1
|
Guo J, Hou Q, Tan Y, Fu R, Huang X, Cao C. Membrane Proteins in Nanodiscs: Methods and Applications. ChemMedChem 2025; 20:e202400775. [PMID: 39825697 DOI: 10.1002/cmdc.202400775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/20/2025]
Abstract
Membrane proteins, a principal class of drug targets, play indispensable roles in various biological processes and are closely associated with essential life functions. Their study, however, is complicated by their low solubility in aqueous environments and distinctive structural characteristics, necessitating a suitable native-like environment for molecular analysis. Nanodisc technology has revolutionized this field, providing biochemists with a powerful tool to stabilize membrane proteins and significantly enhance their research possibilities. This review outlines the substantial advancements in nanodisc methodologies and applications from 2018 to 2024. We cover the development of various nanodisc models, as well as structural and functional studies of membrane proteins that utilize nanodiscs, highlighting their medical applications.
Collapse
Affiliation(s)
- Jiaxu Guo
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qinghan Hou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, US
| | - Yulin Tan
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ruoheng Fu
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuanwei Huang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chan Cao
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science, Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
2
|
Akram A, Hadasha W, Kuyler GC, Smith MP, Bailey-Dallaway S, Preedy A, Browne C, Broadbent L, Hill A, Javaid T, Nazar H, Samra N, Naveed A, Tregunna H, Joshi H, Akhtar N, Javed A, Bowater J, Ravenhill J, Hajdu P, Ali Y, Tailor Y, Mumtaz S, Hamza M, Gill K, Gillett J, Patton F, Arshid H, Zaheer M, Qureshi H, Edwards I, Patel S, Azadi A, Pollock N, Kitchen P, Klumperman B, Rothnie AJ. Solubilisation & purification of membrane proteins using benzylamine-modified SMA polymers. Biophys Chem 2025; 316:107343. [PMID: 39447535 DOI: 10.1016/j.bpc.2024.107343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Extraction of proteins from the membrane using styrene maleic acid co-polymers (SMA), forming SMA lipid particles (SMALPs), has allowed for the first time the purification of membrane proteins with their lipid bilayer environment. To date, SMA2000 has been the most effective polymer used for this purpose, with a 2:1 ratio of styrene:maleic acid, and styrene and maleic acid moieties spread statistically throughout the chain. However, SMA2000 is a highly polydisperse polymer that contains an array of different polymer lengths and sequences. RAFT polymerisation offers much better control over the polymer length; however, homogeneous distribution of styrene and maleic acid throughout the polymer is difficult to achieve. Instead, here RAFT polymerisation was used to produce a 1:1 styrene:maleic anhydride polymer, which was then modified with benzylamine. This mimics the 2:1 hydrophobic:hydrophilic nature of SMA2000, while controlling the length and obtaining a homogeneous distribution of the hydrophobic moieties (styrene and N-benzylmaleimide). SMA-benzylamine (SMA-BA) polymers of three different lengths (2, 4, and 7 kDa) were all able to solubilise purified lipids, cellular membranes, and a range of specific proteins. However, the larger 7 kDa polymer solubilised membranes more slowly and less efficiently than the shorter polymers. This also affected the yield of purified protein obtained by affinity purification with this polymer. The smallest 2 kDa polymer solubilised membranes the fastest but appeared to offer less stability to the extracted proteins. The SMA-BA polymers were more sensitive to Mg2+ ions than SMA2000. SMA-BA 4 kDa was otherwise comparable to SMA2000 and even gave a higher degree of purity.
Collapse
Affiliation(s)
- Aneel Akram
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Waled Hadasha
- Department of Chemistry & Polymer Science, Stellenbosch University, South Africa
| | - Gestél C Kuyler
- Department of Chemistry & Polymer Science, Stellenbosch University, South Africa; Centre for Health and Life Sciences, Coventry University, Coventry, UK
| | | | | | - Aiden Preedy
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Caolan Browne
- Health & Life Sciences, Aston University, Birmingham, UK; Aston Institute for Membrane Excellence, Aston University, Birmingham, UK
| | - Luke Broadbent
- Health & Life Sciences, Aston University, Birmingham, UK; Aston Institute for Membrane Excellence, Aston University, Birmingham, UK
| | - Adam Hill
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Tahreem Javaid
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Haroon Nazar
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Nikita Samra
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Anadil Naveed
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Holly Tregunna
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Hetal Joshi
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Nusheen Akhtar
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Aneesa Javed
- Health & Life Sciences, Aston University, Birmingham, UK
| | | | - Joel Ravenhill
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Patrik Hajdu
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Yazdan Ali
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Yanik Tailor
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Sabreen Mumtaz
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Mohammed Hamza
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Kiran Gill
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Jemma Gillett
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Faye Patton
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Huma Arshid
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Maria Zaheer
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Hannah Qureshi
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Isabel Edwards
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Shreya Patel
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Aaminah Azadi
- Health & Life Sciences, Aston University, Birmingham, UK
| | - Naomi Pollock
- Health & Life Sciences, Aston University, Birmingham, UK; Aston Institute for Membrane Excellence, Aston University, Birmingham, UK.; School of Biosciences, University of Birmingham, UK
| | - Philip Kitchen
- Health & Life Sciences, Aston University, Birmingham, UK; Aston Institute for Membrane Excellence, Aston University, Birmingham, UK
| | - Bert Klumperman
- Department of Chemistry & Polymer Science, Stellenbosch University, South Africa
| | - Alice J Rothnie
- Health & Life Sciences, Aston University, Birmingham, UK; Aston Institute for Membrane Excellence, Aston University, Birmingham, UK..
| |
Collapse
|
3
|
Motov VV, Kot EF, Kislova SO, Bocharov EV, Arseniev AS, Boldyrev IA, Goncharuk SA, Mineev KS. On the Properties of Styrene-Maleic Acid Copolymer-Lipid Nanoparticles: A Solution NMR Perspective. Polymers (Basel) 2024; 16:3009. [PMID: 39518219 PMCID: PMC11548547 DOI: 10.3390/polym16213009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The production of functionally active membrane proteins (MPs) in an adequate membrane environment is a key step in structural biology. Polymer-lipid particles based on styrene and maleic acid (SMA) represent a promising type of membrane mimic, as they can extract properly folded MPs directly from their native lipid environment. However, the original SMA polymer is sensitive to acidic pH levels, which has led to the development of several modifications: SMA-EA, SMA-QA, and others. Here, we introduce a novel SMA derivative with a negatively charged taurine moiety, SMA-tau, and investigate the formation and characteristics of lipid-SMA-EA and lipid-SMA-tau membrane-mimicking particles. Our findings demonstrate that both polymers can form nanodiscs with a patch of lipid bilayer that can undergo phase transitions at temperatures close to those of the lipid bilayer membranes. Finally, we discuss the potential applications of these SMAs for NMR spectroscopy.
Collapse
Affiliation(s)
- Vladislav V. Motov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
- Moscow Center for Advanced Studies, Kulakova Str. 20, 140829 Moscow, Russia
| | - Erik F. Kot
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Svetlana O. Kislova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119071 Moscow, Russia; (S.O.K.); (I.A.B.)
| | - Eduard V. Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
| | - Alexander S. Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
| | - Ivan A. Boldyrev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119071 Moscow, Russia; (S.O.K.); (I.A.B.)
| | - Sergey A. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (V.V.M.); (E.F.K.); (E.V.B.); (A.S.A.)
| |
Collapse
|
4
|
Baskakova KO, Kuzmichev PK, Karbyshev MS. Advanced applications of Nanodiscs-based platforms for antibodies discovery. Biophys Chem 2024; 313:107290. [PMID: 39002246 DOI: 10.1016/j.bpc.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins. They can target specific conformations of a particular membrane protein and can be engineered into various formats. Generating specific and effective antibodies targeting these proteins is no easy task due to several factors. The antigen's design, antibody-generation strategies, lead optimization technologies, and antibody modalities can be modified to tackle these challenges. The rational employment of cutting-edge lipid nanoparticle systems for retrieving the membrane antigen has been successfully implemented to simplify the mechanism-based therapeutic antibody discovery approach. Despite the highlighted MP production challenges, this review unequivocally underscores the advantages of targeting complex membrane proteins with antibodies and designing membrane protein antigens. Selected examples of lipid nanoparticle success have been illustrated, emphasizing the potential of therapeutic antibody discovery in this regard. With further research and development, we can overcome these challenges and unlock the full potential of therapeutic antibodies directed to target complex MPs.
Collapse
Affiliation(s)
- Kristina O Baskakova
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Pavel K Kuzmichev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
| | - Mikhail S Karbyshev
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; Department of Biochemistry and Molecular Biology, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| |
Collapse
|
5
|
Gavali P, Desai J, Shah P, Sawarkar S. Transmucosal Delivery of Peptides and Proteins Through Nanofibers: Current Status and Emerging Developments. AAPS PharmSciTech 2024; 25:74. [PMID: 38575778 DOI: 10.1208/s12249-024-02794-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Advancements in recombinant DNA technology have made proteins and peptides available for diagnostic and therapeutic applications, but their effectiveness when taken orally leads to poor patient compliance, requiring clinical administration. Among the alternative routes, transmucosal delivery has the advantage of being noninvasive and bypassing hepato-gastrointestinal clearance. Various mucosal routes-buccal, nasal, pulmonary, rectal, and vaginal-have been explored for delivering these macromolecules. Nanofibers, due to their unique properties like high surface-area-to-volume ratio, mechanical strength, and improved encapsulation efficiency, serve as promising carriers for proteins and peptides. These nanofibers can be tailored for quick dissolution, controlled release, enhanced encapsulation, targeted delivery, and improved bioavailability, offering superior pharmaceutical and pharmacokinetic performance compared to conventional methods. This leads to reduced dosages, fewer side effects, and enhanced patient compliance. Hence, nanofibers hold tremendous potential for protein/peptide delivery, especially through mucosal routes. This review focuses on the therapeutic application of proteins and peptides, challenges faced in their conventional delivery, techniques for fabricating different types of nanofibers and, various nanofiber-based dosage forms, and factors influencing nanofiber generation. Insights pertaining to the precise selection of materials used for fabricating nanofibers and regulatory aspects have been covered. Case studies wherein the use of specific protein/peptide-loaded nanofibers and delivered via oral/vaginal/nasal mucosa for diagnostic/therapeutic use and related preclinical and clinical studies conducted have been included in this review.
