1
|
Zhang R, Yan Z, Gao M, Zheng B, Yue B, Qiu M. Recent advances in two-dimensional materials for drug delivery. J Mater Chem B 2024; 12:12437-12469. [PMID: 39533870 DOI: 10.1039/d4tb01787k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Two-dimensional (2D) materials exhibit significant potential in biomedical applications, particularly as drug carriers. Thus, 2D materials, including graphene, black phosphorus, transition metal dichalcogenides, transition metal carbides/nitrides, and hexagonal boron nitride, have been extensively studied. Their large specific surface area, abundant surface active sites, and excellent biocompatibility and biodegradability make them ideal platforms for drug loading and delivery. By optimizing the physicochemical properties and methods for the surface modification of 2D materials, improved drug release mechanisms and enhanced combination therapy effects can be achieved, providing a reliable foundation for efficient cancer treatment. This review provides a comprehensive analysis of the recent advances in the utilization of 2D materials for drug delivery. It systematically categorizes and summarizes the preparation methodologies, surface modification strategies, application domains, primary advantages and potential drawbacks of various 2D materials in the biomedical field. Furthermore, it provides an extensive overview of current challenges in this field and outlines potential future research directions for 2D materials in drug delivery based on existing issues.
Collapse
Affiliation(s)
- Ranran Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Zichao Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Ming Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
| | - Bingxin Zheng
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China.
| | - Bin Yue
- Department of Orthopedic Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, P. R. China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, P. R. China.
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518060, P. R. China
| |
Collapse
|
2
|
Godakhindi V, Tarannum M, Dam SK, Vivero-Escoto JL. Mesoporous Silica Nanoparticles as an Ideal Platform for Cancer Immunotherapy: Recent Advances and Future Directions. Adv Healthc Mater 2024; 13:e2400323. [PMID: 38653190 PMCID: PMC11305940 DOI: 10.1002/adhm.202400323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cancer immunotherapy recently transforms the traditional approaches against various cancer malignancies. Immunotherapy includes systemic and local treatments to enhance immune responses against cancer and involves strategies such as immune checkpoints, cancer vaccines, immune modulatory agents, mimetic antigen-presenting cells, and adoptive cell therapy. Despite promising results, these approaches still suffer from several limitations including lack of precise delivery of immune-modulatory agents to the target cells and off-target toxicity, among others, that can be overcome using nanotechnology. Mesoporous silica nanoparticles (MSNs) are investigated to improve various aspects of cancer immunotherapy attributed to the advantageous structural features of this nanomaterial. MSNs can be engineered to alter their properties such as size, shape, porosity, surface functionality, and adjuvanticity. This review explores the immunological properties of MSNs and the use of MSNs as delivery vehicles for immune-adjuvants, vaccines, and mimetic antigen-presenting cells (APCs). The review also details the current strategies to remodel the tumor microenvironment to positively reciprocate toward the anti-tumor immune cells and the use of MSNs for immunotherapy in combination with other anti-tumor therapies including photodynamic/thermal therapies to enhance the therapeutic effect against cancer. Last, the present demands and future scenarios for the use of MSNs for cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Varsha Godakhindi
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Mubin Tarannum
- Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Sudip Kumar Dam
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Juan L Vivero-Escoto
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Nanoscale Science Program, The University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| |
Collapse
|
3
|
Zhang H, Lai L, Wang Z, Zhang J, Zhou J, Nie Y, Chen J. Glycogen for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Int J Biol Macromol 2024; 257:128536. [PMID: 38061522 DOI: 10.1016/j.ijbiomac.2023.128536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024]
Abstract
