge not previously seen in bacteria, or new structural and stereochemical isomers of diterpenes. We also identify type I diterpene synthases from myxobacteria and cyanobacteria. This study will help to discover new natural products, advance studies in terpenoid biosynthesis and enzymology, and provide model systems to probe the ecological roles of terpenes.
Collapse
Affiliation(s)
- Xiuting Wei
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Wenbo Ning
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Tyler A Alsup
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, FL, USA
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | | | | | - Tracy Qu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Melvin Osei Opoku
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Glen R Gillia
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, USA
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Daniel G Icenhour
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Das P, Ghosh P, Mainkar PS, Madhavachary R, Chandrasekhar S. Total Synthesis of an Immunosuppressive C 25 Macrocyclic Terpenoid Produced by Terpene Synthase ( LcTPS2). J Org Chem 2024; 89:15145-15150. [PMID: 39358673 DOI: 10.1021/acs.joc.4c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Macrocyclic natural products, particularly those with no functionalities except unsaturation, are recognized for their therapeutic potential but are notoriously challenging to synthesize. In this study, we report the first total synthesis of an unconventional 18-membered, C25 macrocyclic terpenoid, which has demonstrated substantial immunosuppressive activity. This synthesis was achieved through strategic modifications and innovative reaction engineering, utilizing α-terpineol and geraniol as starting materials, highlighting a novel approach in macrocyclic terpenoid synthesis.
Collapse
Affiliation(s)
- Pralay Das
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Ghosh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rudrakshula Madhavachary
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Ducker C, Baines C, Guy J, Euzébio Goulart Santana A, Pickett JA, Oldham NJ. A diterpene synthase from the sandfly Lutzomyia longipalpis produces the pheromone sobralene. Proc Natl Acad Sci U S A 2024; 121:e2322453121. [PMID: 38470919 PMCID: PMC10962984 DOI: 10.1073/pnas.2322453121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
The phlebotomine sandfly, Lutzomyia longipalpis, a major vector of the Leishmania parasite, uses terpene pheromones to attract conspecifics for mating. Examination of the L. longipalpis genome revealed a putative terpene synthase (TPS), which-upon heterologous expression in, and purification from, Escherichia coli-yielded a functional enzyme. The TPS, termed LlTPS, converted geranyl diphosphate (GPP) into a mixture of monoterpenes with low efficiency, of which β-ocimene was the major product. (E,E)-farnesyl diphosphate (FPP) principally produced small amounts of (E)-β-farnesene, while (Z,E)- and (Z,Z)-FPP yielded a mixture of bisabolene isomers. None of these mono- and sesquiterpenes are known volatiles of L. longipalpis. Notably, however, when provided with (E,E,E)-geranylgeranyl diphosphate (GGPP), LlTPS gave sobralene as its major product. This diterpene pheromone is released by certain chemotypes of L. longipalpis, in particular those found in the Ceará state of Brazil. Minor diterpene components were also seen as products of the enzyme that matched those seen in a sandfly pheromone extract.
Collapse
Affiliation(s)
- Charles Ducker
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, United Kingdom
| | - Cameron Baines
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, United Kingdom
| | - Jennifer Guy
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, United Kingdom
| | | | - John A. Pickett
- School of Chemistry, Cardiff University, CardiffCF10 3AT, United Kingdom
| | - Neil J. Oldham
- School of Chemistry, University of Nottingham, University Park, NottinghamNG7 2RD, United Kingdom
| |
Collapse
|
4
|
Zhang L, Zhang B, Zhu A, Liu SH, Wu R, Zhang X, Xu Z, Tan RX, Ge HM. Biosynthesis of Phomactin Platelet Activating Factor Antagonist Requires a Two-Enzyme Cascade. Angew Chem Int Ed Engl 2023; 62:e202312996. [PMID: 37804495 DOI: 10.1002/anie.202312996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/09/2023]
Abstract
Phomactin diterpenoids possess a unique bicyclo[9.3.1]pentadecane skeleton with multiple oxidative modifications, and are good platelet-activating factor (PAF) antagonists that can inhibit PAF-induced platelet aggregation. In this study, we identified the gene cluster (phm) responsible for the biosynthesis of phomactins from a marine fungus, Phoma sp. ATCC 74077. Despite the complexity of their structures, phomactin biosynthesis only requires two enzymes: a type I diterpene cyclase PhmA and a P450 monooxygenase PhmC. PhmA was found to catalyze the formation of the phomactatriene, while PhmC sequentially catalyzes the oxidation of multiple sites, leading to the generation of structurally diverse phomactins. The rearrangement mechanism of the diterpene scaffold was investigated through isotope labeling experiments. Additionally, we obtained the crystal complex of PhmA with its substrate analogue FGGPP and elucidated the novel metal-ion-binding mode and enzymatic mechanism of PhmA through site-directed mutagenesis. This study provides the first insight into the biosynthesis of phomactins, laying the foundation for the efficient production of phomactin natural products using synthetic biology approaches.
