1
|
Chen Y, Qian H, Peng D, Jiang Y, Liu Q, Tan Y, Feng L, Cheng B, Li G. Antimicrobial peptide-modified AIE visual composite wound dressing for promoting rapid healing of infected wounds. Front Bioeng Biotechnol 2024; 11:1338172. [PMID: 38283168 PMCID: PMC10811172 DOI: 10.3389/fbioe.2023.1338172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Wound infection is a major problem faced during wound healing. Therefore, it is necessary to develop wound dressings with excellent antimicrobial properties. Here, a smart response system of PVA-TPE/HA-AMP/SF/ALG wound dressing was prepared by a combination of chemical cross-linking and freeze-drying methods. We grafted AMP onto HA to endow the wound dressing with bacterial resistance and slow release of AMP. At the same time, the system detects bacterial activity in real time for precise antimicrobial activity (through the use of PVA-TPE) and modulates inflammation to reduce bacterial infection (through the use of AMP). In addition, the PVA-TPE/HA-AMP/SF/ALG wound dressing has a good three-dimensional mesh structure, which promotes cell proliferation, enhances collagen deposition and angiogenesis, and thus effectively promotes rapid healing of infected wounds. Moreover, it can induce the expression of inflammatory factors such as VEGF, TNF-α, IFN-γ, IL-4 and TGF-β1 in infected wounds through the Wnt/CAMK/p-PKC signaling pathway, inhibit inflammatory responses, promote wound healing and reduce scar formation. Therefore, the PVA-TPE/HA-AMP/SF/ALG wound dressing smart response system shows great promise in infected wound healing.
Collapse
Affiliation(s)
- Yi Chen
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Hongjin Qian
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Dandan Peng
- Department of Oncology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yan Jiang
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Qiaolin Liu
- Department of Oncology, General Hospital of Southern Theater Command, Guangzhou, China
| | - Yan Tan
- Department of Cadre Ward, General Hospital of Southern Theater Command, Guangzhou, China
| | - Longbao Feng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Jinan University, Guangzhou, China
| | - Biao Cheng
- Department of Burns and Plastic Surgery, General Hospital of Southern Theater Command, Guangzhou, China
| | - Guilan Li
- Department of Neurosurgery, General Hospital of Southern Theater Command, Guangzhou, China
| |
Collapse
|
2
|
Chowdhury P, Banerjee A, Saha B, Bauri K, De P. Stimuli-Responsive Aggregation-Induced Emission (AIE)-Active Polymers for Biomedical Applications. ACS Biomater Sci Eng 2022; 8:4207-4229. [PMID: 36054823 DOI: 10.1021/acsbiomaterials.2c00656] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At high concentration or in the aggregated state, most of the traditional luminophores suffer from the general aggregation-caused quenching (ACQ) effect, which significantly limits their biomedical applications. On the contrary, a few fluorophores exhibit an aggregation-induced emission (AIE) feature which is just the opposite of ACQ. The luminophores with aggregation-induced emission (AIEgens) have exhibited noteworthy advantages to get tunable emission, excellent photostability, and biocompatibility. Incorporating AIEgens into polymer design has yielded diversified polymer systems with fascinating photophysical characteristics. Again, stimuli-responsive polymers are capable of undergoing chemical and/or physical property changes on receiving signals from single or multiple stimuli. The combination of the AIE property and stimuli responses in a single polymer platform provides a feasible and effective strategy for the development of smart polymers with promising biomedical applications. Herein, the advancements in stimuli-responsive polymers with AIE characteristics for biomedical applications are summarized. AIE-active polymers are first categorized into conventional π-π conjugated and nonconventional fluorophore systems and then subdivided based on various stimuli, such as pH, redox, enzyme, reactive oxygen species (ROS), and temperature. In each section, the design strategies of the smart polymers and their biomedical applications, including bioimaging, cancer theranostics, gene delivery, and antimicrobial examples, are introduced. The current challenges and future perspectives of this field are also stated at the end of this review article.
