1
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
Hadad A, França VLB, Crisostomo MW, Brunaldi K, Carvalho HF, Freire VN. Unveiling fructose and glucose binding to human serum albumin: fluorescence measurements and docking, molecular dynamics and quantum biochemistry computations. J Biomol Struct Dyn 2024:1-21. [PMID: 38288929 DOI: 10.1080/07391102.2024.2310211] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2025]
Abstract
This research examines the interaction between human serum albumin (HSA) and various sugar forms (β-D-fructofuranose (FRC), α-D-glucopyranose (GLC), Keto-D-fructose (FRO), Aldehydo-D-glucose (GLO), and modified Aldehydo-D-glucose (GLOm)) using fluorescent spectroscopy, molecular docking simulations, molecular dynamics, protein conformational clusters (EnGens), molecular fractionation with conjugate caps (MFCC) and quantum biochemistry analysis. We analyze molecular and quantum aspects, uncovering interaction energies between sugar atoms and amino acids. Total interaction energy considers protein fragmentation, energetic decomposition, and interaction energy from a bottom-up perspective. Molecular dynamics reveal that unmodified Aldehydo-D-glucose (GLO) escapes HSA binding sites, explaining gradual glycation. We pioneer studying HSA's binding mechanism with glucose and fructose in a 1:1 ratio using long molecular dynamics simulations. Results suggest the transitional GLOm form has a higher Sudlow I site propensity than unmodified glucose, crucial for K195 glycation. FRO and GLOm interaction tendencies move toward a deeper FA7 cavity, near its center. This approach effectively elucidates small molecule binding mechanisms, consistent with previous experimental results.
Collapse
Affiliation(s)
- André Hadad
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Victor L B França
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | - Kellen Brunaldi
- Department of Physiological Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
3
|
Febres-Molina C, Prat-Resina X, Jaña GA. Resveratrol glucosylation by GTF-SI from Streptococcus mutans: computational insights into a GH70 family enzyme. Org Biomol Chem 2023; 21:9591-9602. [PMID: 38014516 DOI: 10.1039/d3ob01529g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Resveratrol, a polyphenolic compound known for its health benefits but limited by poor water solubility and low bioavailability, represents a valuable substrate for glucosylation by carbohydrate-active enzymes such as glucosyltransferase-SI (GTF-SI). Using quantum mechanics/molecular mechanics (QM/MM) calculations and molecular dynamics simulations, this study reveals the atomic scale dynamics of resveratrol glucosylation by wild-type GTF-SI. This enzyme exhibited an energy barrier of 8.8 kcal mol-1 and an exothermic process, both consistent with experimental data of similar enzymes. We report a concerted and synchronous reaction mechanism for the catalytic step, characterized by an oxocarbenium ion-like transition state, and elucidate a conformational itinerary of the glucosyl moiety (4H3/E3) → [E3]‡ → 4C1, which aligns with the consistent patterns observed across enzymes of the GH13 and GH70 families. A key interaction was observed between Asp477 and the OH group on carbon 6 of the glucosyl moiety, together with a 2.0 kcal mol-1 transition state stabilization by three water molecules within the active site. Comparative insights with the previously studied Q345F SP enzyme system shed light on the unique and common features that govern transglucosylation reactions. Importantly, the calculated activation barriers strongly support the capability of GTF-SI to facilitate resveratrol glucosylation. This study advances our understanding of the transglucosylation reaction and opens up new ways for the glycodiversification of organic compounds such as polyphenols, thus expanding their potential applications in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Camilo Febres-Molina
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Xavier Prat-Resina
- Center for Learning Innovation, University of Minnesota Rochester, Rochester, Minnesota 55904, USA
| | - Gonzalo A Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Concepción, Chile.