CpG oligodeoxynucleotides (ODNs) strongly activate the immune system after binding to toll-like receptor 9 (TLR9) in lysosome, which demonstrated significant potential in cancer immunotherapy. However, their therapeutic efficacy is limited by drawbacks such as rapid degradation and poor cellular uptake. Although encouraging progress have been made on developing various delivery systems for CpG ODNs, safety risks of the synthetic nanocarriers as well as the deficient CpG ODNs release within lysosome remain big obstacles. Herein, we developed a novel nanovector for lysosome-targeted CpG ODNs delivery and enhanced cancer immunotherapy. Natural glycogen was simply aminated (NH2-Gly) through grafting with diethylenetriamine (DETA), which was spherical in shape with diameter of approximately 40 nm. NH2-Gly possessed good biocompatibility. Cationic NH2-Gly complexed CpG ODNs well and protected them from nuclease digestion. NH2-Gly significantly enhanced the cellular uptake of CpG ODNs. Efficient CpG ODNs release was observed in the presence of α-glucosidase that mimicking the environment of lysosome. Consequently, NH2-Gly/CpG complexes triggered potent antitumor immunity and effectively inhibit the tumor growth without causing any toxic effect or tissue damages. This work highlights the promise of glycogen for lysosome-targeted on-command delivery of CpG ODNs, which brings new hope for precision cancer immunotherapy.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Li Lai
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiqing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jianzhu Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Zhang H, Wang Z, Wang S, Zhang J, Qiu L, Chen J. Aminated yeast β-D-glucan for macrophage-targeted delivery of CpG oligodeoxynucleotides and synergistically enhanced cancer immunotherapy. Int J Biol Macromol 2023; 253:126998. [PMID: 37729981 DOI: 10.1016/j.ijbiomac.2023.126998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
CpG oligodeoxynucleotides (CpG ODNs) activate immune system and show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hampered due to rapid nuclease degradation and insufficient cellular uptake. Delivery of CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy. Herein, we developed a super-convenient yet efficient strategy for macrophage-targeted delivery of CpG ODNs and synergistically enhanced cancer immunotherapy. Aminated yeast β-D-glucan (NH2-Glu) was simply synthesized through functionalization of β-D-glucan with DETA, which exhibited a dendrimer-like shape with size of about 80 nm. NH2-Glu complexed negatively-charged CpG ODNs. The as-prepared NH2-Glu/CpG complexes were positively charged, uniformly dispersed and exhibited good stability against nuclease degradation. Due to the specific recognition with dectin-1 expressed on macrophages, NH2-Glu/CpG complexes targeted macrophage and exhibited significantly enhanced cellular uptake due to dectin-1-mediated endocytosis. NH2-Glu/CpG complexes showed potent immunostimulatory activity. Contributed by the inherent immunostimulatory and antitumor activity, yeast β-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. NH2-Glu/CpG complexes remarkably inhibited tumor growth without causing toxic effect. In summary, this work provides a facile yet efficient macrophage-targeted CpG ODNs delivery system for cancer immunotherapy.
Collapse
Affiliation(s)
- Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhiqing Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Shuo Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiawen Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lipeng Qiu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Cheng T, Yan T, Wu J, Wang Q, Zhang H. Yeast β-D-glucan functionalized graphene oxide for macrophage-targeted delivery of CpG oligodeoxynucleotides and synergistically enhanced antitumor immunity. Int J Biol Macromol 2023; 234:123432. [PMID: 36716835 DOI: 10.1016/j.ijbiomac.2023.123432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023]
Abstract
Immunostimulatory CpG oligodeoxynucleotides (CpG ODNs) show strong potential in cancer immunotherapy. However, therapeutic efficacy of CpG ODNs is hindered due to rapid nuclease degradation and insufficient cellular uptake. Transfecting CpG ODNs into antigen presenting cells (APCs) is vital to enhance their therapeutic efficacy while reduce the potential side effects. Herein, a multifunctional CpG ODNs vector was fabricated through functionalization of graphene oxide (GO) with yeast β-D-glucan, and its potential in cancer immunotherapy was further investigated. GO-β-D-glucan protected CpG ODNs from nuclease digestion. β-D-glucan endowed the delivery system with targeting ability for macrophage due to its recognition with dectin-1. Thus, GO-β-D-glucan enhanced the delivery of CpG ODNs into RAW264.7 cells due to dectin-1-mediated endocytosis. More importantly, β-D-glucan functioned synergistically with CpG ODNs in inducing antitumor immunity. GO-β-D-glucan/CpG ODNs inhibited the tumor cells growth more effectively. This work provides a macrophage-targeted CpG ODNs delivery system for cancer immunotherapy. Graphic abstract.