Collapse
Affiliation(s)
- Priyanka Gavali
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, 1st Floor Gate No. 1, Mithibai College Campus, VM Road, Vile Parle West, 400056, Maharashtra, India
| | - Jagruti Desai
- Department of Pharmaceutics and Pharmaceutical Technology, Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Pranav Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli-Mahuva Road, Tarsadi, Surat, 394350, Gujrat, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, 1st Floor Gate No. 1, Mithibai College Campus, VM Road, Vile Parle West, 400056, Maharashtra, India.
| |
Collapse
|
6
|
Ayub H, Murray RJ, Kuyler GC, Napier-Khwaja F, Gunner J, Dafforn TR, Klumperman B, Poyner DR, Wheatley M. GPCRs in the round: SMA-like copolymers and SMALPs as a platform for investigating GPCRs. Arch Biochem Biophys 2024; 754:109946. [PMID: 38395122 DOI: 10.1016/j.abb.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of membrane proteins, regulate a plethora of physiological responses and are the therapeutic target for 30-40% of clinically-prescribed drugs. They are integral membrane proteins deeply embedded in the plasma membrane where they activate intracellular signalling via coupling to G-proteins and β-arrestin. GPCRs are in intimate association with the bilayer lipids and that lipid environment regulates the signalling functions of GPCRs. This complex lipid 'landscape' is both heterogeneous and dynamic. GPCR function is modulated by bulk membrane properties including membrane fluidity, microdomains, curvature, thickness and asymmetry but GPCRs are also regulated by specific lipid:GPCR binding, including cholesterol and anionic lipids. Understanding the molecular mechanisms whereby GPCR signalling is regulated by lipids is a very active area of research currently. A major advance in membrane protein research in recent years was the application of poly(styrene-co-maleic acid) (SMA) copolymers. These spontaneously generate SMA lipid particles (SMALPs) encapsulating membrane protein in a nano-scale disc of cell membrane, thereby removing the historical need for detergent and preserving lipid:GPCR interaction. The focus of this review is how GPCR-SMALPs are increasing our understanding of GPCR structure and function at the molecular level. Furthermore, an increasing number of 'second generation' SMA-like copolymers have been reported recently. These are reviewed from the context of increasing our understanding of GPCR molecular mechanisms. Moreover, their potential as a novel platform for downstream biophysical and structural analyses is assessed and looking ahead, the translational application of SMA-like copolymers to GPCR drug discovery programmes in the future is considered.
Collapse
Affiliation(s)
- Hoor Ayub
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK.
| | - Rebecca J Murray
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Gestél C Kuyler
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | | | - Joseph Gunner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Bert Klumperman
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Mark Wheatley
- Centre for Health and Life Sciences, Coventry University, Coventry, CV1 2DS, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| |
Collapse
|
7
|
Neville GM, Morrison KA, Shilliday ER, Doutch J, Dalgliesh R, Price GJ, Edler KJ. The effect of polymer end-group on the formation of styrene - maleic acid lipid particles (SMALPs). SOFT MATTER 2023; 19:8507-8518. [PMID: 37889133 DOI: 10.1039/d3sm01180a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A series of block copolymers comprising styrene and maleic acid (SMA) has been prepared using RAFT polymerisation. RAFT often results in a large hydrophobic alkylthiocarbonylthio end group and this work examines its effect on the solution behaviour of the copolymers. SMA variants with, and without, this end group were synthesised and their behaviour compared with a commercially-available random copolymer of similar molecular weight. Dynamic light scattering and surface tension measurements found the RAFT-copolymers preferentially self-assembled into higher-order aggregates in aqueous solution. Small angle neutron scattering using deuterated styrene varients add support to the accepted model that these agreggates comprise a solvent-protected styrenic core with an acid-rich shell. Replacing the hydrophobic RAFT end group with a more hydrophilic nitrile caused differences in the resulting surface activity, attributed to the ability of the adjoining styrene homoblock to drive aggregation. Each of the copolymers formed SMALP nanodiscs with DMPC lipids, which were found to encapsulate a model membrane protein, gramicidin. However, end group variation affected solubilisition of DPPC, a lipid with a higher phase transition temperature. When using RAFT-copolymers terminated with a hydrophobic group, swelling of the bilayer and greater penetration of the homoblock into the nanodisc core occurred with increasing homoblock length. Conversely, commercial and nitrile-terminated RAFT-copolymers produced nanodisc sizes that stayed constant, instead indicating interaction at the edge of the lipid patch. The results highlight how even minor changes to the copolymer can modify the amphiphilic balance between regions, knowledge useful towards optimising copolymer structure to enhance and control nanodisc formation.
Collapse
Affiliation(s)
- George M Neville
- Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Kerrie A Morrison
- Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Ella R Shilliday
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Robert Dalgliesh
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - Gareth J Price
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Karen J Edler
- Centre for Sustainable Chemical Technologies, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
8
|
Hoang Trinh TK, Catalano C, Guo Y. Fabrication of membrane proteins in the form of native cell membrane nanoparticles using novel membrane active polymers. NANOSCALE ADVANCES 2023; 5:5932-5940. [PMID: 37881706 PMCID: PMC10597567 DOI: 10.1039/d3na00381g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Membrane proteins are a widespread class of bio-macromolecules responsible for numerous vital biological processes and serve as therapeutic targets for a vast array of contemporary medications. For membrane protein isolation and purification, detergents have historically been used. Despite this, detergents frequently result in protein instability. Consequently, their application was limited. Recent detergent-free approaches have been invented. Among these, styrene-maleic acid lipid particle (SMALP), diisobutylene-maleic acid lipid particle (DIBMALP), and native cell membrane nanoparticle (NCMN) systems are the most prevalent. The NCMN system intends to create a library of membrane-active polymers suitable for high-resolution structure determination of membrane protein. Design, synthesis, characterization, and comparative application evaluations of three novel classes of NCMN polymers, NCMNP13-x, NCMNP21-x, and NCMNP21b-x, are presented in this article. Although each NCMN polymer can solubilize distinct model membrane proteins and retain native lipids in NCMN particles, only the NCMNP21b-x family produces lipid-protein particles with ideal buffer compatibility and high homogeneity suitable for single-particle cryo-EM analysis. NCMNP21b-x polymers that generate high-quality NCMN particles are particularly desirable for membrane protein structural biology.
Collapse
Affiliation(s)
- Thi Kim Hoang Trinh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Claudio Catalano
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
9
|
Janata M, Gupta S, Čadová E, Angelisová P, Krishnarjuna B, Ramamoorthy A, Hořejší V, Raus V. Sulfonated polystyrenes: pH and Mg 2+-insensitive amphiphilic copolymers for detergent-free membrane protein isolation. Eur Polym J 2023; 198:112412. [PMID: 37780808 PMCID: PMC10538444 DOI: 10.1016/j.eurpolymj.2023.112412] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Amphiphilic polymers are increasingly applied in the detergent-free isolation and functional studies of membrane proteins. However, the carboxylate group present in the structure of many popular variants, such as styrene-maleic acid (SMA) copolymers, brings limitations in terms of polymer sensitivity to precipitation at acidic pH or in the presence of divalent metal cations. Herein, we addressed this problem by replacing carboxylate with the more acidic sulfonate groups. To this end, we synthesized a library of amphiphilic poly[styrene-co-(sodium 4-styrene sulfonate)] copolymers (termed SSS), differing in their molecular weight and overall polarity. Using model cell membranes (Jurkat), we identified two copolymer compositions (SSS-L30 and SSS-L36) that solubilized membranes to an extent similar to SMA. Interestingly, the density gradient ultracentrifugation/SDS-PAGE/Western blotting analysis of cell lysates revealed a distribution of studied membrane proteins in the gradient fractions that was different than for SMA-solubilized membranes. Importantly, unlike SMA, the SSS copolymers remained soluble at low pH and in the presence of Mg2+ ions. Additionally, the solubilization of DMPC liposomes by the lead materials was studied by turbidimetry, DLS, SEC, and high-resolution NMR, revealing, for SSS-L36, the formation of stable particles (nanodiscs), facilitated by the direct hydrophobic interaction of the copolymer phenyls with lipid acyl chains.
Collapse
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Sachin Gupta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| | - Pavla Angelisová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Václav Hořejší
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague 6, Czech Republic
| |
Collapse
|
10
|
Pettersen JM, Yang Y, Robinson AS. Advances in nanodisc platforms for membrane protein purification. Trends Biotechnol 2023; 41:1041-1054. [PMID: 36935323 DOI: 10.1016/j.tibtech.2023.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023]
Abstract
Membrane scaffold protein nanodiscs (MSPNDs) are an invaluable tool for improving purified membrane protein (MP) stability and activity compared to traditional micellar methods, thus enabling an increase in high-resolution MP structures, particularly in concert with cryogenic electron microscopy (cryo-EM) approaches. In this review we highlight recent advances and breakthroughs in MSPND methodology and applications. We also introduce and discuss saposin-lipoprotein nanoparticles (salipros) and copolymer nanodiscs which have recently emerged as authentic MSPND alternatives. We compare the advantages and disadvantages of MSPNDs, salipros, and copolymer nanodisc technologies to highlight potential opportunities for using each platform for MP purification and characterization.
Collapse
Affiliation(s)
- John M Pettersen
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Yaxin Yang
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Trinh TKH, Cabezas AJ, Joshi S, Catalano C, Siddique AB, Qiu W, Deshmukh S, des Georges A, Guo Y. pH-tunable membrane-active polymers, NCMNP2a- x, and their potential membrane protein applications. Chem Sci 2023; 14:7310-7326. [PMID: 37416719 PMCID: PMC10321531 DOI: 10.1039/d3sc01890c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/30/2023] [Indexed: 07/08/2023] Open
Abstract
Accurate 3D structures of membrane proteins are essential for comprehending their mechanisms of action and designing specific ligands to modulate their activities. However, these structures are still uncommon due to the involvement of detergents in the sample preparation. Recently, membrane-active polymers have emerged as an alternative to detergents, but their incompatibility with low pH and divalent cations has hindered their efficacy. Herein, we describe the design, synthesis, characterization, and application of a new class of pH-tunable membrane-active polymers, NCMNP2a-x. The results demonstrated that NCMNP2a-x could be used for high-resolution single-particle cryo-EM structural analysis of AcrB in various pH conditions and can effectively solubilize BcTSPO with the function preserved. Molecular dynamic simulation is consistent with experimental data that shed great insights into the working mechanism of this class of polymers. These results demonstrated that NCMNP2a-x might have broad applications in membrane protein research.
