1
|
Wu F, Kong Z, Ge P, Sun D, Liu D, Dong Z, Chen G. Ecotoxicological evaluation and regeneration impairment of planarians by dibutyl phthalate. ENVIRONMENTAL RESEARCH 2024; 257:119403. [PMID: 38871274 DOI: 10.1016/j.envres.2024.119403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Commonly utilized as a plasticizer in the food and chemical sectors, Dibutyl phthalate (DBP) poses threats to the environment and human well-being as it seeps or moves into the surroundings. Nevertheless, research on the harmfulness of DBP to aquatic organisms is limited, and its impact on stem cells and tissue regeneration remains unidentified. Planarians, recognized for their robust regenerative capabilities and sensitivity to aquatic pollutants, are emerging animal models in toxicology. This study investigated the comprehensive toxicity effects of environmentally relevant levels of DBP on planarians. It revealed potential toxicity mechanisms through the use of immunofluorescence, chromatin dispersion assay, Western blot, quantitative real-time fluorescence quantitative PCR (qRT-PCR), chromatin behavioral and histological analyses, immunofluorescence, and terminal dUTP nickel-end labeling (TUNEL). Findings illustrated that DBP caused morphological and motor abnormalities, tissue damage, regenerative inhibition, and developmental neurotoxicity. Further research revealed increased apoptosis and suppressed stem cell proliferation and differentiation, disrupting a balance of cell proliferation and death, ultimately leading to morphological defects and functional abnormalities. This was attributed to oxidative stress and DNA damage caused by excessive release of reactive oxygen species (ROS). This exploration furnishes fresh perspectives on evaluating the toxicity peril posed by DBP in aquatic organisms.
Collapse
Affiliation(s)
- Fan Wu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zhihong Kong
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Peng Ge
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
2
|
Mechanistic investigation into selective cytotoxic activities of gold nanoparticles functionalized with epidermal growth factor variants. ANAL SCI 2023; 39:395-405. [PMID: 36639559 DOI: 10.1007/s44211-022-00256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023]
Abstract
Epidermal growth factor (EGF) gains unique selective cytotoxicity against cancer cells upon conjugation with gold nanoparticles (GNPs). We have previously developed several lysine-free EGF mutants for favorable interactions between the nanoparticle conjugates with EGF receptor (EGFR) and found one mutant (SR: K28S/K48R) showing stronger anticancer activities. However, the exact mechanisms for the selective cytotoxicity enhancement in the SR mutant remained unsolved. In this study, we analyzed how the nanoparticle conjugates of EGF variants interacted differently with A431 cancer cells, in terms of receptor binding, activation, and trafficking. Our results indicate that the essential feature of the SR-GNP conjugates in the cytotoxicity enhancement is their preferential activation of the clathrin-independent endocytosis pathway. It is suggested that we should focus on not only ligand-receptor binding affinity but also the selectivity of the receptor endocytic route to optimize the anticancer effects in this modality.
Collapse
|
3
|
Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:424. [PMID: 36770385 PMCID: PMC9921003 DOI: 10.3390/nano13030424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Selenium is an important dietary supplement and an essential trace element incorporated into selenoproteins with growth-modulating properties and cytotoxic mechanisms of action. However, different compounds of selenium usually possess a narrow nutritional or therapeutic window with a low degree of absorption and delicate safety margins, depending on the dose and the chemical form in which they are provided to the organism. Hence, selenium nanoparticles (SeNPs) are emerging as a novel therapeutic and diagnostic platform with decreased toxicity and the capacity to enhance the biological properties of Se-based compounds. Consistent with the exciting possibilities offered by nanotechnology in the diagnosis, treatment, and prevention of diseases, SeNPs are useful tools in current biomedical research with exceptional benefits as potential therapeutics, with enhanced bioavailability, improved targeting, and effectiveness against oxidative stress and inflammation-mediated disorders. In view of the need for developing eco-friendly, inexpensive, simple, and high-throughput biomedical agents that can also ally with theranostic purposes and exhibit negligible side effects, biogenic SeNPs are receiving special attention. The present manuscript aims to be a reference in its kind by providing the readership with a thorough and comprehensive review that emphasizes the current, yet expanding, possibilities offered by biogenic SeNPs in the biomedical field and the promise they hold among selenium-derived products to, eventually, elicit future developments. First, the present review recalls the physiological importance of selenium as an oligo-element and introduces the unique biological, physicochemical, optoelectronic, and catalytic properties of Se nanomaterials. Then, it addresses the significance of nanosizing on pharmacological activity (pharmacokinetics and pharmacodynamics) and cellular interactions of SeNPs. Importantly, it discusses in detail the role of biosynthesized SeNPs as innovative theranostic agents for personalized nanomedicine-based therapies. Finally, this review explores the role of biogenic SeNPs in the ongoing context of the SARS-CoV-2 pandemic and presents key prospects in translational nanomedicine.
