1
|
Foley K, Walters KB. Solution and Film Self-Assembly Behavior of a Block Copolymer Composed of a Poly(ionic Liquid) and a Stimuli-Responsive Weak Polyelectrolyte. ACS OMEGA 2023; 8:33684-33700. [PMID: 37744857 PMCID: PMC10515397 DOI: 10.1021/acsomega.3c03989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023]
Abstract
Cu(0)-mediated atom transfer radical polymerization was used to synthesize a poly(ionic liquid), poly[4-vinylbenzyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] (PVBBImTf2N), a stimuli-responsive polyelectrolyte, poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA), and a novel block copolymer formed from these two polymers. The synthesis of the block copolymer, poly[2-(dimethylamino) ethyl methacrylate]-block-[poly(4-vinylbenzyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide] (PDMAEMA-b-PVBBImTf2N), was examined to evaluate the control of "livingness" polymerization, as indicated by molecular weight, characterizations of degree of polymerization, and 1HNMR spectroscopy. 2D DOSY NMR measurements revealed the successful formation of block copolymer and the connection between the two polymer blocks. PDMAEMA-b-PVBBImTf2N was further characterized for supramolecular interactions in both the bulk and solution states through FTIR and 1H NMR spectroscopies. While the block copolymer demonstrated similar intermolecular behavior to the PIL homopolymer in the bulk state as indicated by FTIR, hydrogen bonding and counterion interactions in solution were observed in polar organic solvent through 1H NMR measurements. The DLS characterization revealed that the PDMAEMA-b-PVBBImTf2N block copolymer forms a network-like aggregated structure due to a combination of hydrogen bonding between the PDMAEMA and PIL group and electrostatic repulsive interactions between PIL blocks. This structure was found to collapse upon the addition of KNO3 while still maintaining hydrogen bonding interactions. AFM-IR analysis demonstrated varied morphologies, with spherical PDMAEMA in PVBBImTf2N matrix morphology exhibited in the region approaching the film center. AFM-IR further revealed signals from silica nano-contaminates, which selectively interacted with the PDMAEMA spheres, demonstrating the potential for the PDMAEMA-b-PVBBImTf2N PIL block copolymer in polymer-inorganic nanoparticle composite applications.
Collapse
Affiliation(s)
- Kayla Foley
- Ralph E. Martin Department
of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Keisha B. Walters
- Ralph E. Martin Department
of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
2
|
Patra I, Abdul Rida Musa D, Solanki R, Fakri Mustafa Y, Ziyatovna Yakhshieva Z, Hadi JM, Kazemnejadi M. Introduction of versatile and recyclable network poly (ionic liquid)s as an efficient solvent with desired properties for application in C-C cross-coupling reactions. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Yang Y, Li X, Yan Y, Pan R, Liu J, Lian M, Luo X, Liu G. RAFT polymerization-induced self-assembly of poly(ionic liquids) in ethanol. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Poly(ionic liquids) (PILs) exhibit better durability, processability, and mechanical stability than ionic liquids. PIL self-assembly in green solvents is a well-established strategy for preparing polyelectrolytes. Reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) has proven to be the most controllable method for synthesizing polyelectrolytes. However, there have been few reports on preparing high-order morphology PILs by RAFT-PISA. A new type of ionic monomer, 1-butyl-3-(4-vinylbenzyl)imidazolium hexafluorophosphate ([BVBIm][PF6]), was prepared from substitution reaction and ion exchange reaction of 1-butylimidazole and 4-vinylbenzyl chloride. Herein, various morphologies, including spheres, worms, and vesicles, were easily obtained via RAFT ethanolic dispersion polymerization using poly(N,N-dimethylacrylamide) (PDMA43) as the macromolecular chain transfer agent and [BVBIm][PF6] as the monomer. Dispersion polymerization kinetic experiments, dynamic light scattering, transmission electron microscopy, and differential scanning calorimetry were used to investigate the PDMA43-b-P([BVBIm][PF6])
x
block nanoparticles. This efficient RAFT-PISA method for preparing functionalized PIL nano-objects with controlled morphologies represents significant progress in this field.