Collapse
Affiliation(s)
- Thi Kim Hoang Trinh
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Andres Jorge Cabezas
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York New York New York 10017 USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York New York New York 10017 USA
| | - Soumil Joshi
- Department of Chemical Engineering, Virginia Tech Blacksburg VA2 4060 USA
| | - Claudio Catalano
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Abu Bakkar Siddique
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Weihua Qiu
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| | - Sanket Deshmukh
- Department of Chemical Engineering, Virginia Tech Blacksburg VA2 4060 USA
| | - Amedee des Georges
- Structural Biology Initiative, CUNY Advanced Science Research Center, City University of New York New York New York 10017 USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York New York New York 10017 USA
- Department of Chemistry & Biochemistry, City College of New York New York New York 10017 USA
| | - Youzhong Guo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond VA 23298 USA
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy, Virginia Commonwealth University Richmond VA 23219 USA
| |
Collapse
|
12
|
Krishnarjuna B, Marte J, Ravula T, Ramamoorthy A. Enhancing the stability and homogeneity of non-ionic polymer nanodiscs by tuning electrostatic interactions. J Colloid Interface Sci 2023; 634:887-896. [PMID: 36566634 PMCID: PMC10838601 DOI: 10.1016/j.jcis.2022.12.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The nanodisc technology is increasingly used for structural studies on membrane proteins and drug delivery. The development of synthetic polymer nanodiscs and the recent discovery of non-ionic inulin-based polymers have significantly broadened the scope of nanodiscs. While the lipid exchange and size flexibility properties of the self-assembled polymer-based nanodiscs are valuable for various applications, the non-ionic polymer nanodiscs are remarkably unique in that they enable the reconstitution of any protein, protein-protein complexes, or drugs irrespective of their charge. However, the non-ionic nature of the belt could influence the stability and size homogeneity of inulin-based polymer nanodiscs. In this study, we investigate the size stability and homogeneity of nanodiscs formed by non-ionic lipid-solubilizing polymers using different biophysical methods. Polymer nanodiscs containing zwitterionic DMPC and different ratios of DMPC:DMPG lipids were made using anionic SMA-EA or non-ionic pentyl-inulin polymers. Non-ionic polymer nanodiscs made using zwitterionic DMPC lipids produced a very broad elution profile on SEC due to their instability in the column, thus affecting sample monodispersity which was confirmed by DLS experiments that showed multiple peaks. However, the inclusion of anionic DMPG lipids improved the stability as observed from SEC and DLS profiles, which was further confirmed by TEM images. Whereas, anionic SMA-EA-based DMPC-nanodiscs showed excellent stability and size homogeneity when solubilizing zwitterionic lipids. The stability of DMPC:DMPG non-ionic polymer nanodiscs is attributed to the inter-nanodisc repulsion by the anionic-DMPG that prevents the uncontrolled collision and fusion of nanodiscs. Thus, the reported results demonstrate the use of electrostatic interactions to tune the solubility, stability, and size homogeneity of non-ionic polymer nanodiscs which are important features for enabling functional and atomic-resolution structural studies of membrane proteins, other lipid-binding molecules, and water-soluble biomolecules including cytosolic proteins, nucleic acids and metabolites.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Joseph Marte
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
13
|
Johansen NT, Tidemand FG, Pedersen MC, Arleth L. Travel light: Essential packing for membrane proteins with an active lifestyle. Biochimie 2023; 205:3-26. [PMID: 35963461 DOI: 10.1016/j.biochi.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
We review the considerable progress during the recent decade in the endeavours of designing, optimising, and utilising carrier particle systems for structural and functional studies of membrane proteins in near-native environments. New and improved systems are constantly emerging, novel studies push the perceived limits of a given carrier system, and specific carrier systems consolidate and entrench themselves as the system of choice for particular classes of target membrane protein systems. This review covers the most frequently used carrier systems for such studies and emphasises similarities and differences between these systems as well as current trends and future directions for the field. Particular interest is devoted to the biophysical properties and membrane mimicking ability of each system and the manner in which this may impact an embedded membrane protein and an eventual structural or functional study.
Collapse
Affiliation(s)
- Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark.
| | - Frederik Grønbæk Tidemand
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Martin Cramer Pedersen
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| | - Lise Arleth
- Condensed Matter Physics, Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, Copenhagen E, 2100, Denmark
| |
Collapse
|
14
|
Sawczyc H, Heit S, Watts A. A comparative characterisation of commercially available lipid-polymer nanoparticles formed from model membranes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:39-51. [PMID: 36786921 PMCID: PMC10039845 DOI: 10.1007/s00249-023-01632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
From the discovery of the first membrane-interacting polymer, styrene maleic-acid (SMA), there has been a rapid development of membrane solubilising polymers. These new polymers can solubilise membranes under a wide range of conditions and produce varied sizes of nanoparticles, yet there has been a lack of broad comparison between the common polymer types and solubilising conditions. Here, we present a comparative study on the three most common commercial polymers: SMA 3:1, SMA 2:1, and DIBMA. Additionally, this work presents, for the first time, a comparative characterisation of polymethacrylate copolymer (PMA). Absorbance and dynamic light scattering measurements were used to evaluate solubilisation across key buffer conditions in a simple, adaptable assay format that looked at pH, salinity, and divalent cation concentration. Lipid-polymer nanoparticles formed from SMA variants were found to be the most susceptible to buffer effects, with nanoparticles from either zwitterionic DMPC or POPC:POPG (3:1) bilayers only forming in low to moderate salinity (< 600 mM NaCl) and above pH 6. DIBMA-lipid nanoparticles could be formed above a pH of 5 and were stable in up to 4 M NaCl. Similarly, PMA-lipid nanoparticles were stable in all NaCl concentrations tested (up to 4 M) and a broad pH range (3-10). However, for both DIBMA and PMA nanoparticles there is a severe penalty observed for bilayer solubilisation in non-optimal conditions or when using a charged membrane. Additionally, lipid fluidity of the DMPC-polymer nanoparticles was analysed through cw-EPR, showing no cooperative gel-fluid transition as would be expected for native-like lipid membranes.
Collapse
Affiliation(s)
- Henry Sawczyc
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Sabine Heit
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
15
|
Janson K, Kyrilis FL, Tüting C, Alfes M, Das M, Träger TK, Schmidt C, Hamdi F, Vargas C, Keller S, Meister A, Kastritis PL. Cryo-Electron Microscopy Snapshots of Eukaryotic Membrane Proteins in Native Lipid-Bilayer Nanodiscs. Biomacromolecules 2022; 23:5084-5094. [PMID: 36399657 DOI: 10.1021/acs.biomac.2c00935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
New technologies for purifying membrane-bound protein complexes in combination with cryo-electron microscopy (EM) have recently allowed the exploration of such complexes under near-native conditions. In particular, polymer-encapsulated nanodiscs enable the study of membrane proteins at high resolution while retaining protein-protein and protein-lipid interactions within a lipid bilayer. However, this powerful technology has not been exploited to address the important question of how endogenous─as opposed to overexpressed─membrane proteins are organized within a lipid environment. In this work, we demonstrate that biochemical enrichment protocols for native membrane-protein complexes from Chaetomium thermophilum in combination with polymer-based lipid-bilayer nanodiscs provide a substantial improvement in the quality of recovered endogenous membrane-protein complexes. Mass spectrometry results revealed ∼1123 proteins, while multiple 2D class averages and two 3D reconstructions from cryo-EM data furnished prominent structural signatures. This integrated methodological approach to enriching endogenous membrane-protein complexes provides unprecedented opportunities for a deeper understanding of eukaryotic membrane proteomes.
Collapse
Affiliation(s)
- Kevin Janson
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale 06120, Germany
| | - Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale 06120, Germany
| | - Christian Tüting
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale 06120, Germany
| | - Marie Alfes
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale 06120, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale 06120, Germany
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, Kaiserslautern 67663, Germany
| | - Toni K Träger
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale 06120, Germany
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale 06120, Germany
| | - Carla Schmidt
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale 06120, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale 06120, Germany
| | - Farzad Hamdi
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale 06120, Germany
| | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, Kaiserslautern 67663, Germany
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Straße 13, Kaiserslautern 67663, Germany
- Biophysics, Institute of Molecular Bioscience (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz 8010, Austria
- BioTechMed-Graz, Graz 8010, Austria
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale 06120, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale 06120, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, Halle/Saale 06120, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle/Saale 06120, Germany
| |
Collapse
|
16
|
Krishnarjuna B, Ravula T, Faison EM, Tonelli M, Zhang Q, Ramamoorthy A. Polymer-Nanodiscs as a Novel Alignment Medium for High-Resolution NMR-Based Structural Studies of Nucleic Acids. Biomolecules 2022; 12:1628. [PMID: 36358983 PMCID: PMC9687133 DOI: 10.3390/biom12111628] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Residual dipolar couplings (RDCs) are increasingly used for high-throughput NMR-based structural studies and to provide long-range angular constraints to validate and refine structures of various molecules determined by X-ray crystallography and NMR spectroscopy. RDCs of a given molecule can be measured in an anisotropic environment that aligns in an external magnetic field. Here, we demonstrate the first application of polymer-based nanodiscs for the measurement of RDCs from nucleic acids. Polymer-based nanodiscs prepared using negatively charged SMA-EA polymer and zwitterionic DMPC lipids were characterized by size-exclusion chromatography, 1H NMR, dynamic light-scattering, and 2H NMR. The magnetically aligned polymer-nanodiscs were used as an alignment medium to measure RDCs from a 13C/15N-labeled fluoride riboswitch aptamer using 2D ARTSY-HSQC NMR experiments. The results showed that the alignment of nanodiscs is stable for nucleic acids and nanodisc-induced RDCs fit well with the previously determined solution structure of the riboswitch. These results demonstrate that SMA-EA-based lipid-nanodiscs can be used as a stable alignment medium for high-resolution structural and dynamical studies of nucleic acids, and they can also be applicable to study various other biomolecules and small molecules in general.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edgar M. Faison
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qi Zhang
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Glueck D, Grethen A, Das M, Mmeka OP, Patallo EP, Meister A, Rajender R, Kins S, Räschle M, Victor J, Chu C, Etzkorn M, Köck Z, Bernhard F, Babalola JO, Vargas C, Keller S. Electroneutral Polymer Nanodiscs Enable Interference-Free Probing of Membrane Proteins in a Lipid-Bilayer Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202492. [PMID: 36228092 DOI: 10.1002/smll.202202492] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Membrane proteins can be examined in near-native lipid-bilayer environments with the advent of polymer-encapsulated nanodiscs. These nanodiscs self-assemble directly from cellular membranes, allowing in vitro probing of membrane proteins with techniques that have previously been restricted to soluble or detergent-solubilized proteins. Often, however, the high charge densities of existing polymers obstruct bioanalytical and preparative techniques. Thus, the authors aim to fabricate electroneutral-yet water-soluble-polymer nanodiscs. By attaching a sulfobetaine group to the commercial polymers DIBMA and SMA(2:1), these polyanionic polymers are converted to the electroneutral maleimide derivatives, Sulfo-DIBMA and Sulfo-SMA(2:1). Sulfo-DIBMA and Sulfo-SMA(2:1) readily extract proteins and phospholipids from artificial and cellular membranes to form nanodiscs. Crucially, the electroneutral nanodiscs avert unspecific interactions, thereby enabling new insights into protein-lipid interactions through lab-on-a-chip detection and in vitro translation of membrane proteins. Finally, the authors create a library comprising thousands of human membrane proteins and use proteome profiling by mass spectrometry to show that protein complexes are preserved in electroneutral nanodiscs.