| |
Collapse
|
4
|
Riziotis IG, Ribeiro AJM, Borkakoti N, Thornton JM. The 3D Modules of Enzyme Catalysis: Deconstructing Active Sites into Distinct Functional Entities. J Mol Biol 2023; 435:168254. [PMID: 37652131 DOI: 10.1016/j.jmb.2023.168254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Enzyme catalysis is governed by a limited toolkit of residues and organic or inorganic co-factors. Therefore, it is expected that recurring residue arrangements will be found across the enzyme space, which perform a defined catalytic function, are structurally similar and occur in unrelated enzymes. Leveraging the integrated information in the Mechanism and Catalytic Site Atlas (M-CSA) (enzyme structure, sequence, catalytic residue annotations, catalysed reaction, detailed mechanism description), 3D templates were derived to represent compact groups of catalytic residues. A fuzzy template-template search, allowed us to identify those recurring motifs, which are conserved or convergent, that we define as the "modules of enzyme catalysis". We show that a large fraction of these modules facilitate binding of metal ions, co-factors and substrates, and are frequently the result of convergent evolution. A smaller number of convergent modules perform a well-defined catalytic role, such as the variants of the catalytic triad (i.e. Ser-His-Asp/Cys-His-Asp) and the saccharide-cleaving Asp/Glu triad. It is also shown that enzymes whose functions have diverged during evolution preserve regions of their active site unaltered, as shown by modules performing similar or identical steps of the catalytic mechanism. We have compiled a comprehensive library of catalytic modules, that characterise a broad spectrum of enzymes. These modules can be used as templates in enzyme design and for better understanding catalysis in 3D.
Collapse
Affiliation(s)
- Ioannis G Riziotis
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK.
| | - António J M Ribeiro
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| | - Neera Borkakoti
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| | - Janet M Thornton
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, CB10 1SD Cambridge, UK
| |
Collapse
|
5
|
Meelua W, Wanjai T, Thinkumrob N, Friedman R, Jitonnom J. Multiscale QM/MM Simulations Identify the Roles of Asp239 and 1-OH···Nucleophile in Transition State Stabilization in Arabidopsis thaliana Cell-Wall Invertase 1. J Chem Inf Model 2023; 63:4827-4838. [PMID: 37503869 DOI: 10.1021/acs.jcim.3c00796] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Arabidopsis thaliana cell-wall invertase 1 (AtCWIN1), a key enzyme in sucrose metabolism in plants, catalyzes the hydrolysis of sucrose into fructose and glucose. AtCWIN1 belongs to the glycoside hydrolase GH-J clan, where two carboxylate residues (Asp23 and Glu203 in AtCWIN1) are well documented as a nucleophile and an acid/base catalyst. However, details at the atomic level about the role of neighboring residues and enzyme-substrate interactions during catalysis are not fully understood. Here, quantum mechanical/molecular mechanical (QM/MM) free-energy simulations were carried out to clarify the origin of the observed decreased rates in Asp239Ala, Asp239Asn, and Asp239Phe in AtCWIN1 compared to the wild type and delineate the role of Asp239 in catalysis. The glycosylation and deglycosylation steps were considered in both wild type and mutants. Deglycosylation is predicted to be the rate-determining step in the reaction, with a calculated overall free-energy barrier of 15.9 kcal/mol, consistent with the experimental barrier (15.3 kcal/mol). During the reaction, the -1 furanosyl ring underwent a conformational change corresponding to 3E ↔ [E2]⧧ ↔ 1E according to the nomenclature of saccharide structures along the full catalytic reaction. Asp239 was found to stabilize not only the transition state but also the fructosyl-enzyme intermediate, which explains findings from previous structural and mutagenesis experiments. The 1-OH···nucleophile interaction has been found to provide an important contribution to the transition state stabilization, with a contribution of ∼7 kcal/mol, and affected glycosylation more significantly than deglycosylation. This study provides molecular insights that improve the current understanding of sucrose binding and hydrolysis in members of clan GH-J, which may benefit protein engineering research. Finally, a rationale on the sucrose inhibitor configuration in chicory 1-FEH IIa, proposed a long time ago in the literature, is also provided based on the QM/MM calculations.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