Collapse
Affiliation(s)
- Ting Cheng
- Department of Oncology, Wuxi No.2 People's Hospital, Wuxi 214000, China
| | - Ting Yan
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Wu
- Department of Oncology, Wuxi No.2 People's Hospital, Wuxi 214000, China
| | - Qi Wang
- Department of Oncology, Wuxi No.2 People's Hospital, Wuxi 214000, China.
| | - Huijie Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Tian N, Duan H, Cao T, Dai G, Sheng G, Chu H, Sun Z. Macrophage-targeted nanoparticles mediate synergistic photodynamic therapy and immunotherapy of tuberculosis. RSC Adv 2023; 13:1727-1737. [PMID: 36712647 PMCID: PMC9832440 DOI: 10.1039/d2ra06334d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that poses a serious global public health threat. Due to the high incidence of adverse reactions associated with conventional treatment regimens, there is an urgent need for better alternative therapies. CpG oligodeoxynucleotides (CpG ODNs) are synthetic oligodeoxyribonucleotide sequences. They can induce a Th1-type immune response by stimulating Toll-like receptors (TLRs) in mammalian immune cells, thus killing Mtb. However, due to the negative charge and easy degradation of CpG ODNs, it is necessary to deliver them into cells using nanomaterials. PCN-224 (hereinafter referred to as PCN), as a metal-organic framework based on zirconium ions and porphyrin ligands, not only has the advantage of high drug loading capacity, but also the porphyrin molecule in it is a type of photosensitizer, which allows these nanocomposites to play a role in photodynamic therapy (PDT) while delivering CpG ODNs. In addition, since Mtb mainly exists in macrophages, targeting anti-TB agents to macrophages is helpful to improve the anti-TB effect. Phosphatidylserine (PS) is a biological membrane phospholipid that is normally found on the inner side of cell membranes in, for example, plant and mammalian cells. When apoptosis occurs, PS can flip from the inner side of the cell membrane to the surface of the cell membrane, displaying a specific "eat-me" signal that can be recognized by specific receptors on macrophages. Therefore, we can use this macrophage-targeting property of PS to construct bio-inspired targeted drug delivery systems. In this study, we constructed PCN-CpG@PS nanocomposites. PCN-CpG@PS, combining PDT and immunotherapy, is designed to target macrophages at the site of a lesion and kill latent Mtb. We physically characterized the nanocomposites and validated their bactericidal ability in vitro and their ability to stimulate the immune system in vivo. The results demonstrated that the targeted nanocomposites have certain in vitro antituberculosis efficacy with good safety.
Collapse
Affiliation(s)
- Na Tian
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Huijuan Duan
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Tingming Cao
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Guangming Dai
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Gang Sheng
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Hongqian Chu
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| | - Zhaogang Sun
- Beijing Chest Hospital, Capital Medical University Beijing 101149 China
- Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute Beijing 101149 China
| |
Collapse
|
7
|
Escriche‐Navarro B, Escudero A, Lucena‐Sánchez E, Sancenón F, García‐Fernández A, Martínez‐Máñez R. Mesoporous Silica Materials as an Emerging Tool for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200756. [PMID: 35866466 PMCID: PMC9475525 DOI: 10.1002/advs.202200756] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Cancer immunotherapy has emerged in the past decade as a promising strategy for treating many forms of cancer by stimulating the patient's immune system. Although immunotherapy has achieved some promising results in clinics, more efforts are required to improve the limitations of current treatments related to lack of effective and targeted cancer antigens delivery to immune cells, dose-limiting toxicity, and immune-mediated adverse effects, among others. In recent years, the use of nanomaterials has proven promising to enhance cancer immunotherapy efficacy and reduce side effects. Among nanomaterials, attention has been recently paid to mesoporous silica nanoparticles (MSNs) as a potential multiplatform for enhancing cancer immunotherapy by considering their unique properties, such as high porosity, and good biocompatibility, facile surface modification, and self-adjuvanticity. This review explores the role of MSN and other nano/micro-materials as an emerging tool to enhance cancer immunotherapy, and it comprehensively summarizes the different immunotherapeutic strategies addressed to date by using MSN.