Collapse
Affiliation(s)
- Pampa Chowdhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Kamal Bauri
- Department of Chemistry, Raghunathpur College, Raghunathpur, 723133 Purulia, West Bengal, India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| |
Collapse
|
3
|
Su G, Li Z, Dai R. Recent Advances in Applied Fluorescent Polymeric Gels. ACS APPLIED POLYMER MATERIALS 2022; 4:3131-3152. [DOI: 10.1021/acsapm.1c01504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Gongmeiyue Su
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
| | - Rongji Dai
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
- School of Life Sciences, Beijing Institute of Technology, 5 Zhongguancun Street, Haidian District, Beijing 100081, China
| |
Collapse
|
4
|
Lin FY, Dimmitt NH, Moraes de Lima Perini M, Li J, Lin CC. Injectable Acylhydrazone-Linked RAFT Polymer Hydrogels for Sustained Protein Release and Cell Encapsulation. Adv Healthc Mater 2022; 11:e2101284. [PMID: 34608768 PMCID: PMC8977444 DOI: 10.1002/adhm.202101284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/28/2021] [Indexed: 12/12/2022]
Abstract
A new class of temperature responsive polymer, termed PADO, is synthesized by reversible addition-fragmentation chain-transfer polymerization. Synthesized from copolymerization of diacetone acrylamide (DAAM), di(ethylene glycol) ethyl ether acrylate, and oligo(ethylene glycol) methyl ether acrylate, PADO polymer phase separates at temperature above its lower critical solution temperature (36-42 °C) due to enhanced hydrophobic interactions between the short ethylene glycol side chains. Solution of PADO polymers exhibit injectable shear-thinning properties and reach sol-gel transition rapidly (<5 min) at 37 °C. When the ketone moieties on DAAM are linked by adipic acid dihydrazdie, PADO polymers form crosslinked and injectable acylhydrazone hydrogels, which are hydrolytically degradable at a mild acidic environment owing to the pH sensitive acylhydrazone bonds. The pH-responsive degradation kinetics can be controlled by tuning polymer contents and ketone/hydrazide ratio. Importantly, the injectable PADO hydrogels are highly cytocompatible and can be easily formulated for pH-responsive sustained protein delivery.
Collapse
Affiliation(s)
- Fang-Yi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nathan H Dimmitt
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Mariana Moraes de Lima Perini
- Department of Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Jiliang Li
- Department of Biology, Purdue School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| |
Collapse
|
5
|
Pectin-based self-healing hydrogel through acylhydrazone connection for controlled drug release and enhanced tumor therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Shen J, Chang R, Chang L, Wang Y, Deng K, Wang D, Qin J. Light emitting CMC-CHO based self-healing hydrogel with injectability for in vivo wound repairing applications. Carbohydr Polym 2022; 281:119052. [PMID: 35074122 DOI: 10.1016/j.carbpol.2021.119052] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 01/23/2023]
|
7
|
Shahi S, Roghani-Mamaqani H, Talebi S, Mardani H. Chemical stimuli-induced reversible bond cleavage in covalently crosslinked hydrogels. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Zehra N, Tanwar AS, Khatun MN, Adil LR, Iyer PK. AIE active polymers for biological applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 185:137-177. [PMID: 34782103 DOI: 10.1016/bs.pmbts.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The discovery of aggregation-induced emission (AIE) phenomenon, significantly altered the understanding of the scientific world about the luminophore aggregation. Polymers with AIE features have recently emerged as promising materials with wide range of applications in optoelectronics devices, chemosensors, bioimaging, cancer theranostics and drug delivery. By introducing the AIE active molecule into the polymer structure, novel materials encompassing the characteristics properties of both the functional materials such as excellent brightness, versatile structure modification, high biocompatibility, exceptional stability and facile processability are achieved. This chapter presents the advances in synthetic design as well as potential biological applications of AIE active polymers, beginning with a brief introduction to the AIE phenomenon. The versatile synthetic route, easier functionalization, and light up feature of the AIE active polymers offer direct visualization of the physiological processes within or outside the living organisms. This chapter also precisely describes the photodynamic therapy/photothermal therapy (PDT/PTT) with up-to-date advancement of AIE active polymer and their emerging applications in biomedical field. The AIE active Photosensitizers (PSs) are much more efficient in singlet oxygen (1O2) production than their small molecule AIE active PSs due to their enhanced inter system crossing (ISC) process and improved light-harvesting ability. Additionally, the present chapter aims to focus on all recent AIE active polymers for drug screening and drug delivery. The AIE active polymer often shows decent drug loading capacity, high stability and good biocompatibility comprising image guided drug monitoring features. Lastly, the concluding discussion reveals the future prospective of the AIE active polymers.