| | - Tanchanok Wanjai
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
| | - Natechanok Thinkumrob
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnæus University, Kalmar SE-391 82, Sweden
| | - Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
6
|
Febres-Molina C, Sánchez L, Prat-Resina X, Jaña GA. Glucosylation mechanism of resveratrol through the mutant Q345F sucrose phosphorylase from the organism Bifidobacterium adolescentis: a computational study. Org Biomol Chem 2022; 20:5270-5283. [PMID: 35708054 DOI: 10.1039/d2ob00821a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mainly due to their great antioxidant, anti-inflammatory and anticancer capacities, natural polyphenolic compounds have many properties with important applications in the food, cosmetic and pharmaceutical industries. Unfortunately, these molecules have very low water solubility and bioavailability. Glucosylation of polyphenols is an excellent alternative to overcome these drawbacks. Specifically, for the natural polyphenol resveratrol this process is very inefficiently performed by the native enzyme sucrose phosphorylase (BaSP) from the organism Bifidobacterium adolescentis (4%). However, the Q345F point mutation of the sucrose phosphorylase (BaSP Q345F) has been shown to achieve 97% monoglucosylation for the same substrate and the mechanism is still unknown. This report presents an analysis of MD simulations performed with the BaSP Q345F and BaSP systems in complex with resveratrol monoglucoside, followed by a study of the transglucosylation reaction of the mutant enzyme BaSP Q345F with resveratrol through the QM/MM hybrid method. With respect to the MD simulations, both protein structures showed greater similarity to the phosphate-binding conformation, and a larger active site and conformational changes in certain structures were found for the mutant system compared with the native enzyme; all this is in agreement with experimental data. With regard to the QM/MM calculations, the structure of an oxocarbenium ion-like transition state and the minimum energy adiabatic path (MEP) that connects the reactants with the products were obtained with a 20.3 kcal mol-1 energy barrier, which fits within the known experimental range for this type of enzyme. Finally, the analyses performed along the MEP suggest a concerted but asynchronous mechanism. In particular, they show that the interactions involving the residues of the catalytic triad (Asp192, Glu232, and Asp290) together with two water molecules at the active site strongly contribute to the stabilization of the transition state. The understanding of this glucosylation mechanism of the polyphenol resveratrol carried out by the mutant sucrose phosphorylase enzyme presented in this work could serve as the basis for subsequent studies on related carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Camilo Febres-Molina
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Leslie Sánchez
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Xavier Prat-Resina
- Center for Learning Innovation, University of Minnesota Rochester, Rochester, Minnesota 55904, USA
| | - Gonzalo A Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Talcahuano, Chile.
| |
Collapse
|
7
|
Liu Y, Huang Y, Fan C, Chi Z, Bai M, Sun L, Yang L, Yu C, Song Z, Yang X, Yi J, Wang S, Liu L, Wang G, Zheng L. Ursolic Acid Targets Glucosyltransferase and Inhibits Its Activity to Prevent Streptococcus mutans Biofilm Formation. Front Microbiol 2021; 12:743305. [PMID: 34646258 PMCID: PMC8503646 DOI: 10.3389/fmicb.2021.743305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans (S. mutans), the prime pathogen of dental caries, can secrete glucosyltransferases (GTFs) to synthesize extracellular polysaccharides (EPSs), which are the virulence determinants of cariogenic biofilms. Ursolic acid, a type of pentacyclic triterpene natural compound, has shown potential antibiofilm effects on S. mutans. To investigate the mechanisms of ursolic acid-mediated inhibition of S. mutans biofilm formation, we first demonstrated that ursolic acid could decrease the viability and structural integrity of biofilms, as evidenced by XTT, crystal violet, and live/dead staining assays. Then, we further revealed that ursolic acid could compete with the inherent substrate to occupy the catalytic center of GTFs to inhibit EPS formation, and this was confirmed by GTF activity assays, computer simulations, site-directed mutagenesis, and capillary electrophoresis (CE). In conclusion, ursolic acid can decrease bacterial viability and prevent S. mutans biofilm formation by binding and inhibiting the activity of GTFs.