Collapse
Affiliation(s)
- Marjorie C. Zambonino
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Ernesto Mateo Quizhpe
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri, BP 17 RP, Tizi-Ouzou 15000, Algeria
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, 211 Redbird Ln., Beaumont, TX 77710, USA
| | - Spiros N. Agathos
- Earth and Life Institute, Catholic University of Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Si Amar Dahoumane
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
- Department of Chemistry and Biochemistry, Université de Moncton, 18, Ave Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| |
Collapse
|
4
|
Zhang S, Ouyang T, Reinhard BM. Multivalent Ligand-Nanoparticle Conjugates Amplify Reactive Oxygen Species Second Messenger Generation and Enhance Epidermal Growth Factor Receptor Phosphorylation. Bioconjug Chem 2022; 33:1716-1728. [PMID: 35993676 PMCID: PMC9815836 DOI: 10.1021/acs.bioconjchem.2c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) is heterogeneously distributed on the cellular surface and enriched in clusters with diameters of tens of nanometers. Multivalent presentation of EGF ligand on nanoparticles (NPs) provides an approach for controlling and amplifying the local activation of EGFR in these clusters. Reactive oxygen species (ROS) have been indicated to play a role in the regulation of EGFR activation as second messengers, but the effect of nanoconjugation on EGF-mediated ROS formation and ROS-induced EGFR activation is not well established. The goal of this manuscript is to characterize the multivalent enhancement of EGF-induced ROS formation and to test its effect on EGFR phosphorylation in breast cancer cell models using gold (Au) NPs with a diameter of 81 ± 1 nm functionalized with two different EGF ligand densities (12 ± 7 EGF/NP (NP-EGF12) and 87 ± 6 EGF/NP (NP-EGF87)). In the EGFR overexpressing cell lines MDA-MB-231 and MDA-MB-468, NP-EGF87 achieved a measurable multivalent enhancement of ROS that peaked at concentrations c ROSmax ≤ 25 pM and that were EGFR and nicotinamide adenine dinucleotide phosphate oxidase (NOX) dependent. NP-EGF12 failed to generate comparable ROS levels as NP-EGF87 in the investigated NP input concentration range (0-100 pM). In cells with nearly identical numbers of bound NP-EGF87 and NP-EGF12, the ROS levels for NP-EGF87 were systematically higher, indicating that the multivalent enhancement is exclusively related not only to avidity but also to a stronger stimulation per NP. Importantly, the increase in EGF-induced ROS formation associated with EGF nanoconjugation at c ROSmax resulted in a measurable gain in EGFR phosphorylation, confirming that ROS generation contributes to the multivalent enhancement of EGFR activation in response to NP-EGF87.
Collapse
Affiliation(s)
- Sandy Zhang
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215
| | - Tianhong Ouyang
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215
| | - Björn M. Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215
| |
Collapse
|
5
|
Picheth GF, Ganzella FADO, Filizzola JO, Canquerino YK, Cardoso GC, Collini MB, Colauto LB, Figueroa-Magalhães MC, Cavalieri EA, Klassen G. Ligand-mediated nanomedicines against breast cancer: a review. Nanomedicine (Lond) 2022; 17:645-664. [PMID: 35438008 DOI: 10.2217/nnm-2021-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-mediated targeting represents the cutting edge in precision-guided therapy for several diseases. Surface engineering of nanomedicines with ligands exhibiting selective or tailored affinity for overexpressed biomolecules of a specific disease may increase therapeutic efficiency and reduce side effects and recurrence. This review focuses on newly developed approaches and strategies to improve treatment and overcome the mechanisms associated with breast cancer resistance.
