1
|
Size Control and Enhanced Stability of Silver Nanoparticles by Cyclic Poly(ethylene glycol). Polymers (Basel) 2022; 14:polym14214535. [DOI: 10.3390/polym14214535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) are used in a wide range of applications, and the size control and stability of the nanoparticles are crucial aspects in their applications. In the present study, cyclized poly(ethylene glycol) (c-PEG) with various molecular weights, along with linear PEG with hydroxy chain ends (HO–PEG–OH) and methoxy chain ends (MeO–PEG–OMe) were applied for the Tollens’ synthesis of AgNPs. The particle size was significantly affected by the topology and end groups of PEG. For example, the size determined by TEM was 40 ± 7 nm for HO–PEG5k–OH, 21 ± 4 nm for c-PEG5k, and 48 ± 9 nm for MeO–PEG5k–OMe when the molar ratio of PEG to AgNO3 (ω) was 44. The stability of AgNPs was also drastically improved by cyclization; the relative UV–Vis absorption intensity (A/A0 × 100%) at λmax to determine the proportion of persisting AgNPs in an aqueous NaCl solution (37.5 mM) was 58% for HO–PEG5k–OH, 80% for c-PEG5k, and 40% for MeO–PEG5k–OMe, despite the fact that AgNPs with c-PEG5k were much smaller than those with HO–PEG5k–OH and MeO–PEG5k–OMe.
Collapse
|
2
|
Li J, Ji S, Yu X, Yuan X, Zhang K, Ren L. Magnetic Poly(ionic liquid)s: Bottlebrush versus Linear Structures. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jiangli Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Shengqi Ji
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoliang Yu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Ke Zhang
- Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Lu Z, Guo B, Zhao Y, Hou L, Xiao L. One-step synthesis of cyclic polypyrazole and the self-assembly vesicles driven by hydrogen bond. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Huang J, Shi M, Liang H, Lu J. An efficient O-phthalaldehyde-amine coupling reaction for the synthesis of a bottlebrush polymer under physiological conditions. Polym Chem 2022. [DOI: 10.1039/d1py01488a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A robust method for the preparation of a bottlebrush polymer under physiological buffer conditions was developed via the combination of a grafting onto strategy and an o-phthalaldehyde-amine coupling reaction.
Collapse
Affiliation(s)
- Jianbing Huang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Resin-Based Composites, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Mao Shi
- Anglee Beauty Group Co., Ltd, Guangzhou, China
| | - Hui Liang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Resin-Based Composites, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiang Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Resin-Based Composites, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
5
|
Lang X, Xu Z, Li Q, Yuan L, Thumu U, Zhao H. Modulating the reactivity of polymer with pendant ester groups by methylation reaction for preparing functional polymers. Polym Chem 2022. [DOI: 10.1039/d2py00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chemical reaction triggered the reactivity of polymeric esters.
Collapse
Affiliation(s)
- Xianhua Lang
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
- School of Chemical Engineering, Polymer research institute, Sichuan University (SCU), Chengdu 610065, China
| | - Zhao Xu
- School of Chemical Engineering, Polymer research institute, Sichuan University (SCU), Chengdu 610065, China
| | - Qincong Li
- School of Chemical Engineering, Polymer research institute, Sichuan University (SCU), Chengdu 610065, China
| | - Ling Yuan
- School of Chemical Engineering, Polymer research institute, Sichuan University (SCU), Chengdu 610065, China
| | - Udayabhaskararao Thumu
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Hui Zhao
- Institute of Fundamental and Frontier Sciences (IFFS), University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
- School of Chemical Engineering, Polymer research institute, Sichuan University (SCU), Chengdu 610065, China
| |
Collapse
|
6
|
Muramatsu Y, Takasu A, Higuchi M, Hayashi M. Direct observation of the formation of a cyclic poly(alkyl sorbate) via
chain‐growth
polymerization by an
N
‐heterocyclic
carbene initiator and
ring‐closing
without extreme dilution. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yuki Muramatsu
- Division of Soft Materials, Department of Engineering Nagoya Institute of Technology Nagoya Japan
| | - Akinori Takasu
- Division of Soft Materials, Department of Engineering Nagoya Institute of Technology Nagoya Japan
| | - Masahiro Higuchi
- Division of Soft Materials, Department of Engineering Nagoya Institute of Technology Nagoya Japan
| | - Mikihiro Hayashi
- Division of Soft Materials, Department of Engineering Nagoya Institute of Technology Nagoya Japan
| |
Collapse
|
7
|
Controllably Growing Topologies in One-shot RAFT Polymerization via Macro-latent Monomer Strategy. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2463-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Shi Y, Chen SPR, Jia Z, Monteiro MJ. Analysis of cyclic polymer purity by size exclusion chromatography: a model system. Polym Chem 2020. [DOI: 10.1039/d0py01277g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because cyclic polymers have intriguing physical properties, considerable synthetic strategies have been developed to create a wide variety of cyclic architectures.
Collapse
Affiliation(s)
- Yanlin Shi
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane QLD 4072
- Australia
| | - Sung-Po R. Chen
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane QLD 4072
- Australia
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane QLD 4072
- Australia
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane QLD 4072
- Australia
| |
Collapse
|
9
|
Zhang J, Zhu X, Miao C, He Y, Zhao Y. Synthesis and properties of pH-cleavable toothbrush-like copolymers comprising multi-reactive Y junctions and a linear or cyclic backbone. Polym Chem 2020. [DOI: 10.1039/d0py00084a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Y-junction-bearing toothbrush-like copolymers can exhibit unique physical properties and hierarchical (co)assembly behaviors dependent on topology, external stimuli and hydrolysis.
Collapse
Affiliation(s)
- Jian Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiaomin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Cheng Miao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yanzhe He
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
10
|
Grafting‐from Afforded Cyclic Graft Copolymers from Cyclic Anionic Macroinitiator via Lithiation of Tolyl Groups. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Liu M, Yin L, Zhang S, Zhang Z, Zhang W, Zhu X. Design and Synthesis of a Cyclic Double-Grafted Polymer Using Active Ester Chemistry and Click Chemistry via A "Grafting onto" Method. Polymers (Basel) 2019; 11:E240. [PMID: 30960224 PMCID: PMC6419024 DOI: 10.3390/polym11020240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/12/2023] Open
Abstract
Combing active ester chemistry and click chemistry, a cyclic double-grafted polymer was successfully demonstrated via a "grafting onto" method. Using active ester chemistry as post-functionalized modification approach, cyclic backbone (c-P2) was synthesized by reacting propargyl amine with cyclic precursor (poly(pentafluorophenyl 4-vinylbenzoate), c-PPF4VB6.5k). Hydroxyl-containing polymer double-chain (l-PS-PhOH) was prepared by reacting azide-functionalized polystyrene (l-PSN₃) with 3,5-bis(propynyloxy)phenyl methanol, and further modified by azide group to generate azide-containing polymer double-chain (l-PS-PhN₃). The cyclic backbone (c-P2) was then coupled with azide-containing polymer double-chain (l-PS-PhN₃) via CuAAC reaction to construct a novel cyclic double-grafted polymer (c-P2-g-Ph-PS). This research realized diversity and complexity of side chains on cyclic-grafted polymers, and this cyclic double-grafted polymer (c-P2-g-Ph-PS) still exhibited narrow molecular weight distribution (Mw/Mn < 1.10).
Collapse
Affiliation(s)
- Meng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Lu Yin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shuangshuang Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
- Global Institute of Software Technology, No 5. Qingshan Road, Suzhou National Hi-Tech District, Suzhou 215163, China.
| |
Collapse
|