1
|
Sajnaga E, Kazimierczak W, Karaś MA, Jach ME. Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules 2024; 29:5151. [PMID: 39519791 PMCID: PMC11547657 DOI: 10.3390/molecules29215151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Xenorhabdus and Photorhabdus bacteria, which live in mutualistic symbiosis with entomopathogenic nematodes, are currently recognised as an important source of bioactive compounds. During their extraordinary life cycle, these bacteria are capable of fine regulation of mutualism and pathogenesis towards two different hosts, a nematode and a wide range of insect species, respectively. Consequently, survival in a specific ecological niche favours the richness of biosynthetic gene clusters and respective metabolites with a specific structure and function, providing templates for uncovering new agrochemicals and therapeutics. To date, numerous studies have been published on the genetic ability of Xenorhabdus and Photorhabdus bacteria to produce biosynthetic novelty as well as distinctive classes of their metabolites with their activity and mechanism of action. Research shows diverse techniques and approaches that can lead to the discovery of new natural products, such as extract-based analysis, genetic engineering, and genomics linked with metabolomics. Importantly, the exploration of members of the Xenorhabdus and Photorhabdus genera has led to encouraging developments in compounds that exhibit pharmaceutically important properties, including antibiotics that act against Gram- bacteria, which are extremely difficult to find. This article focuses on recent advances in the discovery of natural products derived from these nematophilic bacteria, with special attention paid to new valuable leads for therapeutics.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Waldemar Kazimierczak
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| |
Collapse
|
2
|
Larghi EL, Bracca ABJ, Simonetti SO, Kaufman TS. Recent developments in the total synthesis of natural products using the Ugi multicomponent reactions as the key strategy. Org Biomol Chem 2024; 22:429-465. [PMID: 38126459 DOI: 10.1039/d3ob01837g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The total syntheses of selected natural products using different versions of the Ugi multicomponent reaction is reviewed on a case-by-case basis. The revision covers the period 2008-2023 and includes detailed descriptions of the synthetic sequences, the use of state-of-the-art chemical reagents and strategies, as well as the advantages and limitations of the transformation and some remedial solutions. Relevant data on the isolation and bioactivity of the different natural targets are also briefly provided. The examples clearly evidence the strategic importance of this transformation and its key role in the modern natural products synthetic chemistry toolbox. This methodology proved to be a valuable means for easily building molecular complexity and efficiently delivering step-economic syntheses even of intricate structures, with a promising future.
Collapse
Affiliation(s)
- Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| |
Collapse
|
3
|
XENOFOOD—An Autoclaved Feed Supplement Containing Autoclavable Antimicrobial Peptides—Exerts Anticoccidial GI Activity, and Causes Bursa Enlargement, but Has No Detectable Harmful Effects in Broiler Cockerels despite In Vitro Detectable Cytotoxicity on LHM Cells. Pathogens 2023; 12:pathogens12030458. [PMID: 36986380 PMCID: PMC10059668 DOI: 10.3390/pathogens12030458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Entomopathogenic bacteria are obligate symbionts of entomopathogenic nematode (EPN) species. These bacteria biosynthesize and release non-ribosomal-templated hybrid peptides (NR-AMPs), with strong, and large-spectral antimicrobial potential, capable of inactivating pathogens belonging to different prokaryote, and eukaryote taxa. The cell-free conditioned culture media (CFCM) of Xenorhabdus budapestensis and X. szentirmaii efficiently inactivate poultry pathogens like Clostridium, Histomonas, and Eimeria. To learn whether a bio-preparation containing antimicrobial peptides of Xenorhabdus origin with accompanying (in vitro detectable) cytotoxic effects could be considered a safely applicable preventive feed supplement, we conducted a 42-day feeding experiment on freshly hatched broiler cockerels. XENOFOOD (containing autoclaved X. budapestensis, and X. szentirmaii cultures developed on chicken food) were consumed by the birds. The XENOFOOD exerted detectable gastrointestinal (GI) activity (reducing the numbers of the colony-forming Clostridium perfringens units in the lower jejunum. No animal was lost in the experiment. Neither the body weight, growth rate, feed-conversion ratio, nor organ-weight data differed between the control (C) and treated (T) groups, indicating that the XENOFOOD diet did not result in any detectable adverse effects. We suppose that the parameters indicating a moderate enlargement of bursas of Fabricius (average weight, size, and individual bursa/spleen weight-ratios) in the XENOFOOD-fed group must be an indirect indication that the bursa-controlled humoral immune system neutralized the cytotoxic ingredients of the XENOFOOD in the blood, not allowing to reach their critical cytotoxic concentration in the sensitive tissues.