Collapse
Affiliation(s)
- Guilherme F Picheth
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil.,School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | | | - João Oc Filizzola
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Yan K Canquerino
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Gabriela C Cardoso
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Michelle B Collini
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo B Colauto
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Edneia Asr Cavalieri
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
6
|
Xu L, Zhang J, Zhao J, Liu C, Li N, Zhang S, Wang Z, Xi M. Plasmonic Cu xS Nanocages for Enhanced Solar Photothermal Cell Warming. ACS APPLIED BIO MATERIALS 2022; 5:1658-1669. [PMID: 35289599 DOI: 10.1021/acsabm.2c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Highly efficient plasmonic photothermal nanomaterials are benefitial to the successful resuscitation of cells. Copper sulfide (CuxS) is a type of plasmonic solar photothermal semiconductor material that expands the light collecting range by altering its localized surface plasmonic resonance (LSPR) to the near- to mid-infrared (IR) spectral region. Particularly, nanocages (or nanoshells) have hybridized plasmon resonances as the result of superpositioned nanospheres and nanocavities, which extend their receiving range for the solar spectrum and increase light-to-heat conversion rate. In this work, for the first time, we applied colloidal hollow CuxS nanocages to revive cryopreserved HeLa cells via photothermal warming, which showed improved cell warming rate and cell viability after cell resuscitation. Moreover, we tested the photothermal performance of CuxS nanocages with concentrated light illumination, which exhibited extraordinary photothermal performance due to localized and enhanced illumination. We further quantified each band's contribution during the cell warming process via evaluating the warming rate of cryopreserved cell solution with illumination by monochromatic UV, visible, and NIR lasers. We studied the biosafety and toxicity of CuxS nanocages by analyzing the generated copper ion residue during cell warming and cell incubation, respectively. Our study shows that CuxS nanocages have huge potential for cell warming and are promising for vast range of applications, such as nanomedicine, life science, biology, energy saving, etc.
Collapse
Affiliation(s)
- Longchang Xu
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China.,The Key Laboratory Functional Molecular Solids Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Jixiang Zhang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China.,Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Jun Zhao
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Cui Liu
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Nian Li
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Shudong Zhang
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhenyang Wang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China
| | - Min Xi
- Institute of Solid State Physics and Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,The Key Laboratory Functional Molecular Solids Ministry of Education, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
7
|
Ulfo L, Cantelli A, Petrosino A, Costantini PE, Nigro M, Starinieri F, Turrini E, Zadran SK, Zuccheri G, Saporetti R, Di Giosia M, Danielli A, Calvaresi M. Orthogonal nanoarchitectonics of M13 phage for receptor targeted anticancer photodynamic therapy. NANOSCALE 2022; 14:632-641. [PMID: 34792088 DOI: 10.1039/d1nr06053h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photodynamic therapy (PDT) represents a promising therapeutic modality for cancer. Here we used an orthogonal nanoarchitectonics approach (genetic/chemical) to engineer M13 bacteriophages as targeted vectors for efficient photodynamic killing of cancer cells. M13 was genetically refactored to display on the phage tip a peptide (SYPIPDT) able to bind the epidermal growth factor receptor (EGFR). The refactored M13EGFR phages demonstrated EGFR-targeted tropism and were internalized by A431 cancer cells, that overexpress EGFR. Using an orthogonal approach to the genetic display, M13EGFR phages were then chemically modified, conjugating hundreds of Rose Bengal (RB) photosensitizing molecules on the capsid surface, without affecting the selective recognition of the SYPIPDT peptides. Upon internalization, the M13EGFR-RB derivatives generated intracellularly reactive oxygen species, activated by an ultralow intensity white light irradiation. The killing activity of cancer cells is observed at picomolar concentrations of the M13EGFR phage.
Collapse
Affiliation(s)
- Luca Ulfo
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Andrea Cantelli
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Annapaola Petrosino
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Paolo Emidio Costantini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Michela Nigro
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Francesco Starinieri
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Eleonora Turrini
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum-Università di Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Suleman Khan Zadran
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Giampaolo Zuccheri
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Roberto Saporetti
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Matteo Di Giosia
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| | - Alberto Danielli
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum - Università di Bologna, via Francesco Selmi 3, 40126 Bologna, Italy.
