1
|
Wang ZQ, Wang X, Yang YW. Pillararene-Based Supramolecular Polymers for Adsorption and Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301721. [PMID: 36938788 DOI: 10.1002/adma.202301721] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Supramolecular polymers have attracted increasing attention in recent years due to their perfect combination of supramolecular chemistry and traditional polymer chemistry. The design and synthesis of macrocycles have driven the rapid development of supramolecular chemistry and polymer science. Pillar[n]arenes, a new generation of macrocyclic compounds possessing unique pillar-shaped structures, nano-sized cavities, multi-functionalized groups, and excellent host-guest complexation abilities, are promising candidates to construct supramolecular polymer materials with enhanced properties and functionalities. This review summarizes recent progress in the design and synthesis of pillararene-based supramolecular polymers (PSPs) and illustrates their diverse applications as adsorption and separation materials. All performances are evaluated and analyzed in terms of efficiency, selectivity, and recyclability. Typically, PSPs can be categorized into three typical types according to their topologies, including linear, cross-linked, and hybrid structures. The advances made in the area of functional supramolecular polymeric adsorbents formed by new pillararene derivatives are also described in detail. Finally, the remaining challenges and future perspectives of PSPs for separation-based materials science are discussed. This review will inspire researchers in different fields and stimulate creative designs of supramolecular polymeric materials based on pillararenes and other macrocycles for effective adsorption and separation of a variety of targets.
Collapse
Affiliation(s)
- Zhuo-Qin Wang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Macro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Li X, Jin Y, Zhu N, Jin LY. Applications of Supramolecular Polymers Generated from Pillar[ n]arene-Based Molecules. Polymers (Basel) 2023; 15:4543. [PMID: 38231964 PMCID: PMC10708374 DOI: 10.3390/polym15234543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Supramolecular chemistry enables the manipulation of functional components on a molecular scale, facilitating a "bottom-up" approach to govern the sizes and structures of supramolecular materials. Using dynamic non-covalent interactions, supramolecular polymers can create materials with reversible and degradable characteristics and the abilities to self-heal and respond to external stimuli. Pillar[n]arene represents a novel class of macrocyclic hosts, emerging after cyclodextrins, crown ethers, calixarenes, and cucurbiturils. Its significance lies in its distinctive structure, comparing an electron-rich cavity and two finely adjustable rims, which has sparked considerable interest. Furthermore, the straightforward synthesis, uncomplicated functionalization, and remarkable properties of pillar[n]arene based on supramolecular interactions make it an excellent candidate for material construction, particularly in generating interpenetrating supramolecular polymers. Polymers resulting from supramolecular interactions involving pillar[n]arene find potential in various applications, including fluorescence sensors, substance adsorption and separation, catalysis, light-harvesting systems, artificial nanochannels, and drug delivery. In this context, we provide an overview of these recent frontier research fields in the use of pillar[n]arene-based supramolecular polymers, which serves as a source of inspiration for the creation of innovative functional polymer materials derived from pillar[n]arene derivatives.
Collapse
Affiliation(s)
| | | | - Nansong Zhu
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| | - Long Yi Jin
- Department of Chemistry, National Demonstration Centre for Experimental Chemistry Education, Yanbian University, Yanji 133002, China (Y.J.)
| |
Collapse
|
3
|
Hu B, Wei T, Cui Y, Xu X, Li Q. Hg(II) immobilization and detection using gel formation with tetra-(4-pyridylphenyl)ethylene and an aggregation-induced luminescence effect. Sci Rep 2023; 13:2135. [PMID: 36747001 PMCID: PMC9902491 DOI: 10.1038/s41598-023-29431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Tetra-(4-pyridylphenyl)ethylene (TPPE), featuring an aggregation-induced luminescence effect (AIE), has been synthesized and used for selective detection of Hg2+ in DMF/H2O (3:7, v/v) binary solutions. There was a color change from colorless to yellow in the detection of the Hg2+ ions, in addition to an increased fluorescence emission. This shows that TPPE will function as an excellent "turn-on" fluorescence probe in the detection Hg2+. Moreover, the interference of Al3+, Ba2+, Mn2+, Ca2+, Fe3+, Cu2+, Ag+, Cd2+, Co2+, Ni2+, Mg2+, Pb2+, Zn2+, and Cr3+ ions was found to be negligible under optimized solvent conditions. Cysteine and EDTA were also found to form TPPE-based fluorescent switches with the Hg2+ ions. The practical use of the TPPE sensor was also demonstrated by using a specific test kit. Characterization using FT-IR, NMR titration, UV titration, EDS, and HR-MS techniques showed that Hg2+ will form a 1:1 complex with TPPE. Also, the observation of a Tyndall effect, in addition to UV absorption and fluorescence spectra, did clearly demonstrate the presence of an AIE. More noteworthy, TPPE and Hg2+ were found to form a metal-organic gel (MOG) in the DMF solution. The SEM, TEM, ICP, and Zeta potential analyses confirmed that the fluorescent MOG could further adsorb an excess of Hg2+ ions. The BET analyses revealed that the MOG showed a type IV-H3 hysteresis loop according to the International Union of Pure and Applied Chemistry classification. The results of the XRD analysis and of the spectroscopic titrations show that a π-π stacking may be the auxiliary driving force for the gel formation, after that a coordination has taken place. These results indicate that further research on structurally simple metal ion fluorescent probes, which are based on the AIE, is promising for the achievement of a simultaneous fluorescent detection and adsorption of heavy metal pollutants.