Collapse
Affiliation(s)
- David Glueck
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Anne Grethen
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Manabendra Das
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Ogochukwu Patricia Mmeka
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Department of Chemistry, University of Ibadan, Ibadan, 200284, Nigeria
| | - Eugenio Pérez Patallo
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Annette Meister
- HALOmem and Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Ritu Rajender
- Human Biology, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Stefan Kins
- Human Biology, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, Technische Universität Kaiserslautern (TUK), Paul-Ehrlich-Str. 24, 67663, Kaiserslautern, Germany
| | - Julian Victor
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Ci Chu
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Manuel Etzkorn
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Zoe Köck
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - Frank Bernhard
- Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | | | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663, Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, Graz, 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
18
|
Janata M, Čadová E, Angelisová P, Charnavets T, Hořejší V, Raus V. Tailoring Butyl Methacrylate/Methacrylic Acid Copolymers for the Solubilization of Membrane Proteins: The Influence of Composition and Molecular Weight. Macromol Biosci 2022; 22:e2200284. [PMID: 35964154 DOI: 10.1002/mabi.202200284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Low-molecular weight (MW) amphiphilic copolymers have been recently introduced as a powerful tool for the detergent-free isolation of cell membrane proteins. Herein, we use a screening approach to identify a new copolymer type for this application. Via a two-step ATRP/acidolysis procedure, we prepare a 3×3 matrix of well-defined poly[(butyl methacrylate)-co-(methacrylic acid)] copolymers (denoted BMAA) differing in their MW and ratio of hydrophobic (BMA) and hydrophilic (MAA) units. Subsequently, using the biologically relevant model (T-cell line Jurkat), we identify two compositions of BMAA copolymers that solubilize cell membranes to an extent comparable to the industry standard, styrene-maleic acid copolymer (SMA), while avoiding the potentially problematic phenyl groups. Surprisingly, while only the lowest-MW variant of the BMA/MAA 2:1 composition is effective, all the copolymers of the BMA/MAA 1:1 composition are found to solubilize the model membranes, including the high-MW variant (MW of 14 000). Importantly, the density gradient ultracentrifugation/SDS PAGE/Western blotting experiments reveal that the BMA/MAA 1:1 copolymers disintegrate the Jurkat membranes differently than SMA, as demonstrated by the different distribution patterns of two tested membrane protein markers. This makes the BMAA copolymers a useful tool for studies on membrane microdomains differing in their composition and resistance to membrane-disintegrating polymers. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 06, Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 06, Czech Republic
| | - Pavla Angelisová
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic
| | - Tatsiana Charnavets
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic.,T. Charnavets, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Průmyslová 595, Vestec, CZ-25242, Czech Republic
| | - Václav Hořejší
- Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 142 20, Czech Republic
| | - Vladimír Raus
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6, 162 06, Czech Republic
| |
Collapse
|
19
|
Krishnarjuna B, Ramamoorthy A. Detergent-Free Isolation of Membrane Proteins and Strategies to Study Them in a Near-Native Membrane Environment. Biomolecules 2022; 12:1076. [PMID: 36008970 PMCID: PMC9406181 DOI: 10.3390/biom12081076] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Atomic-resolution structural studies of membrane-associated proteins and peptides in a membrane environment are important to fully understand their biological function and the roles played by them in the pathology of many diseases. However, the complexity of the cell membrane has severely limited the application of commonly used biophysical and biochemical techniques. Recent advancements in NMR spectroscopy and cryoEM approaches and the development of novel membrane mimetics have overcome some of the major challenges in this area. For example, the development of a variety of lipid-nanodiscs has enabled stable reconstitution and structural and functional studies of membrane proteins. In particular, the ability of synthetic amphipathic polymers to isolate membrane proteins directly from the cell membrane, along with the associated membrane components such as lipids, without the use of a detergent, has opened new avenues to study the structure and function of membrane proteins using a variety of biophysical and biological approaches. This review article is focused on covering the various polymers and approaches developed and their applications for the functional reconstitution and structural investigation of membrane proteins. The unique advantages and limitations of the use of synthetic polymers are also discussed.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry and Biophysics, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
20
|
Liang M, Liu D, Nie Y, Liu Y, Qiao X. Exploiting styrene-maleic acid copolymer grafting chromatographic stationary phase materials for separation of membrane lipids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Catania R, Machin J, Rappolt M, Muench SP, Beales PA, Jeuken LJC. Detergent-Free Functionalization of Hybrid Vesicles with Membrane Proteins Using SMALPs. Macromolecules 2022; 55:3415-3422. [PMID: 35571225 PMCID: PMC9097535 DOI: 10.1021/acs.macromol.2c00326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Indexed: 11/28/2022]
Abstract
![]()
Hybrid
vesicles (HVs) that consist of mixtures of block copolymers
and lipids are robust biomimetics of liposomes, providing a valuable
building block in bionanotechnology, catalysis, and synthetic biology.
However, functionalization of HVs with membrane proteins remains laborious
and expensive, creating a significant current challenge in the field.
Here, using a new approach of extraction with styrene-maleic acid
(SMA), we show that a membrane protein (cytochrome bo3) directly transfers into HVs with an efficiency of 73.9
± 13.5% without the requirement of detergent, long incubation
times, or mechanical disruption. Direct transfer of membrane proteins
using this approach was not possible into liposomes, suggesting that
HVs are more amenable than liposomes to membrane protein incorporation
from a SMA lipid particle system. Finally, we show that this transfer
method is not limited to cytochrome bo3 and can also be performed with complex membrane protein mixtures.
Collapse
Affiliation(s)
- Rosa Catania
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Jonathan Machin
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Stephen P. Muench
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Paul A. Beales
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Lars J. C. Jeuken
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
- Leiden Institute of Chemistry, University Leiden, Leiden 2300RA, The Netherlands
| |
Collapse
|
22
|
Neville GM, Edler KJ, Price GJ. Fluorescent styrene maleic acid copolymers to facilitate membrane protein studies in lipid nanodiscs. NANOSCALE 2022; 14:5689-5693. [PMID: 35315461 DOI: 10.1039/d1nr07230g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fluorescently-labelled variants of poly(styrene-co-maleic acid), SMA, have been synthesised by RAFT copolymerisation. We show that low ratios of vinyl fluorophores, analogous to styrene, can be successfully incorporated during polymerisation without detriment to nanodisc formation upon interaction with lipids. These novel copolymers are capable of encapuslating lipids and the model membrane protein, gramicidin, and hence have the potential to be applied in fluorescence-based biological studies. To demonstrate this, energy transfer is used to probe polymer-protein interactions in nanodiscs. The copolymers may also be used to monitor nanodisc self assembly by exploiting aggregation-caused-quenching (ACQ).
Collapse
Affiliation(s)
| | - Karen J Edler
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Gareth J Price
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
23
|
Hall SCL, Tognoloni C, Campbell RA, Richens J, O'Shea P, Terry AE, Price GJ, Dafforn TR, Edler KJ, Arnold T. The interaction of styrene maleic acid copolymers with phospholipids in Langmuir monolayers, vesicles and nanodiscs; a structural study. J Colloid Interface Sci 2022; 625:220-236. [PMID: 35716617 DOI: 10.1016/j.jcis.2022.03.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 10/31/2022]
Abstract
HYPOTHESIS Self-assembly of amphipathic styrene maleic acid copolymers with phospholipids in aqueous solution results in the formation of 'nanodiscs' containing a planar segment of phospholipid bilayer encapsulated by a polymer belt. Recently, studies have reported that lipids rapidly exchange between both nanodiscs in solution and external sources of lipids. Outstanding questions remain regarding details of polymer-lipid interactions, factors influencing lipid exchange and structural effects of such exchange processes. Here, the dynamic behaviour of nanodiscs is investigated, specifically the role of membrane charge and polymer chemistry. EXPERIMENTS Two model systems are investigated: fluorescently labelled phospholipid vesicles, and Langmuir monolayers of phospholipids. Using fluorescence spectroscopy and time-resolved neutron reflectometry, the membrane potential, monolayer structure and composition are monitored with respect to time upon polymer and nanodisc interactions. FINDINGS In the presence of external lipids, polymer chains embed throughout lipid membranes, the extent of which is governed by the net membrane charge. Nanodiscs stabilised by three different polymers will all exchange lipids and polymer with monolayers to differing extents, related to the properties of the stabilising polymer belt. These results demonstrate the dynamic nature of nanodiscs which interact with the local environment and are likely to deposit both lipids and polymer at all stages of use.
Collapse
Affiliation(s)
- Stephen C L Hall
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK; Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 ODE, UK; ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK.
| | - Cecilia Tognoloni
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Richard A Campbell
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, UK
| | - Joanna Richens
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Paul O'Shea
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK; Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YG, UK
| | - Ann E Terry
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Gareth J Price
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Thomas Arnold
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK; ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK; Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK; European Spallation Source ERIC, P.O Box 176, SE-221 00 Lund, Sweden
| |
Collapse
|
24
|
Morrison KA, Wood L, Edler KJ, Doutch J, Price GJ, Koumanov F, Whitley P. Membrane extraction with styrene-maleic acid copolymer results in insulin receptor autophosphorylation in the absence of ligand. Sci Rep 2022; 12:3532. [PMID: 35241773 PMCID: PMC8894449 DOI: 10.1038/s41598-022-07606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
Extraction of integral membrane proteins with poly(styrene-co-maleic acid) provides a promising alternative to detergent extraction. A major advantage of extraction using copolymers rather than detergent is the retention of the lipid bilayer around the proteins. Here we report the first functional investigation of the mammalian insulin receptor which was extracted from cell membranes using poly(styrene-co-maleic acid). We found that the copolymer efficiently extracted the insulin receptor from 3T3L1 fibroblast membranes. Surprisingly, activation of the insulin receptor and proximal downstream signalling was detected upon copolymer extraction even in the absence of insulin stimulation. Insulin receptor and IRS1 phosphorylations were above levels measured in the control extracts made with detergents. However, more distal signalling events in the insulin signalling cascade, such as the phosphorylation of Akt were not observed. Following copolymer extraction, in vitro addition of insulin had no further effect on insulin receptor or IRS1 phosphorylation. Therefore, under our experimental conditions, the insulin receptor is not functionally responsive to insulin. This study is the first to investigate receptor tyrosine kinases extracted from mammalian cells using a styrene-maleic acid copolymer and highlights the importance of thorough functional characterisation when using this method of protein extraction.