| | - Matteo Calvaresi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum - Università di Bologna, Via Francesco Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
8
|
Ye D, Xu Y, Shi Y, Ji J, Lu X, Chen H, Huang R, Lu P, Li Y, Cheng L, Li Y, Cui K, Tang X, Luo L, Huang J. Occurrence of Oxidative Stress and Premature Senescence in the Anterior Segment of Acute Primary Angle-Closure Eyes. Invest Ophthalmol Vis Sci 2022; 63:34. [PMID: 35077549 PMCID: PMC8802011 DOI: 10.1167/iovs.63.1.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To explore whether oxidative stress and premature senescence occur in the anterior segment of acute primary angle-closure (APAC) eyes after increased intraocular pressure. Methods The eye samples of 21 APAC patients, 22 age-related cataract patients, and 10 healthy donors were included. Aqueous humor (AqH), iris, and anterior lens capsule samples were collected. The levels of oxidative stress markers and senescence-associated secretory phenotype (SASP)–related cytokines in AqH were estimated using relevant reagent kits and multiplex bead immunoassay technique. The intensity of relevant markers in anterior segment tissues was examined by immunofluorescence- and senescence-associated β-galactosidase (SA-β-gal) staining. Results Oxidative stress marker levels elevated significantly in the AqH of APAC eyes. Reactive oxygen species (ROS) and 8-hydroxydeoxyguanosine levels were positively correlated with preoperative peak intraocular pressure and age, whereas reduced glutathione/oxidized glutathione (GSH/GSSH) ratio was negatively correlated with both parameters. The levels of several SASP-related cytokines were markedly increased. ROS and malondialdehyde levels were positively correlated with the levels of some SASP-related cytokines, whereas superoxide dismutase level and GSH/GSSH ratio showed an opposite trend. The number of cells positive for oxidative mitochondrial DNA damage and apoptosis-related markers increased in the iris and anterior lens capsule of the APAC group. Senescence-associated markers (p16, p21, and p53) and SA-β-gal activity were increased in the iris of the APAC group. Conclusions Oxidative stress and premature senescence occurred in the anterior segment of APAC patients, suggesting that they may be involved in the development of pathological changes in the anterior segment of APAC eyes.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.,Interdepartmental Program in Vascular Biology and Therapeutics, Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Hailiu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Rong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yunxuan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lu Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yangyunhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| |
Collapse
|
9
|
Yamamoto S, Nakanishi J. Epidermal Growth Factor-gold Nanoparticle Conjugates-induced Cellular Responses: Effect of Interfacial Parameters between Cell and Nanoparticle. ANAL SCI 2021; 37:741-745. [PMID: 33390415 DOI: 10.2116/analsci.20scp16] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The original activity of epidermal growth factor (EGF) is to promote cell growth or block their apoptosis. However, its activity changes to proapoptotic, completely opposite to the original one, upon conjugation to nanoparticles. We have recently identified that this unique activity conversion was mediated by the confinement of EGF receptor (EGFR) within membrane rafts and signal condensation therein. In this study, we investigated the effect of interfacial parameters between the EGF molecule immobilized at the nanoparticle surface and the cell-surface membrane receptors and analyzed how their interactions were transduced to downstream signaling leading to apoptotic responses. We also studied the cell-type selective apoptotic responses and compared them with EGFR expression level to demonstrate the potential of the nanoparticle conjugate as a new type of anti-cancer drug activating EGFR rather than conventional blocking approaches.
Collapse
Affiliation(s)
- Shota Yamamoto
- Research Center for Functional Materials, National Institute for Materials Science (NIMS)
| | - Jun Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS).,Department of Nanoscience and Nanoengineering, Waseda University.,Department of Materials Science and Technology, Tokyo University of Science
| |
Collapse
|
10
|
Cytotoxicity and Genotoxicity of Metal Oxide Nanoparticles in Human Pluripotent Stem Cell-Derived Fibroblasts. COATINGS 2021. [DOI: 10.3390/coatings11010107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Advances in the use of nanoparticles (NPs) has created promising progress in biotechnology and consumer-care based industry. This has created an increasing need for testing their safety and toxicity profiles. Hence, efforts to understand the cellular responses towards nanomaterials are needed. However, current methods using animal and cancer-derived cell lines raise questions on physiological relevance. In this aspect, in the current study, we investigated the use of pluripotent human embryonic stem cell- (hESCs) derived fibroblasts (hESC-Fib) as a closer representative of the in vivo response as well as to encourage the 3Rs (replacement, reduction and refinement) concept for evaluating the cytotoxic and genotoxic effects of zinc oxide (ZnO), titanium dioxide (TiO2) and silicon-dioxide (SiO2) NPs. Cytotoxicity assays demonstrated that the adverse effects of respective NPs were observed in hESC-Fib beyond concentrations of 200 µg/mL (SiO2 NPs), 30 µg/mL (TiO2 NPs) and 20 µg/mL (ZnO NPs). Flow cytometry results correlated with increased apoptosis upon increase in NP concentration. Subsequently, scratch wound assays showed ZnO (10 µg/mL) and TiO2 (20 µg/mL) NPs inhibit the rate of wound coverage. DNA damage assays confirmed TiO2 and ZnO NPs are genotoxic. In summary, hESC-Fib could be used as an alternative platform to understand toxicity profiles of metal oxide NPs.