Collapse
Affiliation(s)
- Yongqi Yang
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University , Shanghai 200444 , China
| | - Xiawei Li
- Inner Mongolia Institute of Quality and Standardization, Inner Mongolia Administration for Market Regulation , Hohhot 010000 , China
| | - Youjun Yan
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
| | - Rongkai Pan
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
| | - Jun Liu
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
| | - Meng Lian
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
| | - Xin Luo
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University , Dezhou 253023 , China
| | - Guangyao Liu
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences , Tai An 271016 , China
| |
Collapse
|
4
|
Yang Y, Yuan Z, Yan Y, Zhang D, Luo X, Liu G. RAFT polymerization-induced self-assembly of semifluorinated liquid-crystalline block copolymers. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
It is a major challenge to prepare commercially viable scale semifluorinated liquid-crystalline block copolymers (SEFL-BCPs) using solution processing techniques. The technology of selectively solvating one block in a suitable solvent to realize self-assembly provides a promising route for the preparation of core-corona block polymer materials with extensive potential applications. However, considerable limitations have been discovered after much practice. BCP assemblies often require a separate synthesis step and are performed at high dilution. Herein, a one-pot approach combining polymerization-induced and crystallization-driven self-assembly (PISA-CDSA) was used to obtain well-defined, precise compositions of SEFL-BCPs. It is first synthesized via reversible addition-fragmentation chain transfer ethanol dispersion polymerization between 1H,1H,2H,2H-heptadecafluorodecyl acrylate and poly(N,N-dimethylacrylamide) at a concentration up to 20% v/v. Various morphologies, including 1D fiber-like micelles, 2D lamellar structures, and fusion structures, were first observed via transmission electron microscopy. This scalable PISA-CDSA strategy is greatly expanding the morphology scope and applicability of the polymer liquid crystal materials science field.
Collapse
Affiliation(s)
- Yongqi Yang
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
| | - Zhilong Yuan
- Weifang Traditional Chinese Medicine Hospital , Weifang 261041 , China
| | - Youjun Yan
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
| | - Daixin Zhang
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
| | - Xin Luo
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University , Dezhou 253023 , China
| | - Guangyao Liu
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai An , Shandong 271016 , China
| |
Collapse
|
5
|
Ikkene D, Arteni AA, Boulogne C, Six JL, Ferji K. Multicompartment Vesicles: A Key Intermediate Structure in Polymerization-Induced Self-Assembly of Graft Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Djallal Ikkene
- CNRS, LCPM, F-54000, Université de Lorraine, 1 rue Grandville, Nancy 54001, France
| | - Ana Andreea Arteni
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS CRYOEM-Gif, Gif-sur-Yvette 91198, France
| | - Claire Boulogne
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS CRYOEM-Gif, Gif-sur-Yvette 91198, France
| | - Jean-Luc Six
- CNRS, LCPM, F-54000, Université de Lorraine, 1 rue Grandville, Nancy 54001, France
| | - Khalid Ferji
- CNRS, LCPM, F-54000, Université de Lorraine, 1 rue Grandville, Nancy 54001, France
| |
Collapse
|
6
|
|
7
|
Oral I, Grossmann L, Fedorenko E, Struck J, Abetz V. Synthesis of Poly(methacrylic acid)- block-Polystyrene Diblock Copolymers at High Solid Contents via RAFT Emulsion Polymerization. Polymers (Basel) 2021; 13:3675. [PMID: 34771234 PMCID: PMC8588034 DOI: 10.3390/polym13213675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
The combination of polymerization-induced self-assembly (PISA) and reversible-addition fragmentation chain transfer (RAFT) emulsion polymerization offers a powerful technique to synthesize diblock copolymers and polymeric nanoparticles in a controlled manner. The RAFT emulsion diblock copolymerization of styrene and methacrylic acid (MAA) by using a trithiocarbonate as surfactant and RAFT agent was investigated. The Z-group of the RAFT agent was modified with a propyl-, butyl- and dodecyl- sidechain, increasing the hydrophobicity of the RAFT agent to offer well-controlled polymerization of poly(methacrylic acid)-block-polystyrene (PMAA-b-PS) diblock copolymers at high solid contents between 30-50 wt% in water. The kinetic data of the PMAA homopolymerization with the three different RAFT agents for various solvents was investigated as well as the RAFT emulsion polymerization of the diblock copolymers in pure water. While the polymerization of PMAA-b-PS with a propyl terminus as a Z-group suffered from slow polymerization rates at solid contents above 30 wt%, the polymerization with a dodecyl sidechain as a Z-group led to full conversion within 2 h, narrow molar mass distributions and all that at a remarkable solid content of up to 50 wt%.
