1
|
Aslam S, Kousar I, Rani S, Altaf W, Bristy S, Skouta R. Detection of Selected Heavy Metal Ions Using Organic Chromofluorescent Chemosensors. Molecules 2025; 30:1450. [PMID: 40286044 PMCID: PMC11990538 DOI: 10.3390/molecules30071450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Heavy and transition metal (HTM) ions have significant harmful effects on the physical environment and play crucial roles in biological systems; hence, it is crucial to accurately identify and quantify any trace pollution. Molecular sensors which are based on organic molecules employed as optical probes play a crucial role in sensing and detecting toxic metal ions in water, food, air, and biological environments. When appropriate combinations of conduction and selective recognition are combined, fluorescent and colorimetric chemosensors are appealing instruments that enable the selective, sensitive, affordable, portable, and real-time investigation of the possible presence of heavy and transition metal ions. This feature article aims to provide readers with a more thorough understanding of the different methods of synthesis and how they work. As noted in the literature, we will highlight colorimetric and fluorometric sensors based on their receptors into multiple categories for heavy metal ion detection, such as Hg2+, Ag2+, Cd2+, Pb2+, and In3+, and simultaneous multiple-ion detection.
Collapse
Affiliation(s)
- Samina Aslam
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan; (I.K.); (S.R.); (W.A.)
| | - Iram Kousar
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan; (I.K.); (S.R.); (W.A.)
| | - Sadia Rani
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan; (I.K.); (S.R.); (W.A.)
| | - Wajiha Altaf
- Department of Chemistry, The Women University Multan, Multan 60000, Pakistan; (I.K.); (S.R.); (W.A.)
| | - Sadia Bristy
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Rachid Skouta
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Aslam S, Kousar I, Rani S, Zainab I, Bristy S, Skouta R. Modern Approaches in Organic Chromofluorescent Sensor Synthesis for the Detection of Considered First-Row Transition Metal Ions. Molecules 2025; 30:1263. [PMID: 40142040 PMCID: PMC11944713 DOI: 10.3390/molecules30061263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The development of optical chemosensors for the sensitive and selective detection of trace-level metal ions in aqueous solutions has drawn a lot of attention from the scientific community in recent years. Organic sensors offer a number of advantages over traditional identification techniques, including low cost, high sensitivity, selectivity, and simplicity of synthesis. We will focus on colorimetric and fluorometric sensors based on their receptors for the real-time detection of certain first-row transition metal ions like Cr3+, Mn2+, Fe2+, Co2+, Ni2+ Cu2+, and Zn2+. The development of these sensors will aid in the rapid and simple resolution of several problems linked to the detection of potentially hazardous metal ions at trace levels in diverse biological and environmental components. This review article not only gives a comprehensive understanding of the existing techniques, but also encourages more research efforts to address the evolving demands in the field of trace transition metal ion detection.
Collapse
Affiliation(s)
- Samina Aslam
- Department of Chemistry, The Women University Multan, Multan 66000, Pakistan; (I.K.); (S.R.); (I.Z.)
| | - Iram Kousar
- Department of Chemistry, The Women University Multan, Multan 66000, Pakistan; (I.K.); (S.R.); (I.Z.)
| | - Sadia Rani
- Department of Chemistry, The Women University Multan, Multan 66000, Pakistan; (I.K.); (S.R.); (I.Z.)
| | - Isra Zainab
- Department of Chemistry, The Women University Multan, Multan 66000, Pakistan; (I.K.); (S.R.); (I.Z.)