Collapse
Affiliation(s)
- Kerrie A Morrison
- Department of Biology and Biochemistry, University of Bath, Bath, UK.,Department of Chemistry, University of Bath, Bath, UK.,Centre for Sustainable Circular Technologies, University of Bath, Bath, UK
| | - Laura Wood
- Department of Biology and Biochemistry, University of Bath, Bath, UK.,Department for Health, Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK
| | - Karen J Edler
- Department of Chemistry, University of Bath, Bath, UK
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
| | - Gareth J Price
- Department of Chemistry, University of Bath, Bath, UK.,Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Francoise Koumanov
- Department for Health, Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, UK.
| | - Paul Whitley
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
25
|
Danielczak B, Rasche M, Lenz J, Pérez Patallo E, Weyrauch S, Mahler F, Agbadaola MT, Meister A, Babalola JO, Vargas C, Kolar C, Keller S. A bioinspired glycopolymer for capturing membrane proteins in native-like lipid-bilayer nanodiscs. NANOSCALE 2022; 14:1855-1867. [PMID: 35040850 DOI: 10.1039/d1nr03811g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Amphiphilic copolymers that directly extract membrane proteins and lipids from cellular membranes to form nanodiscs combine the advantages of harsher membrane mimics with those of a native-like membrane environment. Among the few commercial polymers that are capable of forming nanodiscs, alternating diisobutylene/maleic acid (DIBMA) copolymers have gained considerable popularity as gentle and UV-transparent alternatives to aromatic polymers. However, their moderate hydrophobicities and high electric charge densities render all existing aliphatic copolymers rather inefficient under near-physiological conditions. Here, we introduce Glyco-DIBMA, a bioinspired glycopolymer that possesses increased hydrophobicity and reduced charge density but nevertheless retains excellent solubility in aqueous solutions. Glyco-DIBMA outperforms established aliphatic copolymers in that it solubilizes lipid vesicles of various compositions much more efficiently, thereby furnishing smaller, more narrowly distributed nanodiscs that preserve a bilayer architecture and exhibit rapid lipid exchange. We demonstrate the superior performance of Glyco-DIBMA in preparative and analytical applications by extracting a broad range of integral membrane proteins from cellular membranes and further by purifying a membrane-embedded voltage-gated K+ channel, which was fluorescently labeled and analyzed with the aid of microfluidic diffusional sizing (MDS) directly within native-like lipid-bilayer nanodiscs.
Collapse
Affiliation(s)
- Bartholomäus Danielczak
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Marie Rasche
- Glycon Biochemicals GmbH, Im Biotechnologiepark TGZ 1, 14943 Luckenwalde, Germany
| | - Julia Lenz
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Eugenio Pérez Patallo
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Sophie Weyrauch
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
| | - Michael Tope Agbadaola
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
- Department of Chemistry, University of Ibadan, 200284, Ibadan, Nigeria
| | - Annette Meister
- Institute of Biochemistry and Biotechnology, and ZIK HALOmem, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | | | - Carolyn Vargas
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Cenek Kolar
- Glycon Biochemicals GmbH, Im Biotechnologiepark TGZ 1, 14943 Luckenwalde, Germany
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Erwin-Schrödinger-Str. 13, 67663 Kaiserslautern, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Humboldtstr. 50/III, 8010 Graz, Austria.
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
26
|
Orekhov PS, Bozdaganyan ME, Voskoboynikova N, Mulkidjanian AY, Karlova MG, Yudenko A, Remeeva A, Ryzhykau YL, Gushchin I, Gordeliy VI, Sokolova OS, Steinhoff HJ, Kirpichnikov MP, Shaitan KV. Mechanisms of Formation, Structure, and Dynamics of Lipoprotein Discs Stabilized by Amphiphilic Copolymers: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:361. [PMID: 35159706 PMCID: PMC8838559 DOI: 10.3390/nano12030361] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
Abstract
Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment. In recent years, copolymer-encased nanolipoparticles have been proven as suitable protein carriers for various structural biology applications, including cryo-electron microscopy (cryo-EM), small-angle scattering, and conventional and single-molecule X-ray diffraction experiments. Here, we review the current understanding of how such nanolipoparticles are formed and organized at the molecular level with an emphasis on their chemical diversity and factors affecting their size and solubilization efficiency.
Collapse
Affiliation(s)
- Philipp S. Orekhov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- Institute of Personalized Medicine, Sechenov University, 119146 Moscow, Russia
| | - Marine E. Bozdaganyan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia Voskoboynikova
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
| | - Armen Y. Mulkidjanian
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria G. Karlova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
| | - Anna Yudenko
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Yury L. Ryzhykau
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
| | - Valentin I. Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia; (A.Y.); (A.R.); (Y.L.R.); (I.G.); (V.I.G.)
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, 38000 Grenoble, France
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Olga S. Sokolova
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China
| | - Heinz-Jürgen Steinhoff
- Department of Physics, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany; (N.V.); (A.Y.M.); (H.-J.S.)
| | - Mikhail P. Kirpichnikov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Konstantin V. Shaitan
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (M.E.B.); (M.G.K.); (O.S.S.); (M.P.K.)
| |
Collapse
|
27
|
Ravula T, Ramamoorthy A. Measurement of Residual Dipolar Couplings Using Magnetically Aligned and Flipped Nanodiscs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:244-252. [PMID: 34965145 PMCID: PMC9575995 DOI: 10.1021/acs.langmuir.1c02449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Recent developments in lipid nanodisc technology have successfully overcome the major challenges in the structural and functional studies of membrane proteins and drug delivery. Among the different types of nanodiscs, the use of synthetic amphiphilic polymers created new directions including the applications of solution and solid-state NMR spectroscopy. The ability to magnetically align large-size (>20 nm diameter) polymer nanodiscs and flip them using paramagnetic lanthanide ions has enabled high-resolution studies on membrane proteins using solid-state NMR techniques. The use of polymer-based macro-nanodiscs (>20 nm diameter) as an alignment medium to measure residual dipolar couplings (RDCs) and residual quadrupole couplings by NMR experiments has also been demonstrated. In this study, we demonstrate the use of magnetically aligned and 90°-flipped polymer nanodiscs as alignment media for structural studies on proteins by solution NMR spectroscopy. These macro-nanodiscs, composed of negatively charged SMA-EA polymers and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids, were used to measure residual 1H-15N dipolar couplings (RDCs) from the water-soluble ∼21 kDa uniformly 15N-labeled flavin mononucleotide binding domain (FBD) of cytochrome-P450 reductase. The experimentally measured 1H-15N RDC values are compared with the values calculated from the crystal structures of cytochrome-P450 reductase that lacks the transmembrane domain. The N-H RDCs measured using aligned and 90°-flipped nanodiscs show a modulation by the function (3 cos2 θ - 1), where θ is the angle between the N-H bond vector and the applied magnetic field direction. This successful demonstration of the use of two orthogonally oriented alignment media should enable structural studies on a variety of systems including small molecules, DNA, and RNA.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
- National Magnetic Resonance Facility at Madison, Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
- Corresponding author’s
| |
Collapse
|
28
|
Broadbent L, Depping P, Lodé A, Vaitsopoulou A, Hardy D, Ayub H, Mitchell-White J, Kerr ID, Goddard AD, Bill RM, Rothnie AJ. Detergent-Free Membrane Protein Purification Using SMA Polymer. Methods Mol Biol 2022; 2507:389-404. [PMID: 35773594 DOI: 10.1007/978-1-0716-2368-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One of the big challenges for the study of structure and function of membrane proteins is the need to extract them from the membrane. Traditionally this was achieved using detergents which disrupt the membrane and form a micelle around the protein, but this can cause issues with protein function and/or stability. In 2009 an alternative approach was reported, using styrene maleic acid (SMA) copolymer to extract small discs of lipid bilayer encapsulated by the polymer and termed SMALPs (SMA lipid particles). Since then this approach has been shown to work for a range of different proteins from many different expression systems. It allows the extraction and purification of a target protein while maintaining a lipid bilayer environment. Recently this has led to several new high-resolution structures and novel insights to function. As with any method there are some limitations and issues to be aware of. Here we describe a standard protocol for preparation of the polymer and its use for membrane protein purification, and also include details of typical challenges that may be encountered and possible ways to address those.
Collapse
Affiliation(s)
- Luke Broadbent
- College of Health & Life Sciences, Aston University, Birmingham, UK
| | - Peer Depping
- College of Health & Life Sciences, Aston University, Birmingham, UK
| | - Alexis Lodé
- College of Health & Life Sciences, Aston University, Birmingham, UK
| | | | - David Hardy
- College of Health & Life Sciences, Aston University, Birmingham, UK
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Hoor Ayub
- College of Health & Life Sciences, Aston University, Birmingham, UK
- Faculty of Health & Life Sciences, Coventry University, Coventry, UK
| | - James Mitchell-White
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Alan D Goddard
- College of Health & Life Sciences, Aston University, Birmingham, UK
| | - Roslyn M Bill
- College of Health & Life Sciences, Aston University, Birmingham, UK
| | - Alice J Rothnie
- College of Health & Life Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
29
|
Dimitrova VS, Song S, Karagiaridi A, Marand A, Pinkett HW. Detergent Alternatives: Membrane Protein Purification Using Synthetic Nanodisc Polymers. Methods Mol Biol 2022; 2507:375-387. [PMID: 35773593 PMCID: PMC9361707 DOI: 10.1007/978-1-0716-2368-8_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of styrene maleic acid (SMA) and diisobutylene maleic acid (DIBMA) copolymers provides an alternative to traditional detergent extraction of integral membrane proteins. By inserting into the membrane, these polymers can extract membrane proteins along with lipids in the form of native nanodiscs made by poly(styrene co-maleic anhydride) derivatives. Unlike detergent solubilization, where membrane proteins may lose annular lipids necessary for proper folding and stability, native nanodiscs allow for proteins to reside in the natural lipid environment. In addition, polymer-based nanodiscs can be purified using common chromatography methods similar to protocols established with detergent solubilization purification. Here we describe the solubilization screening and purification of an integral membrane protein using several commercial copolymers.