Collapse
Affiliation(s)
- Nehal Zehra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Arvin Sain Tanwar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Mst Nasima Khatun
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Laxmi Raman Adil
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India; School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
9
|
Xu M, Hua L, Gong L, Lu J, Wang J, Zhao C. Lighted up by hydrogen-bonding: luminescence behavior and applications of AIEgen-doped interpenetrating network hydrogel. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1056-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Li Z, Ji X, Xie H, Tang BZ. Aggregation-Induced Emission-Active Gels: Fabrications, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100021. [PMID: 34216407 DOI: 10.1002/adma.202100021] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/14/2021] [Indexed: 05/07/2023]
Abstract
Chromophores that exhibit aggregation-induced emission (i.e., aggregation-induced emission luminogens [AIEgens]) emit intense fluorescence in their aggregated states, but show negligible emission as discrete molecular species in solution due to the changes in restriction and freedom of intramolecular motions. As solvent-swollen quasi-solids with both a compact phase and a free space, gels enable manipulation of intramolecular motions. Thus, AIE-active gels have attracted significant interest owing to their various distinctive properties and promising application potential. Herein, a comprehensive overview of AIE-active gels is provided. The fabrication strategies employed are detailed, and the applications of AIEgens are summarized. In addition, the gel functions arising from the AIE moieties are revealed, along with their structure-property relationships. Furthermore, the applications of AIE-active gels in diverse areas are illustrated. Finally, ongoing challenges and potential means to address them are discussed, along with future perspectives on AIE-active gels, with the overall aim of inspiring research on novel materials and ideas.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institutes, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
11
|
Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives. Top Curr Chem (Cham) 2021; 379:9. [PMID: 33544283 DOI: 10.1007/s41061-020-00322-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The development of fluorescent gels, if not the current focus, is at the center of recent efforts devoted to the invention of a new generation of gels. Fluorescent gels have numerous properties that are intrinsic to the gel structure, with additional light-emitting properties making them attractive for different applications. This review focuses on current studies associated with the development of fluorescent gels using aggregation-induced emission fluorophores (AIEgens) to ultimately suggest new directions for future research. Here, we discuss major drawbacks of the methodologies used frequently for the fabrication of fluorescent gels using traditional fluorophores compared to those using AIEgens. The fabrication strategies to develop AIE-based fluorescent gels, including physical mixing, soaking, self-assembly, noncovalent interactions, and permanent chemical reactions, are discussed thoroughly. New and recent findings on developing AIE-active gels are explained. Specifically, physically prepared AIE-based gels including supramolecular, ionic, and chemically prepared AIE-based gels are discussed. In addition, the intrinsic fluorescent properties of natural gels, known as clustering-triggered fluorescent gel, and new and recent relevant findings published in peer-reviewed journals are explained. This review also revealed the biomedical applications of AIE-based fluorescent hydrogels including drug delivery, biosensors, bioimaging, and tissue engineering. In conclusion, the current research situation and future directions are identified.
Collapse
|
12
|
Poly(aspartic acid) based self-healing hydrogels with antibacterial and light-emitting properties for wound repair. Colloids Surf B Biointerfaces 2021; 200:111568. [PMID: 33460966 DOI: 10.1016/j.colsurfb.2021.111568] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 11/20/2022]
Abstract
We report here a self-healing hydrogel with antibacterial and light-emitting properties for wound repair. The hydrogel was prepared by reaction of poly(aspartic acid) (PASP) derivatives bearing groups of quaternary ammonium and boronic acid with poly(vinyl alcohol) (PVA). Due to the dynamic nature of boronic ester bonds, bacteria-killing activity of quaternary ammonium, and light-emitting activity of phenylboronic ester, the resultant hydrogels featured self-healing, antibacterial and light-emitting properties. The hydrogels show controlled release behavior of mouse epidermal growth factor (mEGF) and the in vivo studies show mEGF loaded hydrogel accelerate the wound repair of model mice and improve skin cell proliferation by prevention of bacterial infections. The PASP based hydrogels would show great promise in bio-applications, in particular for wound dressing and tissue repairing.