Collapse
Affiliation(s)
- Blanca Escriche‐Navarro
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
| | - Andrea Escudero
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Elena Lucena‐Sánchez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Félix Sancenón
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Alba García‐Fernández
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Ramón Martínez‐Máñez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| |
Collapse
|
8
|
Flores Bautista MC, Cortés-Arriagada D, Shakerzadeh E, Chigo Anota E. Acetylsalicylic acid interaction with Boron nitride nanostructures – A density functional analysis. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Cao Y, Khan A, Ghorbani F, Mirzaei H, Singla P, Balakheyli H, Soltani A, Aghaei M, Azmoodeh Z, Aarabi M, Tavassoli S. Predicting adsorption behavior and anti-inflammatory activity of naproxen interacting with pure boron nitride and boron phosphide fullerene-like cages. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Chan WJ, Tseng FG. Nanomedicine in boron neutron capture therapy for cancer treatment: opportunities, challenges and future perspectives. Nanomedicine (Lond) 2021; 16:1631-1634. [PMID: 34264135 DOI: 10.2217/nnm-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Wei-Jen Chan
- Engineering & System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Fan-Gang Tseng
- Engineering & System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Frontier Research Center on Fundamental & Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
11
|
Chitosan nanoparticles fabricated through host-guest interaction for enhancing the immunostimulatory effect of CpG oligodeoxynucleotide. Carbohydr Polym 2021; 271:118417. [PMID: 34364558 DOI: 10.1016/j.carbpol.2021.118417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/21/2022]
Abstract
CpG oligodeoxynucleotides (CpG ODNs) which can induce innate immune responses and promote adaptive immune responses, are powerful tools in defeating diseases. Here, a novel chitosan nanoparticle (CS-NPs) based on host-guest interaction has been designed for encapsulation and delivery of CpG ODNs for the first time. The CS-NPs exhibited high encapsulation efficiency (98.3%) of CpG ODNs and remained stable in storage under room temperature for at least 7 days. CS-NPs can also prevent CpG ODN diffusion at pH 7. The results of confocal laser scanning microscope images and flow cytometry show that CS-NPs can also be efficiently delivered into living cells. Furthermore, CpG@CS-NPs can increase the immunostimulatory activity of CpG ODNs. Raw 264.7 cells treated with CpG@CS-NPs demonstrated upregulation of both TNF-α and IL-6 cytokines by 13% and 40%, respectively. The newly developed CpG@CS-NPs were thus identified as an efficient system to deliver CpG-ODNs to treat various diseases.
Collapse
|
12
|
Feng S, Ren Y, Li H, Tang Y, Yan J, Shen Z, Zhang H, Chen F. Cancer Cell-Membrane Biomimetic Boron Nitride Nanospheres for Targeted Cancer Therapy. Int J Nanomedicine 2021; 16:2123-2136. [PMID: 33731994 PMCID: PMC7959002 DOI: 10.2147/ijn.s266948] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/14/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Nanomaterial-based drug-delivery systems allowing for effective targeted delivery of smallmolecule chemodrugs to tumors have revolutionized cancer therapy. Recently, as novel nanomaterials with outstanding physicochemical properties, boron nitride nanospheres (BNs) have emerged as a promising candidate for drug delivery. However, poor dispersity and lack of tumor targeting severely limit further applications. In this study, cancer cell-membrane biomimetic BNs were designed for targeted anticancer drug delivery. METHODS Cell membrane extracted from HeLa cells (HM) was used to encapsulate BNs by physical extrusion. Doxorubicin (Dox) was loaded onto HM-BNs as a model drug. RESULTS The cell-membrane coating endowed the BNs with excellent dispersibility and cytocompatibility. The drug-release profile showed that the Dox@HM-BNs responded to acid pH, resulting in rapid Dox release. Enhanced cellular uptake of Dox@HM-BNs by HeLa cells was revealed because of the homologous targeting of cancer-cell membranes. CCK8 and live/dead assays showed that Dox@HM-BNs had stronger cytotoxicity against HeLa cells, due to self-selective cellular uptake. Finally, antitumor investigation using the HeLa tumor model demonstrated that Dox@HM-BNs possessed much more efficient tumor inhibition than free Dox or Dox@BNs. CONCLUSION These findings indicate that the newly developed HM-BNs are promising as an efficient tumor-selective drug-delivery vehicle for tumor therapy.
