1
|
Peng R, Zhang T, Wang S, Liu Z, Pan P, Xu X, Song Y, Liu X, Yan S, Wang J. Self-Assembly of Strain-Adaptable Surface-Enhanced Raman Scattering Substrate on Polydimethylsiloxane Nanowrinkles. Anal Chem 2024; 96:10620-10629. [PMID: 38888085 PMCID: PMC11223597 DOI: 10.1021/acs.analchem.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Flexible surface-enhanced Raman scattering (SERS) substrates adaptable to strains enable effective sampling from irregular surfaces, but the preparation of highly stable and sensitive flexible SERS substrates is still challenging. This paper reports a method to fabricate a high-performance strain-adaptable SERS substrate by self-assembly of Au nanoparticles (AuNPs) on polydimethylsiloxane (PDMS) nanowrinkles. Nanowrinkles are created on prestrained PDMS slabs by plasma-induced oxidation followed by the release of the prestrain, and self-assembled AuNPs are transferred onto the nanowrinkles to construct the high-performance SERS substrate. The results show that the nanowrinkled structure can improve the surface roughness and enhance the SERS signals by ∼4 times compared to that of the SERS substrate prepared on flat PDMS substrates. The proposed SERS substrate also shows good adaptability to dynamic bending up to ∼|0.4| 1/cm with excellent testing reproducibility. Phenolic pollutants, including aniline and catechol, were quantitatively tested by the SERS substrate. The self-assembled flexible SERS substrate proposed here provides a powerful tool for chemical analysis in the fields of environmental monitoring and food safety inspection.
Collapse
Affiliation(s)
- Ran Peng
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Tingting Zhang
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Shiyao Wang
- Department
of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China
- Liaoning
Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| | - Zhijian Liu
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Peng Pan
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Xiaotong Xu
- Key
Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Linghe Road 42, Dalian 116023, China
| | - Yongxin Song
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Xinyu Liu
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Sheng Yan
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Junsheng Wang
- Department
of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China
- Liaoning
Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
2
|
Liu J, Yan Y, Zhang Z, Liu Y, Ge J, Guan Z. A Simple Method for the Fabrication of Silicon Inverted Pyramid Substrates for Surface-Enhanced Raman Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103634. [PMID: 37241262 DOI: 10.3390/ma16103634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
Silicon inverted pyramids have been shown to exhibit superior SERS properties compared to ortho-pyramids, yet low-cost, simple preparation processes are lacking at present. This study demonstrates a simple method, silver-assisted chemical etching combined with PVP, to construct silicon inverted pyramids with a uniform size distribution. Two types of Si substrates for surface-enhanced Raman spectroscopy (SERS) were prepared via silver nanoparticles deposited on the silicon inverted pyramids by electroless deposition and radiofrequency sputtering, respectively. The experiments were conducted using rhodamine 6G (R6G), methylene blue (MB) and amoxicillin (AMX) molecules to test the SERS properties of the Si substrates with inverted pyramids. The results indicate that the SERS substrates show high sensitivity to detect the above molecules. In particular, the sensitivity and reproducibility of the SERS substrates with a denser silver nanoparticle distribution, prepared by radiofrequency sputtering, are significantly higher than those of the electroless deposited substrates to detect R6G molecules. This study sheds light on a potential low-cost and stable method for preparing silicon inverted pyramids, which is expected to replace the costly commercial Klarite SERS substrates.