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Ao Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Shuang He Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Xuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zhengren Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, Nanjing Drum Tower Hospital, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
da Silva Oliveira L, Crnkovic CM, de Amorim MR, Navarro-Vázquez A, Paz TA, Freire VF, Takaki M, Venâncio T, Ferreira AG, de Freitas Saito R, Chammas R, Berlinck RGS. Phomactinine, the First Nitrogen-Bearing Phomactin, Produced by Biatriospora sp. CBMAI 1333. JOURNAL OF NATURAL PRODUCTS 2023; 86:2065-2072. [PMID: 37490470 DOI: 10.1021/acs.jnatprod.3c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Metabolomics analyses and improvement of growth conditions were applied toward diversification of phomactin terpenoids by the fungus Biatriospora sp. CBMAI 1333. Visualization of molecular networking results on Gephi assisted the observation of phomactin diversification and guided the isolation of new phomactin variants by applying a modified version of chemometrics based on a fractional factorial design. Consequentially, the first nitrogen-bearing phomactin, phomactinine (1), with a new rearranged carbon skeleton, was isolated and identified. The strategy combining metabolomics and chemometrics can be extended to include bioassay potency, structure novelty, and metabolic diversification connected or not to genomic analyses.
Collapse
Affiliation(s)
- Leandro da Silva Oliveira
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Camila M Crnkovic
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP Brazil
| | - Marcelo R de Amorim
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitária CEP, 50.740-540 Recife, PE Brazil
| | - Tiago A Paz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, SP Brazil
| | - Vitor F Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Mirelle Takaki
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Tiago Venâncio
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP Brazil
| | - Renata de Freitas Saito
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr. Arnaldo, 251 - Cerqueira César, 01246-000, São Paulo, SP Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr. Arnaldo, 251 - Cerqueira César, 01246-000, São Paulo, SP Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| |
Collapse
|
6
|
Li C, Wang S, Yin X, Guo A, Xie K, Chen D, Sui S, Han Y, Liu J, Chen R, Dai J. Functional Characterization and Cyclization Mechanism of a Diterpene Synthase Catalyzing the Skeleton Formation of Cephalotane-Type Diterpenoids. Angew Chem Int Ed Engl 2023; 62:e202306020. [PMID: 37326357 DOI: 10.1002/anie.202306020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/17/2023]
Abstract
CsCTS, a new diterpene synthase from Cephalotaxus sinensis responsible for forming cephalotene, the core skeleton of cephalotane-type diterpenoids with a highly rigid 6/6/5/7 tetracyclic ring system, was functionally characterized. The stepwise cyclization mechanism is proposed mainly based on structural investigation of its derailment products, and further demonstrated through isotopic labeling experiments and density functional theory calculations. Homology modeling and molecular dynamics simulation combined with site-directed mutagenesis revealed the critical amino acid residues for the unique carbocation-driven cascade cyclization mechanism of CsCTS. Altogether, this study reports the discovery of the diterpene synthase that catalyzes the first committed step of cephalotane-type diterpenoid biosynthesis and delineates its cyclization mechanism, laying the foundation to decipher and artificially construct the complete biosynthetic pathway of this type diterpenoids.