Collapse
|
4
|
Abd-Elgawad MMM. Xenorhabdus spp.: An Overview of the Useful Facets of Mutualistic Bacteria of Entomopathogenic Nematodes. Life (Basel) 2022; 12:1360. [PMID: 36143397 PMCID: PMC9503066 DOI: 10.3390/life12091360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/17/2022] Open
Abstract
Mounting concern over the misuse of chemical pesticides has sparked broad interest for safe and effective alternatives to control plant pests and pathogens. Xenorhabdus bacteria, as pesticidal symbionts of the entomopathogenic nematodes Steinernema species, can contribute to this solution with a treasure trove of insecticidal compounds and an ability to suppress a variety of plant pathogens. As many challenges face sound exploitation of plant-phytonematode interactions, a full useful spectrum of such interactions should address nematicidal activity of Xenorhabdus. Steinernema-Xenorhabdus complex or Xenorhabdus individually should be involved in mechanisms underlying the favorable side of plant-nematode interactions in emerging cropping systems. Using Xenorhabdus bacteria should earnestly be harnessed to control not only phytonematodes, but also other plant pests and pathogens within integrated pest management plans. This review highlights the significance of fitting Xenorhabdus-obtained insecticidal, nematicidal, fungicidal, acaricidal, pharmaceutical, antimicrobial, and toxic compounds into existing, or arising, holistic strategies, for controlling many pests/pathogens. The widespread utilization of Xenorhabdus bacteria, however, has been slow-going, due to costs and some issues with their commercial processing. Yet, advances have been ongoing via further mastering of genome sequencing, discovering more of the beneficial Xenorhabdus species/strains, and their successful experimentations for pest control. Their documented pathogenicity to a broad range of arthropods and pathogens and versatility bode well for useful industrial products. The numerous beneficial traits of Xenorhabdus bacteria can facilitate their integration with other tactics for better pest/disease management programs.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Division, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
5
|
Fodor A, Gualtieri M, Zeller M, Tarasco E, Klein MG, Fodor AM, Haynes L, Lengyel K, Forst SA, Furgani GM, Karaffa L, Vellai T. Type Strains of Entomopathogenic Nematode-Symbiotic Bacterium Species, Xenorhabdus szentirmaii (EMC) and X. budapestensis (EMA), Are Exceptional Sources of Non-Ribosomal Templated, Large-Target-Spectral, Thermotolerant-Antimicrobial Peptides (by Both), and Iodinin (by EMC). Pathogens 2022; 11:pathogens11030342. [PMID: 35335666 PMCID: PMC8950435 DOI: 10.3390/pathogens11030342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 01/26/2023] Open
Abstract
Antimicrobial multidrug resistance (MDR) is a global challenge, not only for public health, but also for sustainable agriculture. Antibiotics used in humans should be ruled out for use in veterinary or agricultural settings. Applying antimicrobial peptide (AMP) molecules, produced by soil-born organisms for protecting (soil-born) plants, seems a preferable alternative. The natural role of peptide-antimicrobials, produced by the prokaryotic partner of entomopathogenic-nematode/bacterium (EPN/EPB) symbiotic associations, is to sustain monoxenic conditions for the EPB in the gut of the semi-anabiotic infective dauer juvenile (IJ) EPN. They keep pathobiome conditions balanced for the EPN/EPB complex in polyxenic (soil, vanquished insect cadaver) niches. Xenorhabdus szentirmaii DSM16338(T) (EMC), and X. budapestensis DSM16342(T) (EMA), are the respective natural symbionts of EPN species Steinernema rarum and S. bicornutum. We identified and characterized both of these 15 years ago. The functional annotation of the draft genome of EMC revealed 71 genes encoding non-ribosomal peptide synthases, and polyketide synthases. The large spatial Xenorhabdus AMP (fabclavine), was discovered in EMA, and its biosynthetic pathway in EMC. The AMPs produced by EMA and EMC are promising candidates for controlling MDR prokaryotic and eukaryotic pathogens (bacteria, oomycetes, fungi, protozoa). EMC releases large quantity of iodinin (1,6-dihydroxyphenazine 5,10-dioxide) in a water-soluble form into the media, where it condenses to form spectacular water-insoluble, macroscopic crystals. This review evaluates the scientific impact of international research on EMA and EMC.