Collapse
Affiliation(s)
- Jia Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 210009, China
| | - Yao Yan
- College of Materials Science and Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 210009, China
| | - Zimu Zhang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 210009, China
| | - Yuchen Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 210009, China
| | - Jia Ge
- College of Materials Science and Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 210009, China
| | - Zisheng Guan
- College of Materials Science and Engineering, Nanjing Tech University, 30 South PuZhu Road, Nanjing 210009, China
| |
Collapse
|
3
|
Li Z, Zhang C, Sheng H, Wang J, Zhu Y, Yu L, Wang J, Peng Q, Lu G. Molecular Cocatalyst of p-Mercaptophenylboronic Acid Boosts the Plasmon-Mediated Reduction of p-Nitrothiophenol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38302-38310. [PMID: 35943401 DOI: 10.1021/acsami.2c08327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Localized surface plasmon resonance (LSPR) has been demonstrated to be highly effective in the initialization or acceleration of chemical reactions because of its unique optical properties. However, because of the ultrashort lifetime (fs to ps) of plasmon-generated hot carriers, the potential of LSPR in photochemical reactions has not been fully exploited. Herein, we demonstrate an acceleration of the plasmon-mediated reduction of p-nitrothiophenol (PNTP) molecules on the surface of silver nanoparticles (AgNPs) with in situ Raman spectroscopy. p-Mercaptophenylboronic acid (PMPBA) molecules coadsorbed on AgNP surfaces act as a molecular cocatalyst in the plasmon-mediated reaction, resulting in a boosting of the PNTP reduction. This boosting is attributed to the improved transfer and separation of the plasmon-generated hot carriers at the interface of the AgNPs and coadsorbed PMPBA molecules. Our finding provides a highly simple, cost-effective, and highly effective strategy to promote plasmonic photochemistry by introducing a molecular cocatalyst, and this strategy can be extended to promote various plasmon-mediated reactions.
Collapse
Affiliation(s)
- Zhuoyao Li
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Chengyu Zhang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Huixiang Sheng
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jin Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Liuyingzi Yu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Qiming Peng
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Gang Lu
- Key Laboratory of Flexible Electronics, School of Flexible Electronics (Future Technologies), and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
4
|
Dong Y, Lin W, Laaksonen A, Ji X. Complementary Powerful Techniques for Investigating the Interactions of Proteins with Porous TiO2 and Its Hybrid Materials: A Tutorial Review. MEMBRANES 2022; 12:membranes12040415. [PMID: 35448385 PMCID: PMC9029952 DOI: 10.3390/membranes12040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/26/2022]
Abstract
Understanding the adsorption and interaction between porous materials and protein is of great importance in biomedical and interface sciences. Among the studied porous materials, TiO2 and its hybrid materials, featuring distinct, well-defined pore sizes, structural stability and excellent biocompatibility, are widely used. In this review, the use of four powerful, synergetic and complementary techniques to study protein-TiO2-based porous materials interactions at different scales is summarized, including high-performance liquid chromatography (HPLC), atomic force microscopy (AFM), surface-enhanced Raman scattering (SERS), and Molecular Dynamics (MD) simulations. We expect that this review could be helpful in optimizing the commonly used techniques to characterize the interfacial behavior of protein on porous TiO2 materials in different applications.
Collapse
Affiliation(s)
- Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel;
- Correspondence: (Y.D.); (X.J.)
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Aatto Laaksonen
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden;
- Arrhenius Laboratory, Department of Materials and Environmental Chemistry, Stockholm University, 10691 Stockholm, Sweden
- Center of Advanced Research in Bionanoconjugates and Biopolymers, ‘‘Petru Poni” Institute of Macromolecular Chemistry, 700469 Iasi, Romania
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden;
- Correspondence: (Y.D.); (X.J.)