Collapse
Affiliation(s)
- Yucui Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanxin Huang
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Cong Fan
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Research Center, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Zhongmei Chi
- Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Miao Bai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Luguo Sun
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Li Yang
- Faculty of Chemistry, Northeast Normal University, Changchun, China
| | - Chunlei Yu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiaoguang Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Jingwen Yi
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.,NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| |
Collapse
|
8
|
Balli OI, Uversky VN, Durdagi S, Coskuner-Weber O. Challenges and limitations in the studies of glycoproteins: A computational chemist's perspective. Proteins 2021; 90:322-339. [PMID: 34549826 DOI: 10.1002/prot.26242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022]
Abstract
Experimenters face challenges and limitations while analyzing glycoproteins due to their high flexibility, stereochemistry, anisotropic effects, and hydration phenomena. Computational studies complement experiments and have been used in characterization of the structural properties of glycoproteins. However, recent investigations revealed that computational studies face significant challenges as well. Here, we introduce and discuss some of these challenges and weaknesses in the investigations of glycoproteins. We also present requirements of future developments in computational biochemistry and computational biology areas that could be necessary for providing more accurate structural property analyses of glycoproteins using computational tools. Further theoretical strategies that need to be and can be developed are discussed herein.
Collapse
Affiliation(s)
- Oyku Irem Balli
- Molecular Biotechnology, Turkish-German University, Istanbul, Turkey
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | | |
Collapse
|
9
|
Mendoza F, Jaña GA. The inverting mechanism of the metal ion-independent LanGT2: the first step to understand the glycosylation of natural product antibiotic precursors through QM/MM simulations. Org Biomol Chem 2021; 19:5888-5898. [PMID: 34132308 DOI: 10.1039/d1ob00544h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glycosyltransferases (GTs) from the GT1 family are responsible for the glycosylation of various important organic structures such as terpenes, steroids and peptide antibiotics, making it one of the most intensely studied families of GTs. The target of our study, LanGT2, is a member of the GT1 family that uses an inverting mechanism for transferring olivose from TDP-olivose, the donor substrate, to the natural product tetrangulol (Tet), the precursor of the antibiotic landomycin A. X-ray crystallography in conjunction with mutagenesis experiments has revealed the catalytic significance of 3 amino acids (Ser10, Ser219 and Asp137), suggesting Asp137 as the base catalyst. In the absence of X-ray structures that include the acceptor substrate Tet, in silico experiments and MD simulations that have modeled ternary complexes propose that Asp137 could recruit a water molecule to facilitate the nucleophilic activation of Tet, since the distance between Asp137 and the nucleophile is too long to directly deprotonate the nucleophilic moiety. So far, there is no computational evidence regarding the precise mechanism by which LanGT2 catalyzes the transfer of olivose, which raises questions such as: is a water-assisted mechanism possible? and how does this metal ion-independent GT stabilize the growing negative charge of the diphosphate leaving group? In this work, the QM/MM approach was used to unravel the catalytic mechanism of LanGT2, and to identify the role of crucial catalytic amino acids at a molecular level. Our calculations show that the minimum energy path (MEP) describes an SN2-like mechanism, identifying an oxocarbenium ion-like TS in which the olivosyl moiety adopts a 4H3 conformation. Interactions established between the diphosphate group of TDP and Ser10, Ser219, Arg220 and His283 are key to stabilize the development of charge on the leaving group. Our work also suggests that a water-mediated proton transfer mechanism is feasible, in which the water molecule is key to stabilize the phenolate ion-like nucleophile in the TS. This is the first computational insight into the inverting mechanism of an antibiotic natural product GT, and its implications may serve to guide the design of new biocatalysts for natural product glycodiversification.
Collapse
Affiliation(s)
- Fernanda Mendoza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| | - Gonzalo A Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano 7100, Talcahuano, Chile.
| |
Collapse
|
10
|
Mendoza F, Masgrau L. Computational modeling of carbohydrate processing enzymes reactions. Curr Opin Chem Biol 2021; 61:203-213. [PMID: 33812143 DOI: 10.1016/j.cbpa.2021.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022]
Abstract
Carbohydrate processing enzymes are of biocatalytic interest. Glycoside hydrolases and the recently discovered lytic polysaccharide monooxygenase for their use in biomass degradation to obtain biofuels or valued chemical entities. Glycosyltransferases or engineered glycosidases and phosphorylases for the synthesis of carbohydrates and glycosylated products. Quantum mechanics-molecular mechanics (QM/MM) methods are highly contributing to establish their different chemical reaction mechanisms. Other computational methods are also used to study enzyme conformational changes, ligand pathways, and processivity, e.g. for processive glycosidases like cellobiohydrolases. There is still a long road to travel to fully understand the role of conformational dynamics in enzyme activity and also to disclose the variety of reaction mechanisms these enzymes employ. Additionally, computational tools for enzyme engineering are beginning to be applied to evaluate substrate specificity or aid in the design of new biocatalysts with increased thermostability or tailored activity, a growing field where molecular modeling is finding its way.