Collapse
Affiliation(s)
- Changkang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Xinxin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Aobo Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Songyang Sui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yaotian Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
7
|
Nowrouzi B, Lungang L, Rios-Solis L. Exploring optimal Taxol® CYP725A4 activity in Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:197. [PMID: 36123694 PMCID: PMC9484169 DOI: 10.1186/s12934-022-01922-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background CYP725A4 catalyses the conversion of the first Taxol® precursor, taxadiene, to taxadiene-5α-ol (T5α-ol) and a range of other mono- and di-hydroxylated side products (oxygenated taxanes). Initially known to undergo a radical rebound mechanism, the recent studies have revealed that an intermediate epoxide mediates the formation of the main characterised products of the enzyme, being T5α-ol, 5(12)-oxa-3(11)-cyclotaxane (OCT) and its isomer, 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) as well as taxadienediols. Besides the high side product: main product ratio and the low main product titre, CYP725A4 is also known for its slow enzymatic activity, massively hindering further progress in heterologous production of Taxol® precursors. Therefore, this study aimed to systematically explore the key parameters for improving the regioselectivity and activity of eukaryotic CYP725A4 enzyme in a whole-cell eukaryotic biocatalyst, Saccharomyces cerevisiae. Results Investigating the impact of CYP725A4 and reductase gene dosages along with construction of self-sufficient proteins with strong prokaryotic reductases showed that a potential uncoupling event accelerates the formation of oxygenated taxane products of this enzyme, particularly the side products OCT and iso-OCT. Due to the harmful effect of uncoupling products and the reactive metabolites on the enzyme, the impact of flavins and irons, existing as prosthetic groups in CYP725A4 and reductase, were examined in both their precursor and ready forms, and to investigate the changes in product distribution. We observed that the flavin adenine dinucleotide improved the diterpenoids titres and biomass accumulation. Hemin was found to decrease the titre of iso-OCT and T5α-ol, without impacting the side product OCT, suggesting the latter being the major product of CYP725A4. The interaction between this iron and the iron precursor, δ-Aminolevulinic acid, seemed to improve the production of these diterpenoids, further denoting that iso-OCT and T5α-ol were the later products. While no direct correlation between cellular-level oxidative stress and oxygenated taxanes was observed, investigating the impact of salt and antioxidant on CYP725A4 further showed the significant drop in OCT titre, highlighting the possibility of enzymatic-level uncoupling event and reactivity as the major mechanism behind the enzyme activity. To characterise the product spectrum and production capacity of CYP725A4 in the absence of cell growth, resting cell assays with optimal neutral pH revealed an array of novel diterpenoids along with higher quantities of characterised diterpenoids and independence of the oxygenated product spectra from the acidity effect. Besides reporting on the full product ranges of CYP725A4 in yeast for the first time, the highest total taxanes of around 361.4 ± 52.4 mg/L including 38.1 ± 8.4 mg/L of T5α-ol was produced herein at a small, 10-mL scale by resting cell assay, where the formation of some novel diterpenoids relied on the prior existence of other diterpenes/diterpenoids as shown by statistical analyses. Conclusions This study shows how rational strain engineering combined with an efficient design of experiment approach systematically uncovered the promoting effect of uncoupling for optimising the formation of the early oxygenated taxane precursors of Taxol®. The provided strategies can effectively accelerate the design of more efficient Taxol®-producing yeast strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01922-1.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Liang Lungang
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK. .,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK. .,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
8
|
Hu J, Zhang W, Tan H, Li S, Gao X, Liu Z, Wang Y, Liu H, Zhang W. Neocucurbins A-G, novel macrocyclic diterpenes and their derivatives from Neocucurbitaria unguis-hominis FS685. Org Biomol Chem 2022; 20:4376-4384. [PMID: 35579069 DOI: 10.1039/d2ob00585a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three novel phomactin diterpenes neocucurbins A-C (1-3) and their derivatives, neocucurbins D-G (4-7), were isolated from the marine-derived fungus Neocucurbitaria unguis-hominis FS685. Among them, neocucurbins A-C represent the first examples of the phomactin family with an unprecedented skeleton sharing a novel polyoxygen-hetero 5/6/12 or 5/6/13 fused tricyclic ring system; whereas neocucurbins D-G feature a 5/6 fused bicyclic ring system with the opening of the macrocyclic ring, which was found in the phomactin family for the first time. Moreover, spectroscopic data analyses, single-crystal X-ray diffraction experiments, and ECD calculations were conducted to illustrate the absolute configurations of their structures. Furthermore, all seven compounds (1-7) were evaluated for their cytotoxic and antimicrobial activities.