| | - Sadia Bristy
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Rachid Skouta
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Shahbaz M, Dar B, Sharif S, Khurshid MA, Hussain S, Riaz B, Musaffa M, Khalid H, Ch AR, Mahboob A. Recent advances in the fluorimetric and colorimetric detection of cobalt ions. RSC Adv 2024; 14:9819-9847. [PMID: 38528922 PMCID: PMC10961957 DOI: 10.1039/d4ra00445k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
Cobalt is an essential metal to maintain several functions in the human body and is present in functional materials for numerous applications. Thus, to monitor these functions, it is necessary to develop suitable probes for the detection of cobalt. Presently, researchers are focused on designing different chemosensors for the qualitative and quantitative detection of the metal ions. Among the numerous methods devised for the identification of cobalt ions, colorimetric and fluorimetric techniques are considered the best choice due to their user-friendly nature, sensitivity, accuracy, linearity and robustness. In these techniques, the interaction of the analyte with the chemosensor leads to structural changes in the molecule, causing the emission and excitation intensities (bathochromic, hyperchromic, hypochromic, and hypsochromic) to change with a change in the concentration of the analyte. In this review, the recent advancements in the fluorimetric and colorimetric detection of cobalt ions are systematically summarized, and it is concluded that the development of chemosensors having distinctive colour changes when interacting with cobalt ions has been targeted for on-site detection. The chemosensors are grouped in various categories and their comparison and the discussion of computational studies will enable readers to have a quick overview and help in designing effective and efficient probes for the detection of cobalt in the field of chemo-sensing.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Birra Dar
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Shahzad Sharif
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Muhammad Aqib Khurshid
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Sajjad Hussain
- School of Chemistry, Faculty of Basic Sciences and Mathematics, Minhaj Univeristy Lahore Pakistan
| | - Bilal Riaz
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Maryam Musaffa
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Hania Khalid
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Ayoub Rashid Ch
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| | - Abia Mahboob
- Materials Chemistry Laboratory, Department of Chemistry, Government College University Lahore 5400-Pakistan
| |
Collapse
|
4
|
Patil N, Dhake R, Phalak R, Fegade U, Ramalingan C, Saravanan V, Altalhi T. A Colorimetric Distinct Color Change Cu(II) 4-{[1-(2,5-dihydroxyphenyl)ethylidene]amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one Chemosensor and its Application as a Paper Test Kit. J Fluoresc 2022; 33:1089-1099. [PMID: 36574186 DOI: 10.1007/s10895-022-03034-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/21/2022] [Indexed: 12/29/2022]
Abstract
In the current research work "4-{[1-(2,5-dihydroxyphenyl)ethylidene]amino}-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one" chemosensor (C1) synthesized by condensation reaction using "4-amino-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one" and "2,5-dihydroxy actophenone" was used as the effective sensor of metal ion. The C1 shows absorption peak at 326 nm due to the C = C bond (π-π* transition), while the absorption peak at 364 nm is caused by the C = O bond (n-π* transition). In the presence of copper, C1 only demonstrated a redshift in absorption peak from 364 to 425 nm. Even in the presence of other competing metal ions, the hypsochromic shift of the absorption band and the quenching of the fluorescence emission intensity were different for detecting Cu2+, in CH3OH-H2O (v/v = 6:4). The capacity of the C1 to bind with Cu2+ was further proved using DFT simulations. The complex C1 + Cu2+ has a HOMO-LUMO energy gap of 2.8002 eV, which is lesser than C1 (2.9991 eV) showing improvement in the stability of the C1 + Cu2+ complex. Using the Benesi-Hildebrand and Scatchard plots, calculated Kb values were to be 47,340 and 48369 M-1 respectively, showing the creation of stable complexation between Cu2+ and C1 with 1:1 stoichiometry. The limit of detection (LOD) for Cu2+ ion was 649 nM. Strip sheets were also built and tested to detect varying amounts of Cu2+ in aqueous solution, and their color change suggested that they might be used for on-site Cu2+ detection in polluted water.
Collapse
Affiliation(s)
- Nilima Patil
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, Jalgaon, 425201, MH, India
- Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, Jalgaon, 425201, MH, India
| | - Rajesh Dhake
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, Jalgaon, 425201, MH, India.
| | - Raju Phalak
- Department of Chemistry, D. D. N. Bhole College, Bhusawal, Jalgaon, 425201, MH, India
| | - Umesh Fegade
- Department of Chemistry, Bhusawal Arts, Science and P. O. Nahata Commerce College, Bhusawal, Jalgaon, 425201, MH, India.
| | - Chennan Ramalingan
- Department of Chemistry, Kalasalingam Academy of Research and Education (Deemed to Be University), Krishnankoil, 626 126, Tamilnadu, India
| | - Vadivel Saravanan
- Department of Chemistry, Kalasalingam Academy of Research and Education (Deemed to Be University), Krishnankoil, 626 126, Tamilnadu, India
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
5
|
Azizi Khereshki N, Mohammadi A, Zavvar Mousavi H, Alizadeh N. A novel thiosemicarbazide based chemosensor for colorimetric detection of Co2+ in commercial B12 vitamin and Co2+, Ni2+ simultaneously in aqueous media. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2085105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | | | - Nina Alizadeh
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