Collapse
Affiliation(s)
| | - Saemee Song
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- Department of Infectious Diseases Research, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | | | - Anika Marand
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
30
|
Morrison KA, Doekhie A, Neville GM, Price GJ, Whitley P, Doutch J, Edler KJ. Ab initio reconstruction of small angle scattering data for membrane proteins in copolymer nanodiscs. BBA ADVANCES 2021; 2:100033. [PMID: 37082608 PMCID: PMC10074903 DOI: 10.1016/j.bbadva.2021.100033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Small angle scattering techniques are beginning to be more widely utilised for structural analysis of biological systems. However, applying these techniques to study membrane proteins still remains problematic, due to sample preparation requirements and analysis of the resulting data. The development of styrene-maleic acid co-polymers (SMA) to extract membrane proteins into nanodiscs for further study provides a suitable environment for structural analysis. Methods We use small angle neutron scattering (SANS) with three different contrasts to determine structural information for two different polymer nanodisc-incorporated proteins, Outer membrane protein F (OmpF) and gramicidin. Ab initio modelling was applied to generate protein/lipid structures from the SANS data. Other complementary structural methodologies, such as DLS, CD and TEM were compared alongside this data with known protein crystal structures. Results A single-phase model was constructed for gramicidin-containing nanodiscs, which showed dimer formation in the centre of the nanodisc. For OmpF-nanodiscs we were able to construct a multi-phase model, providing structural information on the protein/lipid and polymer components of the sample. Conclusions Polymer-nanodiscs can provide a suitable platform to investigate certain membrane proteins using SANS, alongside other structural methodologies. However, differences between the published crystal structure and OmpF-nanodiscs were observed, suggesting the nanodisc structure could be altering the folding of the protein. General significance Small angle scattering techniques can provide structural information on the protein and polymer nanodisc without requiring crystallisation of the protein. Additional complementary techniques, such as ab initio modelling, can generate alternative models both the protein and nanodisc system.
Collapse
Affiliation(s)
- Kerrie A. Morrison
- Department of Chemistry, University of Bath, Bath, UK
- Department of Biology and Biochemistry, University of Bath, Bath, UK
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, UK
| | - Aswin Doekhie
- Department of Chemistry, University of Bath, Bath, UK
| | - George M. Neville
- Department of Chemistry, University of Bath, Bath, UK
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, UK
| | - Gareth J. Price
- Department of Chemistry, University of Bath, Bath, UK
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Paul Whitley
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX. UK
| | | |
Collapse
|
31
|
Hawkins OP, Jahromi CPT, Gulamhussein AA, Nestorow S, Bahra T, Shelton C, Owusu-Mensah QK, Mohiddin N, O'Rourke H, Ajmal M, Byrnes K, Khan M, Nahar NN, Lim A, Harris C, Healy H, Hasan SW, Ahmed A, Evans L, Vaitsopoulou A, Akram A, Williams C, Binding J, Thandi RK, Joby A, Guest A, Tariq MZ, Rasool F, Cavanagh L, Kang S, Asparuhov B, Jestin A, Dafforn TR, Simms J, Bill RM, Goddard AD, Rothnie AJ. Membrane protein extraction and purification using partially-esterified SMA polymers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183758. [PMID: 34480878 PMCID: PMC8484863 DOI: 10.1016/j.bbamem.2021.183758] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Styrene maleic acid (SMA) polymers have proven to be very successful for the extraction of membrane proteins, forming SMA lipid particles (SMALPs), which maintain a lipid bilayer around the membrane protein. SMALP-encapsulated membrane proteins can be used for functional and structural studies. The SMALP approach allows retention of important protein-annular lipid interactions, exerts lateral pressure, and offers greater stability than traditional detergent solubilisation. However, SMA polymer does have some limitations, including a sensitivity to divalent cations and low pH, an absorbance spectrum that overlaps with many proteins, and possible restrictions on protein conformational change. Various modified polymers have been developed to try to overcome these challenges, but no clear solution has been found. A series of partially-esterified variants of SMA (SMA 2625, SMA 1440 and SMA 17352) has previously been shown to be highly effective for solubilisation of plant and cyanobacterial thylakoid membranes. It was hypothesised that the partial esterification of maleic acid groups would increase tolerance to divalent cations. Therefore, these partially-esterified polymers were tested for the solubilisation of lipids and membrane proteins, and their tolerance to magnesium ions. It was found that all partially esterified polymers were capable of solubilising and purifying a range of membrane proteins, but the yield of protein was lower with SMA 1440, and the degree of purity was lower for both SMA 1440 and SMA 17352. SMA 2625 performed comparably to SMA 2000. SMA 1440 also showed an increased sensitivity to divalent cations. Thus, it appears the interactions between SMA and divalent cations are more complex than proposed and require further investigation.
Collapse
Affiliation(s)
- Olivia P Hawkins
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | | - Aiman A Gulamhussein
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Stephanie Nestorow
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Taranpreet Bahra
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Christian Shelton
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Quincy K Owusu-Mensah
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Naadiya Mohiddin
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Hannah O'Rourke
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mariam Ajmal
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Kara Byrnes
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Madiha Khan
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Nila N Nahar
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Arcella Lim
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Cassandra Harris
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Hannah Healy
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Syeda W Hasan
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Asma Ahmed
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Lora Evans
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Afroditi Vaitsopoulou
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Aneel Akram
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Chris Williams
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Johanna Binding
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Rumandeep K Thandi
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Aswathy Joby
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ashley Guest
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Mohammad Z Tariq
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Farah Rasool
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Luke Cavanagh
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Simran Kang
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Biser Asparuhov
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Aleksandr Jestin
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - John Simms
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Roslyn M Bill
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alan D Goddard
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Alice J Rothnie
- College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| |
Collapse
|
32
|
Morrison KA, Heesom KJ, Edler KJ, Doutch J, Price GJ, Koumanov F, Whitley P. Development of Methodology to Investigate the Surface SMALPome of Mammalian Cells. Front Mol Biosci 2021; 8:780033. [PMID: 34869600 PMCID: PMC8637157 DOI: 10.3389/fmolb.2021.780033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022] Open
Abstract
Extraction of membrane proteins from biological membranes has traditionally involved detergents. In the past decade, a new technique has been developed, which uses styrene maleic acid (SMA) copolymers to extract membrane proteins into nanodiscs without the requirement of detergents. SMA nanodiscs are compatible with analytical techniques, such as small-angle scattering, NMR spectroscopy, and DLS, and are therefore an attractive medium for membrane protein characterization. While mass spectrometry has also been reported as a technique compatible with copolymer extraction, most studies have focused on lipidomics, which involves solvent extraction of lipids from nanodiscs prior to mass-spectrometry analysis. In this study, mass spectrometry proteomics was used to investigate whether there are qualitative or quantitative differences in the mammalian plasma membrane proteins extracted with SMA compared to a detergent control. For this, cell surface proteins of 3T3L1 fibroblasts were biotinylated and extracted using either SMA or detergent. Following affinity pull-down of biotinylated proteins with NeutrAvidin beads, samples were analyzed by nanoLC-MS. Here, we report for the first time, a global proteomics protocol for detection of a mammalian cell "SMALPome", membrane proteins incorporated into SMA nanodiscs. Removal of SMA from samples prior to processing of samples for mass spectrometry was a crucial step in the protocol. The reported surface SMALPome of 3T3L1 fibroblasts consists of 205 integral membrane proteins. It is apparent that the detergent extraction method used is, in general, quantitatively more efficient at extracting proteins from the plasma membrane than SMA extraction. However, samples prepared following detergent extraction contained a greater proportion of proteins that were considered to be "non-specific" than in samples prepared from SMA extracts. Tantalizingly, it was also observed that proteins detected uniquely or highly preferentially in pull-downs from SMA extracts were primarily multi-spanning membrane proteins. These observations hint at qualitative differences between SMA and detergent extraction that are worthy of further investigation.
Collapse
Affiliation(s)
- Kerrie A. Morrison
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Centre for Sustainable Circular Technologies, University of Bath, Bath, United Kingdom
| | - Kate J. Heesom
- University of Bristol, Proteomics Facility, Bristol, United Kingdom
| | - Karen J. Edler
- Department of Chemistry, University of Bath, Bath, United Kingdom
| | - James Doutch
- Rutherford Appleton Laboratory, ISIS Pulsed Neutron and Muon Source, Harwell Oxford, United Kingdom
| | - Gareth J. Price
- Department of Chemistry, University of Bath, Bath, United Kingdom
- Department of Chemistry, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Paul Whitley
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
33
|
Biophysical characterisation of SMALPs. Biochem Soc Trans 2021; 49:2037-2050. [PMID: 34643233 DOI: 10.1042/bst20201088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022]
Abstract
Membrane proteins such as receptors, ion channels and transport proteins are important drug targets. The structure-based study of membrane proteins is challenging, especially when the target protein contains both soluble and insoluble domains. Most membrane proteins are insoluble in aqueous solvent and embedded in the plasma membrane lipid bilayer, which significantly complicates biophysical studies. Poly(styrene-co-maleic acid) (SMA) and other polymer derivatives are increasingly common solubilisation agents, used to isolate membrane proteins stabilised in their native lipid environment in the total absence of detergent. Since the initial report of SMA-mediated solubilisation, and the formation of SMA lipid particles (SMALPs), this technique can directly isolate therapeutic targets from biological membranes, including G-protein coupled receptors (GPCRs). SMA now allows biophysical and structural analyses of membrane proteins in solution that was not previously possible. Here, we critically review several existing biophysical techniques compatible with SMALPs, with a focus on hydrodynamic analysis, microcalorimetric analysis and optical spectroscopic techniques.
Collapse
|
34
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
35
|
Farrelly MD, Martin LL, Thang SH. Polymer Nanodiscs and Their Bioanalytical Potential. Chemistry 2021; 27:12922-12939. [PMID: 34180107 DOI: 10.1002/chem.202101572] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/21/2022]
Abstract
Membrane proteins (MPs) play a pivotal role in cellular function and are therefore predominant pharmaceutical targets. Although detailed understanding of MP structure and mechanistic activity is invaluable for rational drug design, challenges are associated with the purification and study of MPs. This review delves into the historical developments that became the prelude to currently available membrane mimetic technologies before shining a spotlight on polymer nanodiscs. These are soluble nanosized particles capable of encompassing MPs embedded in a phospholipid ring. The expanding range of reported amphipathic polymer nanodisc materials is presented and discussed in terms of their tolerance to different solution conditions and their nanodisc properties. Finally, the analytical scope of polymer nanodiscs is considered in both the demonstration of basic nanodisc parameters as well as in the elucidation of structures, lipid-protein interactions, and the functional mechanisms of reconstituted membrane proteins. The final emphasis is given to the unique benefits and applications demonstrated for native nanodiscs accessed through a detergent free process.