Collapse
Affiliation(s)
- András Fodor
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- Department of Genetics, University of Szeged, Középfasor 52, H-6726 Szeged, Hungary
- Correspondence: ; Tel.: +36-(30)-490-9294
| | - Maxime Gualtieri
- Nosopharm, 110 Allée Charles Babbage, Espace Innovation 2, 30000 Nîmes, France;
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47906, USA;
| | - Eustachio Tarasco
- Department of Soil, Plant and Food Sciences, University of Bari “Aldo Moro”, Via Amendola 165/A, 70126 Bari, Italy;
- Institute for Sustainable Plant Protection of CNR, Via Amendola 122/D, 70126 Bari, Italy
| | - Michael G. Klein
- USDA-ARS & Department of Entomology, The Ohio State University, 13416 Claremont Ave, Cleveland, OH 44130, USA;
| | - Andrea M. Fodor
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
| | - Leroy Haynes
- Department of Chemistry, The College of Wooster, Wooster, OH 44691, USA;
| | - Katalin Lengyel
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- National Institute of Pharmacy and Nutrition (NIPN), Zrinyi utca 3, H-1051 Budapest, Hungary
| | - Steven A. Forst
- Department of Biological Sciences, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA;
| | - Ghazala M. Furgani
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- Department of Plant Protection, Faculty of Agriculture, University of Tripoli, Tripoli P.O. Box 13793, Libya
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Egyetem Tér 1, H-4032 Debrecen, Hungary;
- Institute of Metagenomics, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös University, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary; (A.M.F.); (K.L.); or (G.M.F.); or (T.V.)
- MTA-ELTE Genetics Research Group, Pázmány Péter Sétány 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
6
|
Hossain F, Nishat S, Andreana PR. Synthesis of malformin‐A
1
, C, a glycan, and an aglycon analog: Potential scaffolds for targeted cancer therapy. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Farzana Hossain
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering University of Toledo Toledo Ohio USA
| | - Sharmeen Nishat
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering University of Toledo Toledo Ohio USA
- Department of Chemistry Bangladesh University of Engineering & Technology (BUET) Dhaka Bangladesh
| | - Peter R. Andreana
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering University of Toledo Toledo Ohio USA
| |
Collapse
|
7
|
Booysen E, Dicks LMT. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review. Probiotics Antimicrob Proteins 2021; 12:1310-1320. [PMID: 32844362 DOI: 10.1007/s12602-020-09688-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The over-prescription of antibiotics for treatment of infections is primarily to blame for the increase in bacterial resistance. Added to the problem is the slow rate at which novel antibiotics are discovered and the many processes that need to be followed to classify antimicrobials safe for medical use. Xenorhabdus spp. of the family Enterobacteriaceae, mutualistically associated with entomopathogenic nematodes of the genus Steinernema, produce a variety of antibacterial peptides, including bacteriocins, depsipeptides, xenocoumacins and PAX (peptide antimicrobial-Xenorhabdus) peptides, plus additional secondary metabolites with antibacterial and antifungal activity. The secondary metabolites of some strains are active against protozoa and a few have anti-carcinogenic properties. It is thus not surprising that nematodes invaded by a single strain of a Xenorhabdus species are not infected by other microorganisms. In this review, the antimicrobial compounds produced by Xenorhabdus spp. are listed and the gene clusters involved in synthesis of these secondary metabolites are discussed. We also review growth conditions required for increased production of antimicrobial compounds.