Collapse
Affiliation(s)
- Fernanda Mendoza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Sede Concepción, Talcahuano, 4260000, Chile
| | - Laura Masgrau
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Institut de Biotecnología i de Biomedicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain; Zymvol Biomodeling, Carrer Roc Boronat, 117, 08018, Barcelona, Spain.
| |
Collapse
|
11
|
Mendoza F, Medina FE, Jiménez VA, Jaña GA. Catalytic Role of Gln202 in the Carboligation Reaction Mechanism of Yeast AHAS: A QM/MM Study. J Chem Inf Model 2019; 60:915-922. [DOI: 10.1021/acs.jcim.9b00863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Mendoza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Fabiola E. Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Gonzalo A. Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| |
Collapse
|
12
|
Sánchez L, Mendoza F, Alderete JB, Jiménez VA, Jaña GA. The role of conserved arginine in the GH70 family: a computational study of the structural features and their implications on the catalytic mechanism of GTF-SI from Streptoccocus mutans. Org Biomol Chem 2019; 17:6269-6276. [DOI: 10.1039/c9ob01055f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript provides novel insights into the structural and mechanistic roles of the conserved residue R475 of GTF-SI, a member of the GH70 family.
Collapse
Affiliation(s)
- Leslie Sánchez
- Doctorado en Fisicoquímica Molecular
- Universidad Andres Bello
- Santiago
- Chile
| | - Fernanda Mendoza
- Departamento de Ciencias Químicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Talcahuano
- Chile
| | - Joel B. Alderete
- Instituto de Química de Recursos Naturales
- Universidad de Talca
- Talca
- Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Talcahuano
- Chile
| | - Gonzalo A. Jaña
- Departamento de Ciencias Químicas
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Talcahuano
- Chile
| |
Collapse
|
13
|
Osorio MI, Zúñiga MA, Mendoza F, Jaña GA, Jiménez VA. Modulation of glucan-enzyme interactions by domain V in GTF-SI from Streptococcus mutans. Proteins 2018; 87:74-80. [PMID: 30367507 DOI: 10.1002/prot.25624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 11/10/2022]
Abstract
Glucansucrase GTF-SI from Streptococcus mutans is a multidomain enzyme that catalyzes the synthesis of glucan polymers. Domain V locates 100 Å from the catalytic site and is required for an optimal activity. Nevertheless, the mechanism governing its functional role remains elusive. In this work, homology modeling and molecular dynamics simulations were employed to examine the effect of domain V in the structure and glucan-binding ability of GTF-SI in full and truncated enzyme models. Our results showed that domain V increases the flexibility of the α4'-loop-α4″ motif near the catalytic site resulting in a higher surface for glucan association, and modulates the orientation of a growing oligosaccharide (N=8-23) in glucan-enzyme complexes towards engaging in favorable contacts throughout the protein, whereas in the truncated model the glucan protrudes randomly from domain B towards the solvent. These results are valuable to increase understanding about the functional role of domain V in GH70 glucansucrases.
Collapse
Affiliation(s)
- Manuel I Osorio
- Fisicoquímica Molecular, Universidad Andres Bello, Santiago, Chile.,Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Talcahuano, Chile
| | - Matías A Zúñiga
- Fisicoquímica Molecular, Universidad Andres Bello, Santiago, Chile.,Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Talcahuano, Chile
| | - Fernanda Mendoza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Talcahuano, Chile
| | - Gonzalo A Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Talcahuano, Chile
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Talcahuano, Chile
| |
Collapse
|