Collapse
Affiliation(s)
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Vic, Australia
| | - San H Thang
- School of Chemistry, Monash University, Clayton, 3800, Vic, Australia
| |
Collapse
|
36
|
Methods for the solubilisation of membrane proteins: the micelle-aneous world of membrane protein solubilisation. Biochem Soc Trans 2021; 49:1763-1777. [PMID: 34415288 PMCID: PMC8421053 DOI: 10.1042/bst20210181] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022]
Abstract
The solubilisation of membrane proteins (MPs) necessitates the overlap of two contradictory events; the extraction of MPs from their native lipid membranes and their subsequent stabilisation in aqueous environments. Whilst the current myriad of membrane mimetic systems provide a range of modus operandi, there are no golden rules for selecting the optimal pipeline for solubilisation of a specific MP hence a miscellaneous approach must be employed balancing both solubilisation efficiency and protein stability. In recent years, numerous diverse lipid membrane mimetic systems have been developed, expanding the pool of available solubilisation strategies. This review provides an overview of recent developments in the membrane mimetic field, with particular emphasis placed upon detergents, polymer-based nanodiscs and amphipols, highlighting the latest reagents to enter the toolbox of MP research.
Collapse
|
37
|
Grime RL, Logan RT, Nestorow SA, Sridhar P, Edwards PC, Tate CG, Klumperman B, Dafforn TR, Poyner DR, Reeves PJ, Wheatley M. Differences in SMA-like polymer architecture dictate the conformational changes exhibited by the membrane protein rhodopsin encapsulated in lipid nano-particles. NANOSCALE 2021; 13:13519-13528. [PMID: 34477756 PMCID: PMC8359648 DOI: 10.1039/d1nr02419a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Membrane proteins are of fundamental importance to cellular processes and nano-encapsulation strategies that preserve their native lipid bilayer environment are particularly attractive for studying and exploiting these proteins. Poly(styrene-co-maleic acid) (SMA) and related polymers poly(styrene-co-(N-(3-N',N'-dimethylaminopropyl)maleimide)) (SMI) and poly(diisobutylene-alt-maleic acid) (DIBMA) have revolutionised the study of membrane proteins by spontaneously solubilising membrane proteins direct from cell membranes within nanoscale discs of native bilayer called SMA lipid particles (SMALPs), SMILPs and DIBMALPs respectively. This systematic study shows for the first time, that conformational changes of the encapsulated protein are dictated by the solubilising polymer. The photoactivation pathway of rhodopsin (Rho), a G-protein-coupled receptor (GPCR), comprises structurally-defined intermediates with characteristic absorbance spectra that revealed conformational restrictions with styrene-containing SMA and SMI, so that photoactivation proceeded only as far as metarhodopsin-I, absorbing at 478 nm, in a SMALP or SMILP. In contrast, full attainment of metarhodopsin-II, absorbing at 382 nm, was observed in a DIBMALP. Consequently, different intermediate states of Rho could be generated readily by simply employing different SMA-like polymers. Dynamic light-scattering and analytical ultracentrifugation revealed differences in size and thermostability between SMALP, SMILP and DIBMALP. Moreover, encapsulated Rho exhibited different stability in a SMALP, SMILP or DIBMALP. Overall, we establish that SMA, SMI and DIBMA constitute a 'toolkit' of solubilising polymers, so that selection of the appropriate solubilising polymer provides a spectrum of useful attributes for studying membrane proteins.
Collapse
Affiliation(s)
- Rachael L Grime
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Ravula T, Ramamoorthy A. Synthesis, Characterization, and Nanodisc Formation of Non‐ionic Polymers**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Thirupathi Ravula
- Biophysics and Department of Chemistry Biomedical Engineering, Macromolecular Science and Engineering The University of Michigan Ann Arbor MI 48109-1055 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry Biomedical Engineering, Macromolecular Science and Engineering The University of Michigan Ann Arbor MI 48109-1055 USA
| |
Collapse
|
39
|
Esmaili M, Eldeeb MA, Moosavi-Movahedi AA. Current Developments in Native Nanometric Discoidal Membrane Bilayer Formed by Amphipathic Polymers. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1771. [PMID: 34361157 PMCID: PMC8308186 DOI: 10.3390/nano11071771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Unlike cytosolic proteins, membrane proteins (MPs) are embedded within the plasma membrane and the lipid bilayer of intracellular organelles. MPs serve in various cellular processes and account for over 65% of the current drug targets. The development of membrane mimetic systems such as bicelles, short synthetic polymers or amphipols, and membrane scaffold proteins (MSP)-based nanodiscs has facilitated the accommodation of synthetic lipids to stabilize MPs, yet the preparation of these membrane mimetics remains detergent-dependent. Bio-inspired synthetic polymers present an invaluable tool for excision and liberation of superstructures of MPs and their surrounding annular lipid bilayer in the nanometric discoidal assemblies. In this article, we discuss the significance of self-assembling process in design of biomimetic systems, review development of multiple series of amphipathic polymers and the significance of these polymeric "belts" in biomedical research in particular in unraveling the structures, dynamics and functions of several high-value membrane protein targets.
Collapse
Affiliation(s)
- Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Mohamed A. Eldeeb
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada;
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | | |
Collapse
|
40
|
Ravula T, Dai X, Ramamoorthy A. Solid-State NMR Study to Probe the Effects of Divalent Metal Ions (Ca 2+ and Mg 2+) on the Magnetic Alignment of Polymer-Based Lipid Nanodiscs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7780-7788. [PMID: 34129342 PMCID: PMC8587631 DOI: 10.1021/acs.langmuir.1c01018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Divalent cations, especially Ca2+ and Mg2+, play a vital role in the function of biomolecules and making them important to be constituents in samples for in vitro biophysical and biochemical characterizations. Although lipid nanodiscs are becoming valuable tools for structural biology studies on membrane proteins and for drug delivery, most types of nanodiscs used in these studies are unstable in the presence of divalent metal ions. To avoid the interaction of divalent metal ions with the belt of the nanodiscs, synthetic polymers have been designed and demonstrated to form stable lipid nanodiscs under such unstable conditions. Such polymer-based nanodiscs have been shown to provide an ideal platform for structural studies using both solid-state and solution NMR spectroscopies because of the near-native cell-membrane environment they provide and the unique magnetic-alignment behavior of large-size nanodiscs. In this study, we report an investigation probing the effects of Ca2+ and Mg2+ ions on the formation of polymer-based lipid nanodiscs and the magnetic-alignment properties using a synthetic polymer, styrene maleimide quaternary ammonium (SMA-QA), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipids. Phosphorus-31 NMR experiments were used to evaluate the stability of the magnetic-alignment behavior of the nanodiscs for varying concentrations of Ca2+ or Mg2+ at different temperatures. It is remarkable that the interaction of divalent cations with lipid headgroups promotes the stacking up of nanodiscs that results in the enhanced magnetic alignment of nanodiscs. Interestingly, the reported results show that both the temperature and the concentration of divalent metal ions can be optimized to achieve the optimal alignment of nanodiscs in the presence of an applied magnetic field. We expect the reported results to be useful in the design of nanodisc-based nanoparticles for various applications in addition to atomic-resolution structural and dynamics studies using NMR and other biophysical techniques.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Xiaofeng Dai
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
- Xiaofeng Dai was a visiting student from the College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, Biomedical Engineering, and Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
41
|
Ravula T, Ramamoorthy A. Synthesis, Characterization, and Nanodisc Formation of Non-ionic Polymers*. Angew Chem Int Ed Engl 2021; 60:16885-16888. [PMID: 33998111 DOI: 10.1002/anie.202101950] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/05/2021] [Indexed: 12/31/2022]
Abstract
Although lipid nanodiscs are increasingly used in the structural studies of membrane proteins, drug delivery and other applications, the interaction between the nanodisc belt and the protein to be reconstituted is a major limitation. To overcome this limitation and to further broaden the scope of nanodiscs, a family of non-ionic amphiphilic polymers synthesized by hydrophobic functionalization of fructo-oligosaccharides/inulin is reported. We show the stability of lipid nanodiscs formed by these polymers against pH and divalent metal ions, and their magnetic-alignment properties. The reported results also demonstrate that the non-ionic polymers extract membrane proteins with unprecedented efficiency.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI, 48109-1055, USA
| |
Collapse
|
42
|
Overduin M, Trieber C, Prosser RS, Picard LP, Sheff JG. Structures and Dynamics of Native-State Transmembrane Protein Targets and Bound Lipids. MEMBRANES 2021; 11:451. [PMID: 34204456 PMCID: PMC8235241 DOI: 10.3390/membranes11060451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Membrane proteins work within asymmetric bilayers of lipid molecules that are critical for their biological structures, dynamics and interactions. These properties are lost when detergents dislodge lipids, ligands and subunits, but are maintained in native nanodiscs formed using styrene maleic acid (SMA) and diisobutylene maleic acid (DIBMA) copolymers. These amphipathic polymers allow extraction of multicomponent complexes of post-translationally modified membrane-bound proteins directly from organ homogenates or membranes from diverse types of cells and organelles. Here, we review the structures and mechanisms of transmembrane targets and their interactions with lipids including phosphoinositides (PIs), as resolved using nanodisc systems and methods including cryo-electron microscopy (cryo-EM) and X-ray diffraction (XRD). We focus on therapeutic targets including several G protein-coupled receptors (GPCRs), as well as ion channels and transporters that are driving the development of next-generation native nanodiscs. The design of new synthetic polymers and complementary biophysical tools bodes well for the future of drug discovery and structural biology of native membrane:protein assemblies (memteins).
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Catharine Trieber
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - R. Scott Prosser
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON L5L 1C6, Canada; (R.S.P.); (L.-P.P.)
| | - Louis-Philippe Picard
- Department of Chemistry, University of Toronto, UTM, Mississauga, ON L5L 1C6, Canada; (R.S.P.); (L.-P.P.)
| | - Joey G. Sheff
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada;
| |
Collapse
|
43
|
Bjørnestad V, Orwick-Rydmark M, Lund R. Understanding the Structural Pathways for Lipid Nanodisc Formation: How Styrene Maleic Acid Copolymers Induce Membrane Fracture and Disc Formation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6178-6188. [PMID: 33979520 PMCID: PMC8280715 DOI: 10.1021/acs.langmuir.1c00304] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Lipid nanodiscs formed by mixtures of styrene maleic acid (SMA) copolymers and lipid membranes are important tools for studying membrane proteins in many biotechnological applications. However, molecular interactions leading up to their formation are not well understood. Here, we elucidate the nanodisc formation pathways for SMA/lipid vesicle mixtures using small-angle X-ray scattering (SAXS) that allows detailed in situ nanostructural information. SMA copolymer that is initially aggregated in solution inserts its styrene units into the lipid bilayer hydrocarbon region, leading to fractures in the membrane. The initial copolymer-lipid interactions observed in the vesicles are also present in the formed discs, with excess copolymer distributed along the normal of the bilayer. The size and SMA distribution in the resulting discs strongly depend on the temperature, lipid/copolymer ratio, and lipid type. We find that the solubilization limit increases for membranes above the melting point, suggesting that defects in gel-like lipid membranes play a significant role in membrane fracturing and nanodisc formation. These findings provide unique insights into the formation of nanodiscs as well as into the microscopic mechanism of solubilization, which plays an important role in many applications and products ranging from household goods to biotechnology and medicine.