Collapse
Affiliation(s)
- Shini Feng
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Yajing Ren
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Hui Li
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Yunfei Tang
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Jinyu Yan
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Zeyuan Shen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| | - Huijie Zhang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214122, People’s Republic of China
| | - Fuxue Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, People’s Republic of China
| |
Collapse
|
13
|
Vergara-Reyes HN, Acosta-Alejandro M, Chigo-Anota E. Quantum-mechanical assessment of the adsorption of nitric oxide molecules on the magnetic carbon nitride (C36N24)− fullerene. Struct Chem 2021. [DOI: 10.1007/s11224-021-01736-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Thermally Conductive Anticorrosive Epoxy Nanocomposites with Tannic Acid-Modified Boron Nitride Nanosheets. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04510] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Liu Y, Li J, Chen M, Chen X, Zheng N. Palladium-based nanomaterials for cancer imaging and therapy. Theranostics 2020; 10:10057-10074. [PMID: 32929334 PMCID: PMC7481408 DOI: 10.7150/thno.45990] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022] Open
Abstract
In recent decade, palladium-based (Pd-based) nanomaterials have shown significant potential for biomedical applications because of their unique optical properties, excellent biocompatibility and high stability in physiological environment. Compared with other intensively studied noble nanomaterials, such as gold (Au) and silver (Ag) nanomaterials, research on Pd-based nanomaterials started late, but the distinctive features, such as high photothermal conversion efficiency and high photothermal stability, have made them getting great attention in the field of nanomedicine. The goal of this review is to provide a comprehensive and critical perspective on the recent progress of Pd-based nanomaterials as imaging contrast agents and therapeutic agents. The imaging section focuses on applications in photoacoustic (PA) imaging, single-photon emission computed tomography (SPECT) imaging, computed tomography (CT) imaging and magnetic resonance (MR) imaging. For treatment of cancer, single photothermal therapy (PTT) and PTT combined with other therapeutic modalities will be discussed. Finally, the safety concerns, forthcoming challenges and perspective of Pd-based nanomaterials on biomedical applications will be presented.
Collapse
Affiliation(s)
- Yongchun Liu
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Jingchao Li
- Department of Chemistry, Xiamen University, Xiamen, China
| | - Mei Chen
- College of Materials Science and Engineering, Hunan University, Changsha, China
| | - Xiaolan Chen
- Department of Chemistry, Xiamen University, Xiamen, China
| | - Nanfeng Zheng
- Department of Chemistry, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Yuan C, Liu Y, Wang T, Sun M, Chen X. Nanomaterials as Smart Immunomodulator Delivery System for Enhanced Cancer Therapy. ACS Biomater Sci Eng 2020; 6:4774-4798. [DOI: 10.1021/acsbiomaterials.0c00804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Congshan Yuan
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Ting Wang
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Mengjie Sun
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao 266003, P.R. China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, P.R. China
| |
Collapse
|
17
|
Yu W, Sun J, Liu F, Yu S, Xu Z, Wang F, Liu X. Enhanced Immunostimulatory Activity of a Cytosine-Phosphate-Guanosine Immunomodulator by the Assembly of Polymer DNA Wires and Spheres. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17167-17176. [PMID: 32131585 DOI: 10.1021/acsami.9b21075] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Unmethylated cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides are immunostimulatory nucleic acids wildly utilized as adjuvants or for vaccines to treat diseases. However, there is a lack of simple and efficient vectors for CpG oligodeoxynucleotide delivery with long-lasting immune stimulation. Herein, self-assembled polymer wires consisting of CpG motifs by hybridization chain reaction were constructed with excellent biocompatibility and immunostimulatory activity. The designed polymer DNA wires acted as programmable multivalent immunoadjuvants and triggered immune response, stimulated pro-inflammatory cytokine secretion, and induced the apoptosis of cancer cells. More strikingly, polymer nanospheres assembled from the polymer DNA wires and cationic poly-l-lysine further improved cellular uptake and continuously stimulate the lysosomal Toll-like receptor 9 of immune cells, thereby remarkably enhancing the activation of immune cells. These results demonstrated that self-assembled polymer DNA nanoassemblies with multivalent CpG could trigger strong immune response and further induce cancer cell death.