Collapse
|
13
|
Song N, Zhang Z, Liu P, Yang YW, Wang L, Wang D, Tang BZ. Nanomaterials with Supramolecular Assembly Based on AIE Luminogens for Theranostic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004208. [PMID: 33150632 DOI: 10.1002/adma.202004208] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/24/2020] [Indexed: 05/29/2023]
Abstract
One of the major pursuits of biomedical science is to develop advanced strategies for theranostics, which is expected to be an effective approach for achieving the transition from conventional medicine to precision medicine. Supramolecular assembly can serve as a powerful tool in the development of nanotheranostics with accurate imaging of tumors and real-time monitoring of the therapeutic process upon the incorporation of aggregation-induced emission (AIE) ability. AIE luminogens (AIEgens) will not only enable fluorescence imaging but will also aid in improving the efficacy of therapies. Furthermore, the fluorescent signals and therapeutic performance of these nanomaterials can be manipulated precisely owing to the reversible and stimuli-responsive characteristics of the supramolecular systems. Inspired by rapid advances in this field, recent research conducted on nanotheranostics with the AIE effect based on supramolecular assembly is summarized. Here, three representative strategies for supramolecular nanomaterials are presented as follows: a) supramolecular self-assembly of AIEgens, b) the loading of AIEgens within nanocarriers with supramolecular assembly, and c) supramolecular macrocycle-guided assembly via host-guest interactions. Meanwhile, the diverse applications of such nanomaterials in diagnostics and therapeutics have also been discussed in detail. Finally, the challenges of this field are listed in this review.
Collapse
Affiliation(s)
- Nan Song
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Peiying Liu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Lei Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
14
|
Li Y, Zhang L, Shi Y, Huang J, Yang Y, Ming D. Poly( N-Isopropylacrylamide)-Functional Silicon Nanocrystals for Thermosensitive Fluorescence Cellar Imaging. Polymers (Basel) 2020; 12:polym12112565. [PMID: 33139603 PMCID: PMC7693885 DOI: 10.3390/polym12112565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Silicon nanocrystals (Si NCs) have received surging interest as a type of quantum dot (QD) due to the availability of silicon in nature, tunable fluorescence emission properties and excellent biocompatibility. More importantly, compared with many group II-VI and III-V based QDs, they have low toxicity. Here, thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm)-functional Si NCs were firstly prepared for thermoresponsive detection of cancer cells. Si NCs were prepared under normal pressure with excellent water solubility. Then folic acid was bonded to the silicon nanocrystals through the reaction of amino and carboxyl groups for specific recognition of cancer cells. The folic-acid-modified silicon crystals (Si NCs-FA) could be modified by a one-pot copolymerization process into PNIPAAm nanospheres during the monomer polymerization process (i.e., Si NCs-FA-PNIPAAm) just by controlling the temperature below the lower critical solution temperature (LCST) and above the LCST. The results showed that the Si-FA-PNIAAm nanospheres exhibited not only reversible temperature-responsive on-off fluorescence properties, but also can be used as temperature indicators in cancer cells.
Collapse
Affiliation(s)
- Yiting Li
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (L.Z.)
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lihui Zhang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (L.Z.)
| | - Youhong Shi
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China; (Y.S.); (J.H.)
| | - Jialing Huang
- College of Pharmacy, Nanjing Tech University, Nanjing 211816, China; (Y.S.); (J.H.)
| | - Yaqiong Yang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; (Y.L.); (L.Z.)