Collapse
Affiliation(s)
- Iklima Oral
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (I.O.); (L.G.); (E.F.); (J.S.)
| | - Larissa Grossmann
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (I.O.); (L.G.); (E.F.); (J.S.)
| | - Elena Fedorenko
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (I.O.); (L.G.); (E.F.); (J.S.)
| | - Jana Struck
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (I.O.); (L.G.); (E.F.); (J.S.)
| | - Volker Abetz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany; (I.O.); (L.G.); (E.F.); (J.S.)
- Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany
| |
Collapse
|
8
|
Guo Y, Yu Y, Shi K, Zhang W. Synthesis of ABA triblock copolymer nanoparticles by polymerization induced self-assembly and their application as an efficient emulsifier. Polym Chem 2021. [DOI: 10.1039/d0py01498b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
ABA triblock copolymer nanoparticles of PHPMA-b-PS-b-PHPMA were synthesized by PISA and demonstrated to be an efficient emulsifier.
Collapse
Affiliation(s)
- Yakun Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Yuewen Yu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Keyu Shi
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
9
|
Depoorter J, Yan X, Zhang B, Sudre G, Charlot A, Fleury E, Bernard J. All poly(ionic liquid) block copolymer nanoparticles from antagonistic isomeric macromolecular blocks via aqueous RAFT polymerization-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py00698j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All-poly(ionic liquid) block copolymer nanoparticles are prepared by aqueous RAFT PISA using a couple of isomeric ionic liquid monomers leading to macromolecular building blocks with antagonistic solution behavior in water.
Collapse
Affiliation(s)
| | - Xibo Yan
- Univ Lyon
- INSA Lyon
- CNRS
- IMP UMR 5223
- Villeurbanne
| | - Biao Zhang
- Univ Lyon
- INSA Lyon
- CNRS
- IMP UMR 5223
- Villeurbanne
| | - Guillaume Sudre
- Univ Lyon
- Université Claude Bernard Lyon 1
- CNRS
- IMP UMR 5223
- Villeurbanne
| | | | | | | |
Collapse
|
10
|
Guerre M, Lopez G, Améduri B, Semsarilar M, Ladmiral V. Solution self-assembly of fluorinated polymers, an overview. Polym Chem 2021. [DOI: 10.1039/d1py00221j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The incorporation of fluorinated moieties into a polymer can confer unique properties and often lead in solution to original morphologies endowed with rare properties.
Collapse
Affiliation(s)
- Marc Guerre
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- 31062 Toulouse Cedex 9
| | - Gérald Lopez
- ICGM
- Univ Montpellier-CNRS-ENSCM
- Montpellier
- France
| | | | | | | |
Collapse
|
11
|
Liu C, Hong CY, Pan CY. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym Chem 2020. [DOI: 10.1039/d0py00455c] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of controlled/“living” polymerization greatly stimulated the prosperity of the fabrication and application of block copolymer nano-objects.
Collapse
Affiliation(s)
- Chao Liu
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
- P. R. China
| |
Collapse
|
12
|
Qu S, Liu R, Duan W, Zhang W. RAFT Dispersion Polymerization in the Presence of Block Copolymer Nanoparticles and Synthesis of Multicomponent Block Copolymer Nanoassemblies. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Wenfeng Duan
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., Beijing 100123, China
| | | |
Collapse
|
13
|
Li D, Huo M, Liu L, Zeng M, Chen X, Wang X, Yuan J. Overcoming Kinetic Trapping for Morphology Evolution during Polymerization‐Induced Self‐Assembly. Macromol Rapid Commun 2019; 40:e1900202. [DOI: 10.1002/marc.201900202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/27/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Dan Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Lei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Xi Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Xiaosong Wang
- Department of Chemistry and Waterloo Institute for NanotechnologyUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| |
Collapse
|
14
|
Sheng X, Gao H, Zhou Y, Wang B, Sha X. Stable poly (ionic liquids) with unique cross‐linked mesoporous‐macroporous structure as efficient catalyst for alkylation of
o
‐xylene and styrene. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaoli Sheng
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Huaying Gao
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Beibei Wang
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| | - Xiao Sha
- School of Chemistry and Chemical Engineering, Jiangsu Optoelectronic Functional Materials and Engineering LaboratorySoutheast University Nanjing 211189 People's Republic of China
| |
Collapse
|
15
|
Luo G, Guo Y, Liu C, Han G, Ma X, Zhang W. What will happen when thermoresponsive poly( N-isopropylacrylamide) is tethered on poly(ionic liquid)s? RSC Adv 2019; 9:12936-12943. [PMID: 35520761 PMCID: PMC9063810 DOI: 10.1039/c9ra01849b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 11/21/2022] Open