Collapse
|
11
|
Zhang A, Nakanishi J. Improved anti-cancer effect of epidermal growth factor-gold nanoparticle conjugates by protein orientation through site-specific mutagenesis. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:616-626. [PMID: 34512175 PMCID: PMC8425683 DOI: 10.1080/14686996.2021.1944783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Epidermal growth factor (EGF)-nanoparticle conjugates have the potential for cancer therapeutics due to the unique cytotoxic activity in cancer cells with EGF receptor (EGFR) overexpression. To gain its maximum activity, the EGF molecule should be immobilized on the nanoparticle surface in a defined orientation so as the bulky nanoparticle will not interfere EGF-EGFR interaction. Herein, we demonstrate successful enhancement of the anti-cancer activity of EGF-gold nanoparticle conjugates (EGF-GNPs) by controlling the EGF orientation on the surface of the nanoparticle through site-specific mutagenesis. Three lysine-free EGF variants (RR, RS, and SR) were designed, where two endogenous lysine residues were replaced with either arginine (R) or serine (S). The EGF mutants can be conjugated to the GNPs in a controlled orientation through the single amino group at the N-terminus. The ability of the mutants to induce extracellular signal-regulated kinase (ERK) phosphorylation was no different from wild type EGF (WT) in soluble form, rather lowered for one mutant (RR). However, after conjugated to GNPs, the SR mutants exhibited an enhanced biological activity than WT, in terms of ERK phosphorylation and growth inhibition of cancer cells. Further analysis of the binding constant of each mutant indicated the emergent enhanced activity of the GNP conjugates of the SR mutant was not solely contributed to the orientation, but to its higher binding activity to EGFR. These results validate the present genetic recombination strategy to improve the anticancer efficiency of EGF-GNPs.
Collapse
Affiliation(s)
- Aiwen Zhang
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Jun Nakanishi
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Japan
- CONTACT Jun Nakanishi Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo169-8555, Japan
| |
Collapse
|
12
|
Sadeghi S, Lee WK, Kong SN, Shetty A, Drum CL. Oral administration of protein nanoparticles: An emerging route to disease treatment. Pharmacol Res 2020; 158:104685. [DOI: 10.1016/j.phrs.2020.104685] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/20/2023]
|
13
|
Grapa CM, Mocan T, Gonciar D, Zdrehus C, Mosteanu O, Pop T, Mocan L. Epidermal Growth Factor Receptor and Its Role in Pancreatic Cancer Treatment Mediated by Nanoparticles. Int J Nanomedicine 2019; 14:9693-9706. [PMID: 31849462 PMCID: PMC6910098 DOI: 10.2147/ijn.s226628] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a disease with a high incidence and a dreary prognosis. Its lack of symptomatology and late diagnosis contribute to the dearth and inefficiency of therapeutic schemes. Studies show that overexpressed epidermal growth factor receptor (EGFR) is a common occurrence, linking this to the progression of pancreatic cancer, although the association between its expression and the survival rate is rather controversial. EGFR-targeted therapy has not shown the results expected, leaving at hand more questions than answers; clearly, there is a need for a better understanding of the molecular pathways involved. Nanoparticles have been used in trying to improve the efficacy of antitumor treatment; thus, using EGFR's ligand, EGF, for nanoconjugation, showed promising results in increasing the cellular uptake mechanisms and apoptosis of the targeted cells.
Collapse
Affiliation(s)
- Cristiana Maria Grapa
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
| | - Teodora Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
- Physiology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gonciar
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Claudiu Zdrehus
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ofelia Mosteanu
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Teodora Pop
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
| | - Lucian Mocan
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology “Prof. Dr. Octavian Fodor”, Cluj-Napoca, Romania
- 3rd Surgery Clinic, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Affiliation(s)
- Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|