1
|
Chen J, Wei Q, Wang H, Cui W, Zhang X, Wang Y. A Photothermal-Responsive Soft Actuator Based on Biomass Carbon Nanosheets of Synergistic Bilateral Polymers. Polymers (Basel) 2024; 16:3476. [PMID: 39771328 PMCID: PMC11728592 DOI: 10.3390/polym16243476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Currently, polymer actuators capable of photothermal response are being developed to be more sensitive and repeatable. In this work, a three-layered structured soft film actuator (NA/PET/NI-3) was designed by combining poly(N-isopropylacrylamide) (PNIPAM), poly(N-(2-aminoethyl)-acrylamide) (PANGA) and poly(ethylene glycol-co-terephthalate) (PET) film. Coconut water and PEI were used to synthesize a new kind of carbon nanosheet (PEI-CCS), which, when triggered by near-infrared light, will enable photothermal bending behavior in the micrometer-scale NA/PET/NI-n film, while PET served as the supporting and heat conducting layer. This three-layered actuator utilized the synergistic effects of two kind of polymers, PNIPAM and PNAGA, on either side of PET, with the upper critical solution temperatures and lower critical solution temperatures when subjected to temperature changes. This bilateral polymer design exhibited a rapid response under near-infrared light stimulation, bending to 180° within 4 s and recovering to its original shape within 30 s. When the bending process was set to 90° as in the standard experiment, NA/PET/NI-3 responded within 2 s and recovered within 8 s. NA/PET/NI-3 also demonstrated good reversibility and repeatability, capable of undergoing reversible driving over 120 times. The design and preparation of this actuator provided new ideas for the development of polymer soft actuators.
Collapse
Affiliation(s)
- Jianze Chen
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (J.C.); (Q.W.); (W.C.)
| | - Quanzhong Wei
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (J.C.); (Q.W.); (W.C.)
| | - Honglin Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Wenjia Cui
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (J.C.); (Q.W.); (W.C.)
| | - Xuewei Zhang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (J.C.); (Q.W.); (W.C.)
| | - Yuanyuan Wang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
2
|
Lai J, Sun J, Li C, Lu J, Tian Y, Liu Y, Zhao C, Zhang M. H-bond-type thermo-responsive schizophrenic copolymers: The phase transition correlation with their parent polymers and the improved protein co-assembly ability. J Colloid Interface Sci 2023; 650:1881-1892. [PMID: 37517188 DOI: 10.1016/j.jcis.2023.07.153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
Schizophrenic copolymers are one type of the popular smart polymers that show invertible colloidal structures in response to temperature stimulus. However, the lack of principles to predict the phase transition temperature of a schizophrenic copolymer from its corresponding parent thermo-responsive polymers limits their development. Additionally, studies on their applications remain scarce. Herein, a series of schizophrenic copolymers were synthesized by polymerization of a RAFT-made polymer precursor poly(acrylamide-co-N-acryloxysuccinimide-co-acrylic acid) (P(AAm-co-NAS-co-AAc)) with the mixture of N-isopropylmethacrylamide (NIPAm) and acrylamide (AAm) in varying molar ratios. In aqueous solution, the block P(AAm-co-NAS-co-AAc) and the block poly(NIPAm-co-AAm) exhibited upper and lower critical solution temperature (UCST and LCST) behavior, respectively. The schizophrenic copolymers featured either UCST-LCST, LCST-UCST, or only LCST thermo-responsive transition. A preliminary correlation of phase transition between the schizophrenic copolymers and their parent polymers was summarized. Furthermore, the co-assembly of the schizophrenic copolymers and proteins were conducted and the kinetics of protein loading and protein activity were investigated, which showed that the schizophrenic copolymers were efficient platforms for protein co-assembly with ultra-high protein loading while preserving the protein bioactivities. Additionally, all the materials were non-toxic towards NIH 3T3 and MCF-7 cells. This work offers the prospects of the schizophrenic polymers in soft colloidal and assembly systems, particularly in guiding the design of new materials and their use in biomedical applications.
Collapse
Affiliation(s)
- Jiahui Lai
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jialin Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chen Li
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Jianlei Lu
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yueyi Tian
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Yuting Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Chuanzhuang Zhao
- Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
3
|
Amine-incorporated adsorbents with reversible sites and high amine efficiency for CO2 capture in wet environment. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
4
|
Dey S, Roy A, Manna K, Pal S. The UCST phase transition of a dextran based copolymer in aqueous media with tunable thermoresponsive behavior. Polym Chem 2022. [DOI: 10.1039/d2py00626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrogen bonded UCST polymer has been developed by grafting of methacrylamide and acrylic acid on dextran via free radical polymerization.