6
|
Lin Y, Hsieh I, Chang W, Wu T, Sun K, Lin Y. Tannic acid as a chemosensor for colorimetric detection of Fe(
II
) and Au(
III
) ions in environmental water samples. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu‐Ren Lin
- National Changhua Girls' Senior High School Changhua City Taiwan
| | - I‐Chin Hsieh
- National Changhua Girls' Senior High School Changhua City Taiwan
| | - Wan‐Hsin Chang
- National Changhua Girls' Senior High School Changhua City Taiwan
| | - Tsunghsueh Wu
- Department of Chemistry University of Wisconsin‐Platteville Platteville WI USA
| | - Kun‐Yu Sun
- Department of Chemistry National Changhua University of Education Changhua city Taiwan
| | - Yang‐Wei Lin
- Department of Chemistry National Changhua University of Education Changhua city Taiwan
| |
Collapse
|
7
|
Loya M, Dolai B, Atta AK. Solvent Controlled Colorimetric and Fluorometric Detection of Fe2+ and Cu2+ Ions by Naphthaldimine-Glucofuranose Conjugate. J Fluoresc 2022; 32:745-758. [DOI: 10.1007/s10895-021-02854-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
|
8
|
Mercaptosuccinic-Acid-Functionalized Gold Nanoparticles for Highly Sensitive Colorimetric Sensing of Fe(III) Ions. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9100290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The development of reliable and highly sensitive methods for heavy metal detection is a critical task for protecting the environment and human health. In this study, a qualitative colorimetric sensor that used mercaptosuccinic-acid-functionalized gold nanoparticles (MSA-AuNPs) to detect trace amounts of Fe(III) ions was developed. MSA-AuNPs were prepared using a one-step reaction, where mercaptosuccinic acid (MSA) was used for both stabilization, which was provided by the presence of two carboxyl groups, and functionalization of the gold nanoparticle (AuNP) surface. The chelating properties of MSA in the presence of Fe(III) ions and the concentration-dependent aggregation of AuNPs showed the effectiveness of MSA-AuNPs as a sensing probe with the use of an absorbance ratio of A530/A650 as an analytical signal in the developed qualitative assay. Furthermore, the obvious Fe(III)-dependent change in the color of the MSA-AuNP solution from red to gray-blue made it possible to visually assess the metal content in a concentration above the detection limit with an assay time of less than 1 min. The detection limit that was achieved (23 ng/mL) using the proposed colorimetric sensor is more than 10 times lower than the maximum allowable concentration for drinking water defined by the World Health Organization (WHO). The MSA-AuNPs were successfully applied for Fe(III) determination in tap, spring, and drinking water, with a recovery range from 89.6 to 126%. Thus, the practicality of the MSA-AuNP-based sensor and its potential for detecting Fe(III) in real water samples were confirmed by the rapidity of testing and its high sensitivity and selectivity in the presence of competing metal ions.
Collapse
|
9
|
Tarai A, Li Y, Liu B, Zhang D, Li J, Yan W, Zhang J, Qu J, Yang Z. A review on recognition of tri-/tetra-analyte by using simple organic colorimetric and fluorometric probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Ding Y, Zhao C, Zhang P, Chen Y, Song W, Liu G, Liu Z, Yun L, Han R. A novel quinoline derivative as dual chemosensor for selective sensing of Al3+ by fluorescent and Fe2+ by colorimetric methods. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Patil NS, Dhake RB, Ahamed MI, Fegade U. A Mini Review on Organic Chemosensors for Cation Recognition (2013-19). J Fluoresc 2020; 30:1295-1330. [DOI: 10.1007/s10895-020-02554-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/11/2020] [Indexed: 11/28/2022]
|
12
|
Rha CJ, Lee H, Kim C. Simultaneous Detection of Cu
2+
and Co
2+
by a Water‐Soluble Carboxamide‐Based Colorimetric Chemosensor. ChemistrySelect 2020. [DOI: 10.1002/slct.201904318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chang Joo Rha
- Department of Fine Chem.Seoul National Univ. of Sci. and Tech. Seoul 01810 South Korea
| | - Hangyul Lee
- Department of Fine Chem.Seoul National Univ. of Sci. and Tech. Seoul 01810 South Korea
| | - Cheal Kim
- Department of Fine Chem.Seoul National Univ. of Sci. and Tech. Seoul 01810 South Korea
| |
Collapse
|
13
|
Sathiyaraj M, Pavithra K, Thiagarajan V. Azine based AIEgens with multi-stimuli response towards picric acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj01324b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective detection of picric acid using AIEgens via fluorescence enhancement and quenching in the monomer and aggregated from respectively.
Collapse
|
14
|
Nano molar level chromogenic and fluorogenic sensing of heavy metal ions using multi-responsive novel Schiff base as a dual mode chemosensor. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
15
|
Farhi A, Firdaus F, Saeed H, Mujeeb A, Shakir M, Owais M. A quinoline-based fluorescent probe for selective detection and real-time monitoring of copper ions – a differential colorimetric approach. Photochem Photobiol Sci 2019; 18:3008-3015. [DOI: 10.1039/c9pp00247b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A quinoline moiety was used as a building block for designing a probe for the selective detection of copper ions in a partially aqueous medium.
Collapse
Affiliation(s)
- Atika Farhi
- Division of Inorganic Chemistry
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Farha Firdaus
- Chemistry Section
- Women's College
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Haris Saeed
- Molecular Immunology Group Lab
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Anzar Mujeeb
- Molecular Immunology Group Lab
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohammad Shakir
- Division of Inorganic Chemistry
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohammad Owais
- Molecular Immunology Group Lab
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|