| |
Collapse
|
5
|
Naqvi SMZA, Zhang Y, Ahmed S, Abdulraheem MI, Hu J, Tahir MN, Raghavan V. Applied surface enhanced Raman Spectroscopy in plant hormones detection, annexation of advanced technologies: A review. Talanta 2022; 236:122823. [PMID: 34635213 DOI: 10.1016/j.talanta.2021.122823] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022]
Abstract
Plant hormones are the molecules that control the vigorous development of plants and help to cope with the stress conditions efficiently due to vital and mechanized physiochemical regulations. Biologists and analytical chemists, both endorsed the extreme problems to quantify plant hormones due to their low level existence in plants and the technological support is devastatingly required to established reliable and efficient detection methods of plant hormones. Surface Enhanced Raman Spectroscopy (SERS) technology is becoming vigorously favored and can be used to accurately and specifically identify biological and chemical molecules. Subsistence molecular properties with varying excitation wavelength require the pertinent substrate to detect SERS signals from plant hormones. Three typical mechanisms of Raman signal enhancement have been discovered, electromagnetic, chemical and Tip-enhanced Raman spectroscopy (TERS). Though, complex detection samples hinder in consistent and reproducible results of SERS-based technology. However, different algorithmic models applied on preprocessed data enhanced the prediction performances of Raman spectra by many folds and decreased the fluorescence value. By incorporating SERS measurements into the microfluidic platform, further highly repeatable SERS results can be obtained. This review paper tends to study the fundamental working principles, methods, applications of SERS systems and their execution in experiments of rapid determination of plant hormones as well as several ways of integrated SERS substrates. The challenges to develop an SERS-microfluidic framework with reproducible and accurate results for plant hormone detection are discussed comprehensively and highlighted the key areas for future investigation briefly.
Collapse
Affiliation(s)
- Syed Muhammad Zaigham Abbas Naqvi
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Yanyan Zhang
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Shakeel Ahmed
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Mukhtar Iderawumi Abdulraheem
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China; Oyo State College of Education, Lanlate, 202001, Nigeria.
| | - Jiandong Hu
- Department of Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
| | - Muhammad Naveed Tahir
- Department of Agronomy, PMAS-Arid Agriculture University Rawalpindi, 46300, Pakistan.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
6
|
Wang G, Wang K, Zhang C, Zhu Y, Jiang X, Li Z, Yin C, Ma H, Liu J, Huang X, Lu G. Modulating the plasmon-mediated silver oxidation using thiophenol molecules as monitored by in situ SERS spectroscopy. Phys Chem Chem Phys 2021; 23:26385-26391. [PMID: 34792049 DOI: 10.1039/d1cp03864h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective charge separation is essential in plasmon-mediated photochemistry and is usually achieved by constructing plasmon-semiconductor interfaces, which is usually challenging. In this work, by monitoring the plasmon-mediated silver oxidation with in situ Raman spectroscopy, we demonstrate that the adsorbed thiophenol molecules could modulate the rate of photochemical reactions by tuning the charge separation at the plasmon-molecule interfaces. It is found that the thiophenol molecules with strong electron-withdrawing or donating functional groups could accelerate or decelerate the rate of plasmon-mediated silver oxidation, respectively. Owing to the easy tuning of the electronic structures of organic molecules via substitution, our method provides a versatile and convenient approach for the fine modulation of plasmon-mediated photochemical reactions.
Collapse
Affiliation(s)
- Guilin Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Kai Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Chengyu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Yameng Zhu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xueyan Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Zhuoyao Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Chengrong Yin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China. .,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
7
|
Synthesis of Si nanoparticle chains and nanowhiskers by the monosilane decomposition in an adiabatic process during cyclic compression. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Wang Y, Liang Y, Sheng H, Wang J, Wang J, He S, Guan M, Chen Y, Lu G. Monitoring the Thiol/Thiophenol Molecule-Modulated Plasmon-Mediated Silver Oxidation with Dark-Field Optical Microscopy. Chemistry 2021; 28:e202103709. [PMID: 34812569 DOI: 10.1002/chem.202103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/05/2022]
Abstract
Surface plasmon can trigger or accelerate many photochemical reactions, especially useful in energy and environmental industries. Recently, molecular adsorption has proven effective in modulating plasmon-mediated photochemistry, however the realized chemical reactions are limited and the underlying mechanism is still unclear. Herein, by using in situ dark-field optical microscopy, the plasmon-mediated oxidative etching of silver nanoparticles (Ag NPs), a typical hot-hole-driven reaction, is monitored continuously and quantitatively. The presence of thiol or thiophenol molecules is found essential in the silver oxidation. In addition, the rate of silver oxidation is modulated by the choice of different thiol or thiophenol molecules. Compared with the molecules having electron donating groups, the ones having electron accepting groups accelerate the silver oxidation dramatically. The thiol/thiophenol modulation is attributed to the modulation of the charge separation between the Ag NPs and the adsorbed thiol or thiophenol molecules. This work demonstrates the great potential of molecular adsorption in modulating the plasmon-mediated photochemistry, which will pave a new way for developing highly efficient plasmonic photocatalysts.