Collapse
Affiliation(s)
- Shaon Dey
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004, India
| | - Arpita Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004, India
| | - Kalipada Manna
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004, India
| | - Sagar Pal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad-826004, India
| |
Collapse
|
5
|
Zhang J, Li S, Wang Z, Liu P, Zhao Y. Multitunable Thermoresponsive and Aggregation Behaviors of Linear and Cyclic Polyacrylamide Copolymers Comprising Heterofunctional Y Junctions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jian Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyu Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhigang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
6
|
Shi X, Wu P. A Smart Patch with On-Demand Detachable Adhesion for Bioelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101220. [PMID: 34105250 DOI: 10.1002/smll.202101220] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/13/2021] [Indexed: 06/12/2023]
Abstract
A smart ionic skin patch with on-demand detachable adhesion has been developed as human-machine interface for physiological signal monitoring. In spite of the multifunctions demonstrated by existing ionic skin, it is still difficult to distinguish different signals simultaneously. Moreover, the secondary damages to the tissues are often overlooked when the adhesive materials are removing from the wound. Herein, a multifunctional biomimetic hydrogel with temperature, mechanical, electrical, and pH response is developed. This hydrogel is designed by in situ polymerizing of hydrophilic anion monomers in a natural cationic polysaccharide to construct multifunctional biomimetic ionic channel. Due to the reversible physical cross-linked network and thermosensitivity, the mechanical properties, adhesion, and visual effect of the hydrogel can be tuned by changing hydrogen bonding density via phase transition, thus making it an excellent biosafe material for wearable device. The hydrogel is utilized as skin patch intended for monitoring physiological signals stimulated by physical and chemical changes involving pressure, temperature, pH value, and electrocardiograph. Especially, this ionic skin patch can recognize temperature change signals precisely either in broad or extremely narrow temperature range. This smart skin patch can even recognize the pressure and temperature signals in real time and differentiate the signals simultaneously.
Collapse
Affiliation(s)
- Xiaofang Shi
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
7
|
Yang D, Eronen H, Tenhu H, Hietala S. Phase Transition Behavior and Catalytic Activity of Poly( N-acryloylglycinamide- co-methacrylic acid) Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2639-2648. [PMID: 33594889 PMCID: PMC8026100 DOI: 10.1021/acs.langmuir.0c03264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Poly(N-acryloyl glycinamide) is a well-known thermoresponsive polymer possessing an upper critical solution temperature (UCST) in water. By copolymerizing N-acryloyl glycinamide (NAGA) with methacrylic acid (MAA) in the presence of a crosslinker, poly(N-acryloyl glycinamide-co-methacrylic acid) [P(NAGA-MAA)] copolymer microgels with an MAA molar fraction of 10-70 mol % were obtained. The polymerization kinetics suggests that the copolymer microgels have a random structure. The size of the microgels was between 60 and 120 nm in the non-aggregated swollen state in aqueous medium and depending on the solvent conditions, they show reversible swelling and shrinking upon temperature change. Their phase transition behavior was studied by a combination of methods to understand the process of the UCST-type behavior and interactions between NAGA and MAA. P(NAGA-MAA) microgels were loaded with silver nanoparticles (AgNPs) by the reduction of AgNO3 under UV light. Compared with the chemical reduction of AgNO3, the photoreduction results in smaller AgNPs and the amount and size of the AgNPs are dependent on the comonomer ratio. The catalytic activity of the AgNP-loaded microgels in 4-nitrophenol reduction was tested.