- Correspondence: (Y.Y.); (D.M.)
| | - Dengming Ming
- College of Biological and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
- Correspondence: (Y.Y.); (D.M.)
| |
Collapse
|
15
|
Oh M, Yoon Y, Lee TS. Synthesis of poly( N-isopropylacrylamide) polymer crosslinked with an AIE-active azonaphthol for thermoreversible fluorescence. RSC Adv 2020; 10:39277-39283. [PMID: 35518410 PMCID: PMC9057382 DOI: 10.1039/d0ra08257k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/20/2020] [Indexed: 01/12/2023] Open
Abstract
A fluorescent polymer was synthesized using N-isopropylacrylamide (NIPAM) crosslinked with a divinylazonaphthol monomer via radical emulsion polymerization. Because the crosslinked polymer contained an aggregation-induced emissive (AIE) azonaphthol-based crosslinker, a thermoreversible sol-gel transformation and gelation-induced reversible fluorescence alteration were successfully attained in an aqueous medium. Like typical PNIPAM, the size and transmittance of the polymer dramatically decreased near the lower critical solution temperature (LCST, 36 °C). Such gelation facilitated aggregation of the polymer chains, resulting in the close contact between azonaphthol groups producing fluorescence. The crosslinked polymer exhibited changes in dual properties: one is related to PNIPAM structural alteration, which corresponds to conventional swelling/shrinkage behavior; and the other is involved in the reversible fluorescence change in response to the swelling/shrinkage. Because the major backbone of the polymer was composed of NIPAM with an LCST at 36 °C, the resultant polymer is expected to have potential applications in biologically related fields.
Collapse
Affiliation(s)
- Mintaek Oh
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University Daejeon 34134 Korea
| | - Yeoju Yoon
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University Daejeon 34134 Korea
| | - Taek Seung Lee
- Organic and Optoelectronic Materials Laboratory, Department of Organic Materials Engineering, Chungnam National University Daejeon 34134 Korea
| |
Collapse
|
16
|
Wang YS, Li GL, Zhu SB, Jing FC, Liu RD, Li SS, He J, Lei JD. A Self-assembled Nanoparticle Platform Based on Amphiphilic Oleanolic Acid Polyprodrug for Cancer Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2401-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
He H, Shi X, Chen W, Chen R, Zhao C, Wang S. Temperature/pH Smart Nanofibers with Excellent Biocompatibility and Their Dual Interactions Stimulus-Responsive Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7425-7433. [PMID: 32559369 DOI: 10.1021/acs.jafc.0c01493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel nanosized biomass-based pH- and temperature-responsive cellulose nanofibers (TOCNF-HPEI-IBAm) were designed and prepared by grafting hyperbranched polyethylenimine (HPEI) modified with isobutyramide (IBAm) groups (HPEI-IBAm) onto carboxylated cellulose nanofibers (TOCNFs). The as-prepared TOCNF-HPEI-IBAm possessed excellent biocompatibility and pH- and temperature-responsive properties. TOCNF-HPEI-IBAm showed a rapid wettability conversion from hydrophilic (WCA = 41.1°, WCA = 70.7°) to hydrophobic (WCA = 147.3°, WCA = 142.2°) in response to changes in pH and temperature from acidic conditions to alkaline conditions and from lower to higher temperatures. In addition, it possesses strong antibacterial activity against Escherichia coli and Listeria (Eb ≥ 97%). The amount of DOX loaded in TOCNF-HPEI-IBAm was 642.52 mg/g, and the maximum amount of DOX released was 39.30% at pH = 3.0 within 9 h. Furthermore, the dual interactions stimulus-responsive mechanism was revealed to be attributed to the expansion and collapse of the molecular chains of TOCNF-HPEI-IBAm in response to temperature and pH through mutual promotion and inhibition.
Collapse
Affiliation(s)
- Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P.R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, P.R. China
| | - Xiaoyu Shi
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P.R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, P.R. China
| | - Wenbo Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P.R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, P.R. China
| | - Rimei Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P.R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, P.R. China
| | - Chao Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P.R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, P.R. China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, P.R. China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, P.R. China
| |
Collapse
|
18
|
An H, Yang Y, Bo Y, Ma X, Wang Y, Liu L, Wang H, He Y, Qin J. Fabrication of self-healing hydrogel from quaternized N-[3(dimethylamino)propyl]methacrylamide copolymer for antimicrobial and drug release applications. J Biomed Mater Res A 2020; 109:42-53. [PMID: 32418272 DOI: 10.1002/jbm.a.37005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 12/20/2022]
Abstract
Self-healing hydrogels have attracted great attention in recent years because of their wide application in bioscience and biotechnology. In this study, P(DMAPMA-stat-DAA) were synthesized by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization and quaternized to import antimicrobial properties. Then quaternized P(DMAPMA-stat-DAA) was used to prepare hydrogel containing acylhydrazone groups with Polyethylene oxide (PEO) diacylhydrazide as a cross-linking agent. The acylhydrazone groups imparted a variety of properties, including group responsiveness and self-healing properties to the hydrogel. At the same time, the quaternary ammonium endowed the hydrogel with the antimicrobial property. The mechanical property, self-healing properties, and antimicrobial property of hydrogels were investigated intensively. Results showed hydrogels formed in neutral conditions, and the luminescent property was introduced with PEO23 dinaphthhydrazide (DNH) cross-linking. The hydrogels showed a controlled pH-sensitive DOX·HC l and Ovalbumin (OVA) release profile. In addition, the hydrogel showed the antimicrobial property and may have important applications in the biomedical field in the near future.