Collapse
Affiliation(s)
- Jinhua Hu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China. .,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wenge Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Haibo Tan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Saini Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Yanlin Wang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hongxin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
9
|
Li Z, Zheng J, Li WDZ. Diverse strategic approaches en route to Taxol total synthesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Chen Y, Li D, Ling Y, Liu Y, Zuo Z, Gan L, Luo S, Hua J, Chen D, Xu F, Li M, Guo K, Liu Y, Gershenzon J, Li S. A Cryptic Plant Terpene Cyclase Producing Unconventional 18‐ and 14‐Membered Macrocyclic C
25
and C
20
Terpenoids with Immunosuppressive Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yue‐Gui Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - De‐Sen Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Yan‐Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi‐Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Li‐She Gan
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 P. R. China
| | - Shi‐Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Ding‐Yuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Fan Xu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 P. R. China
| | - Man Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | | | - Sheng‐Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| |
Collapse
|
11
|
Chen YG, Li DS, Ling Y, Liu YC, Zuo ZL, Gan LS, Luo SH, Hua J, Chen DY, Xu F, Li M, Guo K, Liu Y, Gershenzon J, Li SH. A Cryptic Plant Terpene Cyclase Producing Unconventional 18- and 14-Membered Macrocyclic C 25 and C 20 Terpenoids with Immunosuppressive Activity. Angew Chem Int Ed Engl 2021; 60:25468-25476. [PMID: 34580976 DOI: 10.1002/anie.202110842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Indexed: 11/09/2022]
Abstract
A versatile terpene synthase (LcTPS2) producing unconventional macrocyclic terpenoids was characterized from Leucosceptrum canum. Engineered Escherichia coli and Nicotiana benthamiana expressing LcTPS2 produced six 18-/14-membered sesterterpenoids including five new ones and two 14-membered diterpenoids. These products represent the first macrocyclic sesterterpenoids from plants and the largest sesterterpenoid ring system identified to date. Two variants F516A and F516G producing approximately 3.3- and 2.5-fold, respectively, more sesterterpenoids than the wild-type enzyme were engineered. Both 18- and 14-membered ring sesterterpenoids displayed significant inhibitory activity on the IL-2 and IFN-γ production of T cells probably via inhibition of the MAPK pathway. The findings will contribute to the development of efficient biocatalysts to create bioactive macrocyclic sesterterpenoids, and also herald a new potential in the well-trodden territory of plant terpenoid biosynthesis.
Collapse
Affiliation(s)
- Yue-Gui Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - De-Sen Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Li-She Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Ding-Yuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Fan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Man Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | | | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
12
|
Schneider F, Pan L, Ottenbruch M, List T, Gaich T. The Chemistry of Nonclassical Taxane Diterpene. Acc Chem Res 2021; 54:2347-2360. [PMID: 33942612 DOI: 10.1021/acs.accounts.0c00873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The taxane diterpenes are a pharmaceutically vital family of natural products, consisting of more than 550 congeners. All taxane diterpenes are isolated from slow growing evergreen shrubs (genus Taxus) commonly known as "yews" and have a history of over 50 years as potent anticancer compounds. The most prominent congener, taxol (paclitaxel = PTX), has been used in clinics for more than 25 years and is one of the top-selling anticancer drugs worldwide, with annual sales reaching 1.5 billion USD in 1999. Within the taxane diterpene family 11 different scaffolds originating from rearrangements, fragmentations, or transannular C-C bond formations of the "classical taxane core" are known. Among them, five different scaffolds alone belong to the so-called complex or cyclotaxane subfamily, their signature structural feature bearing different types and numbers of transannular C-C bonds across the classical taxane backbone. For synthetic chemists, these five scaffolds represent by far the most challenging of all and have thus evaded total synthesis as well as detailed pharmaceutical evaluation-the latter due to extremely poor sourcing from natural producers. The cousinship of complex taxanes to taxol renders them potentially interesting compounds for drug research in the fight against cancer.This Account specifically summarizes