Collapse
Affiliation(s)
- Yaoli Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yan Liang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Huixiang Sheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Jin Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Junjie Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Shunhao He
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Mengdan Guan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yaqi Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China.,National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
9
|
Liu X, Guo J, Li Y, Wang B, Yang S, Chen W, Wu X, Guo J, Ma X. SERS substrate fabrication for biochemical sensing: towards point-of-care diagnostics. J Mater Chem B 2021; 9:8378-8388. [PMID: 34505606 DOI: 10.1039/d1tb01299a] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rapid technology development and economic growth have brought attention to public health issues, such as food safety and environmental pollution, which creates an ever-increasing demand for fast and portable sensing technologies. Portable surface-enhanced Raman spectroscopy (SERS) capable of various analyte detection with low concentration in a convenient manner shows advantages in sensing technology including enhanced diagnostic precision, improved diagnostic efficiency, reduced diagnostic cost, and alleviation of patient pain, which emerges as a promising candidate for point-of-care testing (POCT). SERS detection technology based on different nanostructures made of noble metal-based nanomaterials can increase the sensitivity of Raman scattering by 6-8 orders of magnitude, making Raman based trace detection possible, and greatly promote the application scenarios of portable Raman spectrometers. In this perspective, we provide an overview of fundamental knowledge about the SERS mechanism including chemical and electromagnetic field enhancement mechanisms, the design and fabrication of SERS substrates based on materials, progress of using SERS for POCT in biochemical sensing and its clinical applications. Furthermore, we present the prospective of developing new nanomaterials with different functionalities for advanced SERS substrates, as well as the future advancement of biomedical sensing and clinical potential of SERS technology.
Collapse
Affiliation(s)
- Xiaojia Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Jiuchuan Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Yang Li
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shikun Yang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Wenjun Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Xinggui Wu
- CloudMinds, Inc., Shenzhen Bay Science and Technology Ecological Park, Nanshan District, Shenzhen 100022, China.
| | - Jinhong Guo
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, P. R. China.
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. .,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| |
Collapse
|
10
|
He X, Zhou X, Liu W, Liu Y, Wang X. Flexible DNA Hydrogel SERS Active Biofilms for Conformal Ultrasensitive Detection of Uranyl Ions from Aquatic Products. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2930-2936. [PMID: 32114763 DOI: 10.1021/acs.langmuir.9b03845] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is of great significance to sensitively and conveniently detect trace UO22+ ions in biological and environmental samples due to severe health risks. However, such suitable sensors are still scarce. In this work, DNAzyme-based hydrogels modified on Ag NP-grafted PAN nanorods array as flexible SERS biosensor have been developed for ultrasensitive UO22+ ion detection. They were first formed by the substrate strand and enzyme strand comprising the main cleavage-reaction stem-loop complex. Then, a UO22+ ions responsive smart hydrogel capsule was achieved by DNAzyme complex hybridized with DNA polyacrylamide chains. Raman reporter RhB was introduced and intentionally trapped inside the hydrogel. In the absence of UO22+ ions, a tiny Raman signal was presented because RhB was trapped inside the hydrogel and far away from SERS substrates. Conversely, the responsive hydrogel could be specifically attacked by UO22+ ions to release RhB, leading to a strong Raman signal. With the amplified signal procedure, this flexible SERS biofilm accomplished sensitive and selective detection of UO22+ ions with a wide linear range from 1 pM to 0.1 μM and a low detection limit of 0.838 pM. This result is nearly five orders below the EPA-defined maximum contaminant level (180 nM). Furthermore, this biofilm gives full play to the advantages of a flexible biosensor. It can directly detect the aquatic products (such as fish and kelp) polluted by UO22+ ions, demonstrating that this flexible SERS biofilm has promising potential for applications in a rapid environmental safety inspection.