Collapse
Affiliation(s)
- Heng An
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province, China
| | - Yan Yang
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Yunyi Bo
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Xiangbo Ma
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province, China
| | - Longmei Liu
- Clinical Laboratory, Shanxi Cardiovascular Hospital, Taiyuan City, Shanxi Province, China
| | - Haijun Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province, China
| | - Yingna He
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province, China.,Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province, China
| |
Collapse
|
19
|
Liu H, Wei S, Qiu H, Zhan B, Liu Q, Lu W, Zhang J, Ngai T, Chen T. Naphthalimide‐Based Aggregation‐Induced Emissive Polymeric Hydrogels for Fluorescent Pattern Switch and Biomimetic Actuators. Macromol Rapid Commun 2020; 41:e2000123. [DOI: 10.1002/marc.202000123] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/26/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Hao Liu
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Huiyu Qiu
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
| | - Beibei Zhan
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Materials Science and TechnologyHunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionHunan University of Science and Technology Xiangtan 411201 China
| | - Qingquan Liu
- School of Materials Science and TechnologyHunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and ConversionHunan University of Science and Technology Xiangtan 411201 China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jiawei Zhang
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - To Ngai
- Department of ChemistryThe Chinese University of Hong Kong Shatin, N.T. Hong Kong 999077 China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related TechnologiesZhejiang Key Laboratory of Marine Materials and Protective TechnologiesNingbo Institute of Materials Technology and EngineeringChinese Academy of Sciences Ningbo 315201 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
20
|
Yang L, Zeng Y, Wu H, Zhou C, Tao L. An antioxidant self-healing hydrogel for 3D cell cultures. J Mater Chem B 2020; 8:1383-1388. [PMID: 31976515 DOI: 10.1039/c9tb02792k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this paper, an antioxidant self-healing hydrogel has been prepared. The Biginelli reaction was used to prepare a monomer containing phenylboronic acid (PBA) and 3,4-dihydropyrimidin-2(1H)-one (DHPM) groups. This PBA-DHPM monomer was copolymerized with poly(ethylene glycol methyl ether) methacrylate (PEGMA) to produce a water-soluble copolymer via radical polymerization. The resulting copolymer quickly crosslinked poly(vinyl alcohol) (PVA) through borate ester bonds to generate a self-healing hydrogel under mild conditions (pH ∼ 7.4, 25 °C). The prepared hydrogel showed an inherent antioxidant ability because of the DHPM moieties in the hydrogel structure. It also showed no cytotoxicity, and in an in vivo mouse model the hydrogel injected under the skin of a mouse hardly caused any adverse reactions, suggesting that this hydrogel could be used as an implantable biomaterial. This first report of an antioxidant self-healing hydrogel demonstrates a new application of the Biginelli reaction in materials science, which might prompt a broad study of multicomponent reactions in interdisciplinary fields.