the work on nonclassical taxanes from a biosynthetic, as well as a synthetic, point and provides a synthetic perspective on complex taxanes. Special attention is given to the biosynthetic relationship of complex taxanes and their biological emergence from classical taxanes. The transannular C-C bond forming events in the biosynthesis leading to the five individual scaffolds within this subfamily are structured on the basis of the exact type and number of these specific C-C bond formations. Since functionalization of the classical taxane core in the "oxidase phase" of the biosynthesis precedes the formation of complex taxanes, and is in part prerequisite for these transannular cyclization events, a detailed discussion of these oxidations of the classical taxane backbone is provided. Synthetic efforts toward nonclassical taxanes are scarce in literature and are thus presented in a comprehensive manner for abeotaxanes and complex taxanes. The last part of this Account deals with a synthetic perspective on the synthesis of complex taxanes (cyclotaxanes) and how these most intricate scaffolds can potentially be obtained via a deconvolution strategy. This discussion involves in part unpublished results by our group and is based upon synthetic studies in the literature. The deconvolution strategy we advocate aims for selective fragmentations of the signature transannular C-C bonds of the most intricate scaffold represented by the natural product canataxpropellane, which has recently been synthesized by our group. This strategy represents the converse process of the biosynthesis of complex taxanes (e.g., transannular cyclizations) and is enabled and feasible due to our approach to the canataxpropellane scaffold. We show that, by following this deconvolution strategy, all five scaffolds of complex taxanes can thereby be accessed.
Collapse
Affiliation(s)
- Fabian Schneider
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Lu Pan
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Moritz Ottenbruch
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Tatjana List
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Tanja Gaich
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
13
|
Leger PR, Kuroda Y, Chang S, Jurczyk J, Sarpong R. C-C Bond Cleavage Approach to Complex Terpenoids: Development of a Unified Total Synthesis of the Phomactins. J Am Chem Soc 2020; 142:15536-15547. [PMID: 32799452 PMCID: PMC7771649 DOI: 10.1021/jacs.0c07316] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rearrangement of carbon-carbon (C-C) single bonds in readily available carbocyclic scaffolds can yield uniquely substituted carbocycles that would be challenging to construct otherwise. This is a powerful and often non-intuitive approach for complex molecule synthesis. The transition-metal-mediated cleavage of C-C bonds has the potential to broaden the scope of this type of skeletal remodeling by providing orthogonal selectivities compared to more traditional pericyclic and carbocation-based rearrangements. To highlight this emerging technology, a unified, asymmetric, total synthesis of the phomactin terpenoids was developed, enabled by the selective C-C bond cleavage of hydroxylated pinene derivatives obtained from carvone. In this full account, the challenges, solutions, and intricacies of Rh(I)-catalyzed cyclobutanol C-C cleavage in a complex molecule setting are described. In addition, details of the evolution of strategies that ultimately led to the total synthesis of phomactins A, K, P, R, and T, as well as the synthesis and structural reassignment of Sch 49027, are given.
Collapse
Affiliation(s)
- Paul R Leger
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yusuke Kuroda
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stanley Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Hayes CJ, Palframan MJ, Pattenden G. The Impact of Macrocycle Conformation on the Taxadiene-Forming Carbocation Cascade: Insight Gained from Sobralene, a Recently Discovered Verticillene Isomer. J Org Chem 2020; 85:4507-4514. [PMID: 32101002 DOI: 10.1021/acs.joc.0c00369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DFT calculations on the carbocation intermediates that connect the biosynthetic pathways leading to the sand fly pheromone sobralene and taxadiene have been made. Establishment of the conformation of the macrocyclic carbocation intermediate required to produce the (Z)-C8,C9 alkene bond in sobralene has identified new conformations of the verticillyl carbocation intermediates on the taxadiene biosynthetic pathway. These "sobralene-like" carbocation conformations provide an exothermic pathway to taxadiene and are validated by comparison to closely related structures (X-ray and NMR).
Collapse
Affiliation(s)
- Christopher J Hayes
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Matthew J Palframan
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Gerald Pattenden
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|