Collapse
Affiliation(s)
| | | | - Reidar Lund
- Department
of Chemistry, University of Oslo, Sem Sælandsvei 26, 0371 Oslo, Norway
| |
Collapse
|
44
|
Brown CJ, Trieber C, Overduin M. Structural biology of endogenous membrane protein assemblies in native nanodiscs. Curr Opin Struct Biol 2021; 69:70-77. [PMID: 33915422 DOI: 10.1016/j.sbi.2021.03.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/11/2021] [Accepted: 03/21/2021] [Indexed: 01/17/2023]
Abstract
The advent of amphiphilic copolymers enables integral membrane proteins to be solubilized into stable 10-30 nm native nanodiscs to resolve their multisubunit structures, post-translational modifications, endogenous lipid bilayers, and small molecule ligands. This breakthrough has positioned biological membrane:protein assemblies (memteins) as fundamental functional units of cellular membranes. Herein, we review copolymer design strategies and methods for the characterization of transmembrane proteins within native nanodiscs by cryo-electron microscopy (cryo-EM), transmission electron microscopy, nuclear magnetic resonance spectroscopy, electron paramagnetic resonance, X-ray diffraction, surface plasmon resonance, and mass spectrometry.
Collapse
Affiliation(s)
- Chanelle J Brown
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, USA
| | - Catharine Trieber
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| |
Collapse
|
45
|
Guo R, Sumner J, Qian S. Structure of Diisobutylene Maleic Acid Copolymer (DIBMA) and Its Lipid Particle as a “Stealth” Membrane-Mimetic for Membrane Protein Research. ACS APPLIED BIO MATERIALS 2021; 4:4760-4768. [DOI: 10.1021/acsabm.0c01626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rong Guo
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Grinnell College, Grinnell, Iowa 50112, United States
| | - Jacob Sumner
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
46
|
Overduin M, Wille H, Westaway D. Multisite interactions of prions with membranes and native nanodiscs. Chem Phys Lipids 2021; 236:105063. [PMID: 33600804 DOI: 10.1016/j.chemphyslip.2021.105063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 02/05/2023]
Abstract
Although prions are known as protein-only infectious particles, they exhibit lipid specificities, cofactor dependencies and membrane-dependent activities. Such membrane interactions play key roles in how prions are processed, presented and regulated, and hence have significant functional consequences. The expansive literature related to prion protein interactions with lipids and native nanodiscs is discussed, and provides a unique opportunity to re-evaluate the molecular composition and mechanisms of its infectious and cellular states. A family of crystal and solution structures of prions are analyzed here for the first time using the membrane optimal docking area (MODA) program, revealling the presence of structured binding elements that could mediate specific lipid recognition. A set of motifs centerred around W99, L125, Y169 and Y226 are consistently predicted as being membrane interactive and form an exposed surface which includes α helical, β strand and loop elements involving the prion protein (PrP) structural domain, while the scrapie form is radically different and doubles the size of the membrane interactive site into an extensible surface. These motifs are highly conserved throughout mammalian evolution, suggesting that prions have long been intrinsically attached to membranes at central and N- and C-terminal points, providing several opportunities for stable and specific bilayer interactions as well as multiple complexed orientations. Resistance or susceptibility to prion disease correlates with increased or decreased membrane binding propensity by mutant forms, respectively, indicating a protective role by lipids. The various prion states found in vivo are increasingly resolvable using native nanodiscs formed by styrene maleic acid (SMA) and stilbene maleic acid (STMA) copolymers rather than classical detergents, allowing the endogenous states to be tackled. These copolymers spontaneously fragment intact membranes into water-soluble discs holding a section of native bilayer, and can accommodate prion multimers and mini-fibrils. Such nanodiscs have also proven useful for understanding how β amyloid and α synuclein proteins contribute to Alzheimer's and Parkinson's diseases, providing further biomedical applications. Structural and functional insights of such proteins in styrene maleic acid lipid particles (SMALPs) can be resolved at high resolution by methods including cryo-electron microscopy (cEM), motivating continued progress in polymer design to resolve biological and pathological mechanisms.
Collapse
Affiliation(s)
- Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - David Westaway
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Center for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Sharma P, Plant M, Lam SK, Chen Q. Kinetic analysis of antibody binding to integral membrane proteins stabilized in SMALPs. BBA ADVANCES 2021; 1:100022. [PMID: 37082021 PMCID: PMC10074945 DOI: 10.1016/j.bbadva.2021.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The fundamental importance of membrane protein (MP) targets in central biological and cellular events has driven a marked increase in the use of membrane mimetics for exploring these proteins as therapeutic targets. The main challenge associated with biophysical analysis of membrane protein is the need for detergent extraction from the bilayer environment, which in many cases causes the proteins to become insoluble, unstable or display altered structure or activity. Recent technological advances have tried to limit the exposure of purified membrane protein to detergents. One such method involves the amphipathic co-polymer of styrene and maleic acid (SMA), which can release lipids and integral membrane proteins into water soluble native particles (or vesicles) termed SMALPs (Styrene Maleic Acid Lipid Particles). In this study, assay conditions that leverage SMA for membrane protein stabilization were developed to perform kinetic analysis of antibody binding to integral membrane protein and complexes in SMALPs in both purified and complex mixture settings using multiple biosensor platforms. To develop a robust and flexible platform using SMALPs technology, we optimized various SPR assay formats to analyze SMALPs produced with cell membrane pellets as well as whole cell lysates from the cell lines overexpressing membrane protein of interest. Here we emphasize the extraction of model membrane proteins of diverse architecture and function from native environments to encapsulate with SMALPs. Given the importance of selected membrane targets in central biological events and therapeutic relevance, MP-specific or tag-specific antibodies were used as a proof-of-principal to validate the SMALPs platform for ligand binding studies to support drug discovery or tool generation processes. MP-SMALPs that retain specific binding capability in multiple assay formats and biosensors, such as waveguide interferometry and surface plasmon resonance, would be a versatile platform for a wide range of downstream applications.
Collapse
Affiliation(s)
- Pooja Sharma
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, 91320
- Corresponding author.
| | - Matthew Plant
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Cambridge, MA, 02141
| | - Sheung Kwan Lam
- Biologics, Amgen Research, Amgen Inc., South San Francisco, CA 94080
| | - Qing Chen
- Discovery Attribute Sciences, Amgen Research, Amgen Inc., Thousand Oaks, CA, 91320
| |
Collapse
|
48
|
Chorev DS, Robinson CV. The importance of the membrane for biophysical measurements. Nat Chem Biol 2020; 16:1285-1292. [PMID: 33199903 PMCID: PMC7116504 DOI: 10.1038/s41589-020-0574-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/22/2020] [Indexed: 11/09/2022]
Abstract
Within cell membranes numerous protein assemblies reside. Among their many functions, these assemblies regulate the movement of molecules between membranes, facilitate signaling into and out of cells, allow movement of cells by cell-matrix attachment, and regulate the electric potential of the membrane. With such critical roles, membrane protein complexes are of considerable interest for human health, yet they pose an enduring challenge for structural biologists because it is difficult to study these protein structures at atomic resolution in in situ environments. To advance structural and functional insights for these protein assemblies, membrane mimetics are typically employed to recapitulate some of the physical and chemical properties of the lipid bilayer membrane. However, extraction from native membranes can sometimes change the structure and lipid-binding properties of these complexes, leading to conflicting results and fueling a drive to study complexes directly from native membranes. Here we consider the co-development of membrane mimetics with technological breakthroughs in both cryo-electron microscopy (cryo-EM) and native mass spectrometry (nMS). Together, these developments are leading to a plethora of high-resolution protein structures, as well as new knowledge of their lipid interactions, from different membrane-like environments.
Collapse
Affiliation(s)
- Dror S Chorev
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Lavington S, Watts A. Lipid nanoparticle technologies for the study of G protein-coupled receptors in lipid environments. Biophys Rev 2020; 12:10.1007/s12551-020-00775-5. [PMID: 33215301 PMCID: PMC7755959 DOI: 10.1007/s12551-020-00775-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of integral membrane proteins which conduct a wide range of biological roles and represent significant drug targets. Most biophysical and structural studies of GPCRs have been conducted on detergent-solubilised receptors, and it is clear that detergents can have detrimental effects on GPCR function. Simultaneously, there is increasing appreciation of roles for specific lipids in modulation of GPCR function. Lipid nanoparticles such as nanodiscs and styrene maleic acid lipid particles (SMALPs) offer opportunities to study integral membrane proteins in lipid environments, in a form that is soluble and amenable to structural and biophysical experiments. Here, we review the application of lipid nanoparticle technologies to the study of GPCRs, assessing the relative merits and limitations of each system. We highlight how these technologies can provide superior platforms to detergents for structural and biophysical studies of GPCRs and inform on roles for protein-lipid interactions in GPCR function.
Collapse
Affiliation(s)
- Steven Lavington
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony Watts
- Biochemistry Department, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
50
|
Birch J, Cheruvara H, Gamage N, Harrison PJ, Lithgo R, Quigley A. Changes in Membrane Protein Structural Biology. BIOLOGY 2020; 9:E401. [PMID: 33207666 PMCID: PMC7696871 DOI: 10.3390/biology9110401] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Membrane proteins are essential components of many biochemical processes and are important pharmaceutical targets. Membrane protein structural biology provides the molecular rationale for these biochemical process as well as being a highly useful tool for drug discovery. Unfortunately, membrane protein structural biology is a difficult area of study due to low protein yields and high levels of instability especially when membrane proteins are removed from their native environments. Despite this instability, membrane protein structural biology has made great leaps over the last fifteen years. Today, the landscape is almost unrecognisable. The numbers of available atomic resolution structures have increased 10-fold though advances in crystallography and more recently by cryo-electron microscopy. These advances in structural biology were achieved through the efforts of many researchers around the world as well as initiatives such as the Membrane Protein Laboratory (MPL) at Diamond Light Source. The MPL has helped, provided access to and contributed to advances in protein production, sample preparation and data collection. Together, these advances have enabled higher resolution structures, from less material, at a greater rate, from a more diverse range of membrane protein targets. Despite this success, significant challenges remain. Here, we review the progress made and highlight current and future challenges that will be overcome.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Harish Cheruvara
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Nadisha Gamage
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Peter J. Harrison
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Ryan Lithgo
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| |
Collapse
|