Collapse
Affiliation(s)
- Lei Yang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yuan Zeng
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Haibo Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| | - Chunwu Zhou
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
21
|
Li B, Zhang Y, Yan B, Xiao D, Zhou X, Dong J, Zhou Q. A self-healing supramolecular hydrogel with temperature-responsive fluorescence based on an AIE luminogen. RSC Adv 2020; 10:7118-7124. [PMID: 35493881 PMCID: PMC9049766 DOI: 10.1039/c9ra10092j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/29/2020] [Indexed: 11/22/2022] Open
Abstract
In this work, an AIE luminogen-based hydrogel with temperature-responsive fluorescence was designed and synthesized. The polymeric hydrogel consisted of a supramolecular network through coordination and ionic interactions. When the temperature was decreased, due to the motion restriction of the polyacrylic acid macromolecular segments and the enhancement in ionic interaction, the hydrogel exhibited a blue-shift in the fluorescence emission peak and increase in the fluorescence intensity, resulting in the visualization of fluorescence changes. The hydrogel network benefitted from non-covalent crosslinking and thus possessed self-healing properties at room temperature with good toughness and resiliency. Therefore, this fluorescent supramolecular hydrogel might be used as a temperature-responsive material. A supramolecular hydrogel was synthesized by using tetra(4-(pyridin-4-yl)phenyl)ethylene (TPPE) as AIE luminogen. The gel not only featured self-healing performance, but also exhibited the temperature-responsive fluorescence with thermochromism.![]()
Collapse
Affiliation(s)
- Botian Li
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Yichi Zhang
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Bo Yan
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Da Xiao
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Xue Zhou
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Junwei Dong
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Qiong Zhou
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| |
Collapse
|
22
|
Galindo JM, Leganés J, Patiño J, Rodríguez AM, Herrero MA, Díez-Barra E, Merino S, Sánchez-Migallón AM, Vázquez E. Physically Cross-Linked Hydrogel Based on Phenyl-1,3,5-triazine: Soft Scaffold with Aggregation-Induced Emission. ACS Macro Lett 2019; 8:1391-1395. [PMID: 35651154 DOI: 10.1021/acsmacrolett.9b00712] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A phenyltriazine compound has been used for the first time as a monomer in the construction of a hydrogel. This physically cross-linked soft material showed blue fluorescence when excited under UV-light. Polymer formation and intermolecular H-bonds arising from triazine moieties operate as aggregation-induced emission (AIE) mechanisms. The combination of soft materials and AIE properties expands the applications of these materials. As a proof of concept, two luminescent dyes have been incorporated into the hydrogel to produce a white-light-emitting material.
Collapse
Affiliation(s)
- Josué M. Galindo
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Jorge Leganés
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Javier Patiño
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - Ana M. Rodríguez
- Escuela Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
| | - M. Antonia Herrero
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Enrique Díez-Barra
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Sonia Merino
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Ana M. Sánchez-Migallón
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| | - Ester Vázquez
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha (UCLM), 13071 Ciudad Real, Spain
- Instituto Regional de Investigación Científica Aplicada (IRICA), 13071 Ciudad Real, Spain
| |
Collapse
|
23
|
Hou F, Xi B, Wang X, Yang Y, Zhao H, Li W, Qin J, He Y. Self-healing hydrogel with cross-linking induced thermo-response regulated light emission property. Colloids Surf B Biointerfaces 2019; 183:110441. [PMID: 31445357 DOI: 10.1016/j.colsurfb.2019.110441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 12/22/2022]
Abstract
With increasing attention paid to smart materials, self-healing hydrogels with thermo-responses have been greatly developed in the past several years. At the same time, fluorescent or light emitting polymers have been studied for use as bioimaging tools and drug delivery vehicles. In this research, thermo-responsive self-healing hydrogels with aggregation-induced emission (AIE) property were prepared from tetraphenylethylene (TPE) containing TPE-poly(N,N-dimethylacrylamide-stat-Diacetone acrylamide) [TPE-P(DMA-stat-DAA)] cross-linked by diacylhydrazide. In addition to self-healing based on reversible acylhydrazone bond, the copolymer and hydrogels showed thermo-responses. The lower critical solution temperature (LCST) of the hydrogels was regulated to body temperature. Based on the AIE property of the TPE unit, the hydrogels showed an enhanced light emitting property above the LCST, which was regulated by temperature change. The in vitro cytotoxicity experiment showed that the hydrogels are not toxic, and the DOX release rate can be enhanced by low pH values, which endowed this kind of thermo-responsive light emitting hydrogel with great potential for applications in bio-diagnosis, drug delivery, artificial organs with light sensitive detection, etc.