Collapse
Affiliation(s)
- Wenqian Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Junlin Sun
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shuyi Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Zhen Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaoqing Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
18
|
Abstract
Cancer immunotherapy has shown great potential as witnessed by an increasing number of immuno-oncology drug approvals in the past few years. Meanwhile, the field of nucleic acid therapeutics has made significant advancement. Nucleic acid therapeutics, such as plasmids, antisense oligonucleotides (ASO), small interfering RNA (siRNA) and microRNA, messenger RNA (mRNA), immunomodulatory DNA/RNA, and gene-editing guide RNA (gRNA) are attractive due to their versatile abilities to alter the expression of target endogenous genes or even synthetic genes, and modulate the immune responses. These abilities can play vital roles in the development of novel immunotherapy strategies. However, limited by the intrinsic physicochemical properties such as negative charges, hydrophilicity, as well as susceptibility to enzymatic degradation, the delivery of nucleic acid therapeutics faces multiple challenges. It is therefore pivotal to develop drug delivery systems that can carry, protect, and specifically deliver and release nucleic acid therapeutics to target tissues and cells. In this review, we attempted to summarize recent advances in nucleic acid therapeutics and the delivery systems for these therapeutics in cancer immunotherapy.
Collapse
Affiliation(s)
- Shurong Zhou
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development (ISB3D), School of Pharmacy, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Wenjie Chen
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development (ISB3D), School of Pharmacy, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Janet Cole
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development (ISB3D), School of Pharmacy, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Guizhi Zhu
- Department of Pharmaceutics, Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology, Drug Discovery and Development (ISB3D), School of Pharmacy, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23219, USA
| |
Collapse
|
19
|
CpG-ODN Induces a Dose-Dependent Enrichment of Immunological Niches in the Spleen and Lungs of Neonatal Chicks That Correlates with the Protective Immunity against Escherichia coli. J Immunol Res 2020; 2020:2704728. [PMID: 32411791 PMCID: PMC7201825 DOI: 10.1155/2020/2704728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/05/2019] [Indexed: 01/25/2023] Open
Abstract
Immunoprotective function of oligodeoxynucleotides containing CpG motifs (CpG-ODN) has been demonstrated in neonatal chickens against common bacterial pathogens such as E.coli and Salmonella sp. Our recent study reported that CpG-ODN administration enriches immune compartments in neonatal chicks. However, a causal relationship between CpG-ODN-induced immune enrichment and protective mechanisms remains unestablished. In this study, we investigated in ovo administered CpG-ODN-mediated immune cell recruitment in the immunological niches in lymphoid (spleen) and nonlymphoid (lungs) organs using various doses of CpG-ODN and examined whether the immunological profiles have any correlation with immunoprotection against E.coli infection. Eighteen-day-old embryonated eggs were injected with either 5, 10, 25, and 50 μg of CpG-ODN or saline (n = ~40 per group). On the day of hatch (72 hr after CpG-ODN treatment), we collected the spleen and lungs (n = 3‐4 per group) and examined the recruitment of macrophages/monocytes, their expression of MHCII and CD40, and the number of CD4+ and CD8+ T-cell subsets in the immunological niches in the spleen and lungs using flow cytometry. We observed the dose-dependent recruitment of immune cells, wherein 25 μg and 50 μg of CpG-ODN induced significant enrichment of immunological niches in both the spleen and the lungs. Four days after the CpG-ODN treatment (1-day after hatch), chicks were challenged with a virulent strain of E. coli (1 × 104 or 1 × 105 cfu, subcutaneously). Clinical outcome and mortality were monitored for 8 days postchallenge. We found that both 25 μg and 50 μg of CpG-ODN provided significant protection and reduced clinical scores compared to saline controls against E. coli infection. Overall, the present study revealed that CpG-ODNs orchestrate immunological niches in neonatal chickens in a dose-dependent manner that resulted in differential protection against E. coli infection, thus supporting a cause and effect relationship between CpG-ODN-induced immune enrichment and the antibacterial immunity.