Collapse
Affiliation(s)
- Xuan He
- College of Chemistry, Sichuan University, Chengdu 610064, China
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xin Zhou
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Wei Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yu Liu
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Xiaolin Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
- China Academy of Engineering Physics, Mianyang 621900, China
| |
Collapse
|
11
|
Li Z, Wang G, Zhang C, Wei C, Wang X, Gao Y, Li H, Huang X, Yuan H, Lu G. Silver Nanowire‐Templated Molecular Nanopatterning and Nanoparticle Assembly for Surface‐Enhanced Raman Scattering. Chemistry 2019; 25:10561-10565. [DOI: 10.1002/chem.201901313] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Zhuoyao Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of, Advanced Materials (IAM)Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Guilin Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of, Advanced Materials (IAM)Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Chengyu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of, Advanced Materials (IAM)Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Cong Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of, Advanced Materials (IAM)Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Xiang Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of, Advanced Materials (IAM)Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Yongqian Gao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of, Advanced Materials (IAM)Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Hai Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of, Advanced Materials (IAM)Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of, Advanced Materials (IAM)Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| | - Haifeng Yuan
- Departement ChemieKU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Gang Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of, Advanced Materials (IAM)Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech) 30 South Puzhu Road Nanjing 211816 China
| |
Collapse
|
12
|
Gebavi H, Gašparić V, Risović D, Baran N, Albrycht PH, Ivanda M. Features and advantages of flexible silicon nanowires for SERS applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:725-734. [PMID: 30931214 PMCID: PMC6423564 DOI: 10.3762/bjnano.10.72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The paper reports on the features and advantages of horizontally oriented flexible silicon nanowires (SiNWs) substrates for surface-enhanced Raman spectroscopy (SERS) applications. The novel SERS substrates are described in detail considering three main aspects. First, the key synthesis parameters for the flexible nanostructure SERS substrates were optimized. It is shown that fabrication temperature and metal-plating duration significantly influence the flexibility of the SiNWs and, consequently, determine the SERS enhancement. Second, it is demonstrated how the immersion in a liquid followed by drying results in the formation of SiNWs bundles influencing the surface morphology. The morphology changes were described by fractal dimension and lacunar analyses and correlated with the duration of Ag plating and SERS measurements. SERS examination showed the optimal intensity values for SiNWs thickness values of 60-100 nm. That is, when the flexibility of the self-assembly SiNWs allowed hot spots occurrence. Finally, the test with 4-mercaptophenylboronic acid showed excellent SERS performance of the flexible, horizontally oriented SiNWs in comparison with several other commercially available substrates.
Collapse
Affiliation(s)
- Hrvoje Gebavi
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics and Synthesis of New Materials, Bijenička cesta 54, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Bijenička cesta 54, Zagreb, Croatia
| | - Vlatko Gašparić
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics and Synthesis of New Materials, Bijenička cesta 54, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Bijenička cesta 54, Zagreb, Croatia
| | - Dubravko Risović
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics and Synthesis of New Materials, Bijenička cesta 54, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Bijenička cesta 54, Zagreb, Croatia
| | - Nikola Baran
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics and Synthesis of New Materials, Bijenička cesta 54, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Bijenička cesta 54, Zagreb, Croatia
| | - Paweł Henryk Albrycht
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Mile Ivanda
- Ruđer Bošković Institute, Division of Materials Physics, Laboratory for Molecular Physics and Synthesis of New Materials, Bijenička cesta 54, Zagreb, Croatia
- Center of Excellence for Advanced Materials and Sensing Devices, Research Unit New Functional Materials, Bijenička cesta 54, Zagreb, Croatia
| |
Collapse
|