Collapse
Affiliation(s)
- Fangjie Hou
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Baozhong Xi
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Xuemeng Wang
- College of Chemistry and Environmental Science, Hebei University, 180 East Wusi Road, Baoding 071002, China
| | - Yan Yang
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Haifeng Zhao
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China
| | - Wenjuan Li
- College of Medical, Hebei University, Baoding 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, 180 East Wusi Road, Baoding 071002, China
| | - Yingna He
- Pharmaceutical College, Hebei University of Chinese Medicine, Shijiazhuang City, Hebei Province 050200, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang City, Hebei Province 050200, China.
| |
Collapse
|
24
|
Zhang X, Liu T, Yan J, Liu K, Li W, Zhang A. Multiple-Responsive Dendronized Hyperbranched Polymers. ACS OMEGA 2019; 4:7667-7674. [PMID: 31459858 PMCID: PMC6649171 DOI: 10.1021/acsomega.9b00291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/03/2019] [Indexed: 05/20/2023]
Abstract
By combining topological structures of hyperbranched polymers with dendronized polymers, a series of hyperbranched poly(acylhydrazone)s pendanted with 3-fold branched dendritic oligoethylene glycol (OEG) units were efficiently prepared through A2 + B3 polycondensation. The constituents of these dendritic polymers can be mediated through dynamic covalent acylhydrazones. Owing to the dense OEG pendants, these dendronized hyperbranched polymers are biocompatible and thermoresponsive, and their cloud points (T cps) can be modulated by the branched architecture, solution pH, and addition of a third component. Cell viability in the presence of these hyperbranched poly(acylhydrazone)s can be maintained above 80%. Based on the unique dendritic architecture with rich acylhydrazine groups, dynamic hydrogels cross-linked via acylhydrazone linkages with good mechanical property were prepared, which inherit the characteristic thermoresponsive behavior of the polymer precursors and also show remarkable self-healing properties. This novel kind of topological polymers and their corresponding hydrogels with dynamic and multiple smart properties may have promising applications as biomaterials.
Collapse
Affiliation(s)
- Xiacong Zhang
- Laboratory of Polymer Chemistry,
School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 333, Shanghai 200444, China
| | - Ting Liu
- Laboratory of Polymer Chemistry,
School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 333, Shanghai 200444, China
| | - Jiatao Yan
- Laboratory of Polymer Chemistry,
School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 333, Shanghai 200444, China
| | - Kun Liu
- Laboratory of Polymer Chemistry,
School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 333, Shanghai 200444, China
| | - Wen Li
- Laboratory of Polymer Chemistry,
School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 333, Shanghai 200444, China
| | - Afang Zhang
- Laboratory of Polymer Chemistry,
School of Materials Science and Engineering, Shanghai University, Materials Building Room 801, Nanchen Street 333, Shanghai 200444, China
| |
Collapse
|
25
|
Li K, Lin Y, Lu C. Aggregation-Induced Emission for Visualization in Materials Science. Chem Asian J 2019; 14:715-729. [PMID: 30629327 DOI: 10.1002/asia.201801760] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/05/2019] [Indexed: 12/31/2022]
Abstract
Fluorescent imaging techniques have attracted much attention as a powerful tool to realize the visualization of structural and morphological evolution of various materials. However, the traditional fluorescent dyes usually suffered from aggregation-caused quenching, which severely limits the visualization results. In contrast, aggregation-induced emission (AIE) molecules with high quantum yields in the condensed state showed great opportunities for imaging techniques. In this feature article, recent progresses in visualization with AIE molecules are discussed. Assembly processes including crystallization, gelation process, and dissipative assembly have been observed. To better study information obtained regarding the processes, visualization during reactions, phase transitions, and molecular motions are successfully presented. Based on these successes, AIE molecules were further applied for phase recognition, macro-dispersion evaluation, and damage detection. Finally, we also present the outlook and perspectives, in our opinion, for the development of visualization by AIE molecules.
Collapse
Affiliation(s)
- Kaitao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Yanjun Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 79, 100029, Beijing, China
| |
Collapse
|
26
|
Light emitting self-healable hydrogel with bio-degradability prepared form pectin and Tetraphenylethylene bearing polymer. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-018-1690-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|