Collapse
|
20
|
Sharker SM. Hexagonal Boron Nitrides (White Graphene): A Promising Method for Cancer Drug Delivery. Int J Nanomedicine 2019; 14:9983-9993. [PMID: 31908454 PMCID: PMC6927571 DOI: 10.2147/ijn.s205095] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Advances in low-dimensions nanomaterials drug-carrier have rapidly translated into clinical practice. Interestingly, the two-dimensional (2D) nanomaterials of hexagonal boron nitride (h-BN), so-called "white graphite" are relatively less explored compared to the post popular 2D graphene oxide (GO). However, the unique properties of h-BN nanomaterials make them well suited for the delivery of chemotherapeutic in cancer treatment. Recent studies have shown that the h-BN is a potential candidate in biomedical sciences, both as nanocarriers and nano-transducers. In this review, we discuss the various physicochemical properties and important concepts involved in h-BN nanosheets as anticancer drug carriers.
Collapse
Affiliation(s)
- Shazid Md Sharker
- Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh
| |
Collapse
|
21
|
Shao F, Zhang M, Xu L, Yin D, Li M, Jiang Q, Zhang Q, Yang Y. Multiboosting of Cancer Immunotherapy by a Core-Shell Delivery System. Mol Pharm 2019; 17:338-348. [PMID: 31793786 DOI: 10.1021/acs.molpharmaceut.9b01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synergy of chemotherapy and antiangiogenesis therapy is a new strategy for cancer treatment. In this paper, a well-developed core-shell nanoparticle loaded with gambogic acid (GA), heparin (HP), and the immunoadjuvant cytosine-phosphate-guanine oligonucleotide (CpG ODN), called GHC NP, was constructed to treat hepatocellular carcinoma. GHC NPs with liver targeting activity can effectively inhibit tumor cell proliferation and angiogenesis. With the delivery of nanocarriers and the assistance of GA and HP, the GHC NPs can more effectively upregulate cytotoxic T cell (CTL) levels, promote helper T cell (Th cell) differentiation, and induce Th1 immune responses in long-term treatment compared with single CpG ODN. This synergistically enhanced immunotherapy might have universal application in cancer treatments.
Collapse
Affiliation(s)
- Fuping Shao
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Mengmeng Zhang
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Li Xu
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Dengke Yin
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China.,Institute of Pharmaceutics , Anhui Academy of Chinese Medicine , Hefei 230012 , P. R. China
| | - Mengying Li
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Qianqian Jiang
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Qingqing Zhang
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China
| | - Ye Yang
- School of Pharmacy , Anhui University of Chinese Medicine , Hefei 230012 , P. R. China.,Anhui Provincial Key Laboratory for Chinese Herbal Compound , Hefei 230012 , P. R. China
| |
Collapse
|
22
|
Zhang H, Lai L, Wang Y, Ye B, Deng S, Ding A, Teng L, Qiu L, Chen J. Silk Fibroin for CpG Oligodeoxynucleotide Delivery. ACS Biomater Sci Eng 2019; 5:6082-6088. [PMID: 33405662 DOI: 10.1021/acsbiomaterials.9b01413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CpG oligodeoxynucleotides (ODNs) have attracted increasing attention as immunotherapeutic agents. However, efficient transfection of CpG ODNs into the immune cells remains a big challenge. In this study, for the first time, we reported that silk fibroin (SF) could function as an efficient carrier for CpG ODNs. A novel strategy was developed to prepare SF-CpG ODNs nanoparticles (NPs) based on self-assembly of SF. The as-prepared SF-CpG NPs were spherical in shape and were uniformly dispersed. SF-CpG NPs exhibited good stability and biocompatibility. SF-CpG NPs possessed significantly enhanced (7 folds) cellular uptake compared with CpG ODNs. Release of CpG ODNs from SF-CpG NPs was accelerated in environment-mimicking TLR9-localized endo/lysosome. SF-CpG NPs stimulated about four folds higher levels of immune cytokines and nitric oxide compared with CpG ODNs. Our results suggested that SF notably improved the CpG ODNs delivery. SF-CpG NPs have strong potential in immunotherapy.
Collapse
|
23
|
Ong C, Cha BG, Kim J. Mesoporous Silica Nanoparticles Doped with Gold Nanoparticles for Combined Cancer Immunotherapy and Photothermal Therapy. ACS APPLIED BIO MATERIALS 2019; 2:3630-3638. [DOI: 10.1021/acsabm.9b00483] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chunwei Ong
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Bong Geun Cha
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaeyun Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Health Sciences and Technology Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|