Collapse
|
8
|
Kertsomboon T, Agarwal S, Chirachanchai S. UCST‐Type Copolymer through the Combination of Water‐Soluble Polyacrylamide and Polycaprolactone‐Like Polyester. Macromol Rapid Commun 2020; 41:e2000243. [DOI: 10.1002/marc.202000243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/08/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Thanit Kertsomboon
- Bioresources Advanced Materials (B2A) The Petroleum and Petrochemical College Chulalongkorn University Bangkok 10330 Thailand
| | - Seema Agarwal
- Macromolecular Chemistry II and Center for Colloids and Interfaces University of Bayreuth Bayreuth 95440 Germany
| | - Suwabun Chirachanchai
- Bioresources Advanced Materials (B2A) The Petroleum and Petrochemical College Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence on Petrochemical and Materials Technology Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
9
|
Cai S, Gu S, Li X, Wan S, Chen S, He X. Controlled grafting modification of starch and UCST-type thermosensitive behavior in water. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04670-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Karanastasis AA, Kenath GS, Andersen D, Fokas D, Ryu CY, Ullal CK. One-pot surfactant-free modulation of size and functional group distribution in thermoresponsive microgels. J Colloid Interface Sci 2020; 568:264-272. [PMID: 32092555 DOI: 10.1016/j.jcis.2020.02.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/08/2023]
Abstract
Control over the size and functional group distribution of soft responsive hydrogel particles is essential for applications such as drug delivery, catalysis and chemical sensing. Traditionally, targeted functional group distributions are achieved with semi-batch techniques which require specialized equipment, while the preparation of size-tailored particles typically involves the use of surfactants. Herein, we present a simple and robust surfactant-free method for the modulation of size and carboxylic acid functional group distribution in poly(N-isopropylacrylamide) thermoresponsive microgels, employing reaction pH as the single experimental parameter. The varying distributions of carboxylic acid residues arise due to differences in kinetic reactivity, which are a function of the degree of dissociation of methacrylic acid, and thus of reaction pH. Incorporated charged residues induce a surfactant-like action during the particle nucleation stage, and impact the final particle size. Characterization with dynamic light scattering, and electron microscopy consistently supports the pH-tailored morphology of the microgels. A mathematical model which accounts for particle deformation on the imaging substrate also shows excellent agreement with the experimental results.
Collapse
Affiliation(s)
- Apostolos A Karanastasis
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA.
| | - Gopal S Kenath
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Dustin Andersen
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Demosthenes Fokas
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Chang Y Ryu
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Chaitanya K Ullal
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
11
|
Li D, Huo M, Liu L, Zeng M, Chen X, Wang X, Yuan J. Overcoming Kinetic Trapping for Morphology Evolution during Polymerization‐Induced Self‐Assembly. Macromol Rapid Commun 2019; 40:e1900202. [DOI: 10.1002/marc.201900202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/27/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Dan Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Meng Huo
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Lei Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Min Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Xi Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| | - Xiaosong Wang
- Department of Chemistry and Waterloo Institute for NanotechnologyUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua University 100084 Beijing China
| |
Collapse
|
12
|
Zhang S, Ju X, Zhou X, Pu X, Peng H, Wang W, Xie R, Liu Z, Chu L. Preparation and Characterization of Novel Low‐Temperature/pH Dual‐Responsive Poly(
N
‐isopropylacrylamide‐
co
‐1
H
‐benzimidazolyl‐ethyl acrylate) Copolymers. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Shu‐Gui Zhang
- School of Chemical EngineeringSichuan University Chengdu 610065 China
| | - Xiao‐Jie Ju
- School of Chemical EngineeringSichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| | - Xing‐Long Zhou
- School of Chemical EngineeringSichuan University Chengdu 610065 China
| | - Xing‐Qun Pu
- School of Chemical EngineeringSichuan University Chengdu 610065 China
| | - Han‐Yu Peng
- School of Chemical EngineeringSichuan University Chengdu 610065 China
| | - Wei Wang
- School of Chemical EngineeringSichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| | - Rui Xie
- School of Chemical EngineeringSichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| | - Zhuang Liu
- School of Chemical EngineeringSichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| | - Liang‐Yin Chu
- School of Chemical EngineeringSichuan University Chengdu 610065 China
- State Key Laboratory of Polymer Materials EngineeringSichuan University Chengdu 610065 China
| |
Collapse
|
13
|
Peng J, Xu Q, Ni Y, Zhang L, Cheng Z, Zhu X. Visible light controlled aqueous RAFT continuous flow polymerization with oxygen tolerance. Polym Chem 2019. [DOI: 10.1039/c9py00069k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fast visible light controlled RAFT polymerization system without the prior removal of oxygen was successfully carried out in a continuous tubular reactor with water as a green solvent.
Collapse
Affiliation(s)
- Jinying Peng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Qinghua Xu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Yuanyuan Ni
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Lifen Zhang
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Zhenping Cheng
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Chemical Engineering and Materials Science
| |
Collapse
|