Abstract
The thermoresponsive ionic liquid diblock copolymer of poly[1-(4-vinylbenzyl)-3-methylimidazolium tetrafluoroborate]-block-poly(N-isopropylacrylamide) (P[VBMI][BF4]-b-PNIPAM) containing a hydrophilic poly(ionic liquid) block of P[VBMI][BF4] is prepared by sequential reversible addition-fragmentation chain transfer (RAFT) polymerization. This P[VBMI][BF4]-b-PNIPAM exhibits an abnormal thermoresponsive phase transition at a temperature above the phase transition temperature (PTT) of the PNIPAM block. For P[VBMI][BF4]-b-PNIPAM including a short P[VBMI][BF4] block, its aqueous solution becomes turbid at a temperature above the PTT of the thermoresponsive PNIPAM block, whereas for P[VBMI][BF4]-b-PNIPAM containing a relatively long P[VBMI][BF4] block even in the case of a relatively long PNIPAM block, the aqueous solution remains transparent at a temperature far above the PTT of the PNIPAM block, although a soluble-to-insoluble phase transition of the PINIPAM block is confirmed by dynamic light scattering (DLS) analysis and variable temperature 1H NMR analysis. The reason that P[VBMI][BF4]-b-PNIPAM exhibits an abnormal thermoresponse is discussed and ascribed to the highly hydrophilic and charged poly(ionic liquid) block of P[VBMI][BF4] leading to the formation of small-sized micelles at a temperature above the PTT.
Collapse
Affiliation(s)
- Guangmei Luo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510
| | - Yakun Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510
| | - Chonggao Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd Beijing 100123 China
| | - Xiaodong Ma
- School of Energy and Environmental Engineering, Hebei University of Technology Tianjin 300401 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503510.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University Tianjin 300071 China
| |
Collapse
|
16
|
Qu S, Wang K, Khan H, Xiong W, Zhang W. Synthesis of block copolymer nano-assemblies via ICAR ATRP and RAFT dispersion polymerization: how ATRP and RAFT lead to differences. Polym Chem 2019. [DOI: 10.1039/c8py01799a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Block copolymer nano-assemblies were synthesized via ICAR ATRP dispersion polymerization employing the CuBr2/tris(2-pyridylmethyl)amine catalyst in an alcoholic solvent at a relatively low temperature of 45 °C.
Collapse
Affiliation(s)
- Shuwen Qu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Ke Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Habib Khan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Weifeng Xiong
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
17
|
Lu B, Li Y, Wang Z, Wang B, Pan X, Zhao W, Ma X, Zhang J. A dual responsive hyaluronic acid graft poly(ionic liquid) block copolymer micelle for an efficient CD44-targeted antitumor drug delivery. NEW J CHEM 2019. [DOI: 10.1039/c9nj02608h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Illustration of the formation and elevated antitumor mechanism of the HA-g-mPEG-polymers nanocarriers.
Collapse
Affiliation(s)
- Beibei Lu
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Yuanbin Li
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Zhenyuan Wang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Binshen Wang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Xi Pan
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Weiwei Zhao
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Shenzhen
- China
- Research Centre of Printed Flexible Electronics
| |
Collapse
|
18
|
|
19
|
Chavan SN, Padhan AK, Mandal D. Self-assembly of fluorous amphiphilic copolymers with ionogels and surface switchable wettability. Polym Chem 2018. [DOI: 10.1039/c8py00273h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorous amphiphilic ionic copolymers of 1H,1H,2H-Perfluoro-1-octene and vinyl imidazole self-assembled in different solvents to form ionogels and exhibits tunable substrate switching wettability.
Collapse
Affiliation(s)
- Santosh N. Chavan
- Department of Chemistry
- Indian Institute of Technology Ropar
- Punjab 140001
- India
| | - Anil K. Padhan
- Department of Chemistry
- Indian Institute of Technology Ropar
- Punjab 140001
- India
| | - Debaprasad Mandal
- Department of Chemistry
- Indian Institute of Technology Ropar
- Punjab 140001
- India
| |
Collapse
|
20
|
Huo M, Wan Z, Zeng M, Wei Y, Yuan J. Polymerization-induced self-assembly of liquid crystalline ABC triblock copolymers with long solvophilic chains. Polym Chem 2018. [DOI: 10.1039/c8py00643a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymerization-induced self-assembly was exploited to investigate the self-assembly behavior of liquid crystalline triblock copolymers with long solvophilic chains.
Collapse
Affiliation(s)
- Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Zhengyi Wan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing
- China
| |
Collapse
|