Collapse
Affiliation(s)
- E Booysen
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - L M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
8
|
Osinubi A, Izunobi J, Bao X, Asekun O, Kong J, Gui C, Familoni O. Synthesis and in vitro anticancer activities of substituted N-(4'-nitrophenyl)-l-prolinamides. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200906. [PMID: 33047051 PMCID: PMC7540745 DOI: 10.1098/rsos.200906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Prolinamides are present in secondary metabolites and have wide-ranging biological properties as well as antimicrobial and cytotoxic activities. N-(4'-substituted phenyl)-l-prolinamides 4a-4w were synthesized in two steps, starting from the condensation of p-fluoronitrobenzene 1a-1b with l-proline 2a-2b, under aqueous-alcoholic basic conditions to afford N-aryl-l-prolines 3a-3c, which underwent amidation via a two-stage, one-pot reaction involving SOCl2 and amines, to furnish l-prolinamides in 20-80% yield. The cytotoxicities of 4a-4w against four human carcinoma cell lines (SGC7901, HCT-116, HepG2 and A549) were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; with good tumour inhibitory activities (79.50 ± 1.24%-50.04 ± 1.45%) against HepG2. 4a exhibited the best anti-tumour activity against A549 with percentage cell inhibition of 95.41 ± 0.67% at 100 µM. Likewise, 4s (70.13 ± 3.41%) and 4u (83.36 ± 1.70%) displayed stronger antineoplastic potencies against A549 than the standard, 5-fluorouracil (64.29 ± 2.09%), whereas 4a (93.33 ± 1.36%) and 4u (81.29 ± 2.32%) outperformed the reference (81.20 ± 0.08%) against HCT-116. SGC7901 showed lower percentage cell viabilities with 4u (8.02 ± 1.54%) and 4w (27.27 ± 2.38%). These results underscore the antiproliferative efficacies of l-prolinamides while exposing 4a and 4u as promising broad-spectrum anti-cancer agents. Structure-activity relationship studies are discussed.
Collapse
Affiliation(s)
- Adejoke Osinubi
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
- College of Chemistry, Chemical Engineering and Material Science, Soochow University Suzhou, Jiangsu 215123, People's Republic of China
- Chemical Sciences Department, College of Science and Information Technology, Tai Solarin University of Education, P.M.B. 2118, Ijebu Ode, Ogun Postal, Nigeria
| | - Josephat Izunobi
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Xiaoguang Bao
- College of Chemistry, Chemical Engineering and Material Science, Soochow University Suzhou, Jiangsu 215123, People's Republic of China
| | - Olayinka Asekun
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Jiehong Kong
- College of Pharmaceutical Sciences, Soochow University Suzhou, Jiangsu 215123, People's Republic of China
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University Suzhou, Jiangsu 215123, People's Republic of China
| | - Oluwole Familoni
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| |
Collapse
|
9
|
Chand-Thakuri P, Landge VG, Kapoor M, Young MC. One-Pot C–H Arylation/Lactamization Cascade Reaction of Free Benzylamines. J Org Chem 2020; 85:6626-6644. [DOI: 10.1021/acs.joc.0c00542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pratibha Chand-Thakuri
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States
| | - Vinod G. Landge
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States
| | - Mohit Kapoor
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States
| | - Michael C. Young
- Department of Chemistry & Biochemistry, School of Green Chemistry & Engineering, The University of Toledo, 2801 W. Bancroft St., Mailstop 602, Toledo, Ohio 43606, United States
| |
Collapse
|
10
|
Li L, Liu J, Shi M. A Highly Regio- and Diastereoselective Four-Component Reaction to Construct Polycyclic Bispiroindolines from 2-Isocyanoethylindoles and Isocyanates. Org Lett 2018; 20:7076-7079. [DOI: 10.1021/acs.orglett.8b03019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Longhai Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|