Collapse
Affiliation(s)
- Bing Hu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, People's Republic of China.
| | - Taibao Wei
- grid.412260.30000 0004 1760 1427College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Yanjun Cui
- grid.411734.40000 0004 1798 5176College of Science, Gansu Agricultural University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Xia Xu
- grid.411734.40000 0004 1798 5176College of Science, Gansu Agricultural University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Qiao Li
- grid.411291.e0000 0000 9431 4158College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, 730000 Gansu People’s Republic of China
| |
Collapse
|
4
|
Chen M, Wang J, Zhang Q, Zhang J, Chen Z, Sun R. Reversible detection of Hg(II) in pure water based on thymine modified nitrogen, sulfur co-doped carbon dots combined with antidote. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121998. [PMID: 36279800 DOI: 10.1016/j.saa.2022.121998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Conventional Hg2+ visual sensors are unsustainable, hindering their practical application for improved water quality and health. In order to address this challenge, herein, N, S co-doped carbon nanodots (NS-CDs) were prepared and well characterized, presented the fluorescent monitoring for Hg2+ over other metal ions with the limit of detection (LOD) of 0.47 µM. Next, the CDs were successfully modified by thymine without any fluorescence labelling (referred to as T-NS-CDs). The sensitivity to Hg2+ cloud be noticeable enhanced due to the formation of T-Hg2+-T specific base pairs. Accordingly, the LOD was calculated with values as low as 1.56 nM. Furthermore, Hg2+ could be released and complexed with antidote (meso-2,3-dimercaptosuccinic acid) (DMSA-Hg2+), being the responsible for the reversible interconversion between T-Hg2+-T and DMSA-Hg2+. Interestingly, the proposed sensing system also applies to the fluorescent sensing for Hg2+ in tap water with satisfactory recoveries (96.97 %-101.38 %, RSD < 2 %). Thus, by simply combination of elemental doping and surface functionalization, the surface state and functionalities of CDs could be tailorable, endowing the fluorometric sensing towards Hg2+ in environmental system.
Collapse
Affiliation(s)
- Min Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Jun Wang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China.
| | - Qianbo Zhang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Jinsheng Zhang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Zhiming Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| | - Rongguo Sun
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
5
|
A novel strategy of constructing 2D supramolecular organic framework sensor for the identification of toxic metal ions. NANO MATERIALS SCIENCE 2023. [DOI: 10.1016/j.nanoms.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Naked–eye colorimetric and switch–on fluorescence chemosensor based on a rhodamine derivative for Hg2+: Smartphone device, test–kit and food sample applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
7
|
Singh G, George N, Singh R, Singh G, Kaur JD, Kaur G, Singh H, Singh J. CuAAC-Derived Selective Fluorescent Probe as a Recognition Agent for Pb(II) and Hg(II): DFT and Docking Studies. ACS OMEGA 2022; 7:39159-39168. [PMID: 36340062 PMCID: PMC9631732 DOI: 10.1021/acsomega.2c05050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) is a resourceful and stereospecific methodology that has considerably yielded promising 1,2,3-triazole-appended "click" scaffolds with the potential for selective metal ion recognition. Based on "click" methodology, this report presents a chemosensor probe (TCT) based on 4-tert-butylcatechol architecture, via the CuAAC pathway, as a selective and efficient sensor for Pb(II) and Hg(II) ions, categorized as the most toxic and alarming environmental contaminants among the heavy metal ions. The synthesized probe was successfully characterized by spectroscopy [IR and NMR (1H and 13C)] and mass spectrometry. The chemosensing study performed in acetonitrile/water (4:1) solvent media, via UV-vis and fluorescence spectroscopy, established its selective sensitivity for Pb(II) and Hg(II) species among the list of explored metal ions with the limits of detection being 8.6 and 11 μM, respectively. Additionally, the 1H NMR and IR spectra of the synthesized TCT-metal complex also confirmed the metal-ligand binding. Besides, the effect of time and temperature on the binding ability of TCT with Pb(II) and Hg(II) was also studied via UV-vis spectroscopy. Furthermore, density functional theory studies put forward the structural comprehension of the sensor by availing the hybrid density functional (B3LYP)/6311G++(d,p) basis set of theory which was subsequently utilized for investigating its anti-inflammatory potential by performing docking analysis with human leukotriene b4 protein.
Collapse
Affiliation(s)
- Gurleen Singh
- School
of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Nancy George
- School
of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Riddima Singh
- School
of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gurjaspreet Singh
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Jashan Deep Kaur
- Department
of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpreet Kaur
- Department
of Chemistry, GGN Khalsa College, Ludhiana, Punjab 141001, India
| | - Harminder Singh
- School
of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jandeep Singh
- School
of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
8
|
Yang Q, Xu W, Cheng M, Zhang S, Kovaleva EG, Liang F, Tian D, Liu JA, Abdelhameed RM, Cheng J, Li H. Controlled release of drug molecules by pillararene-modified nanosystems. Chem Commun (Camb) 2022; 58:3255-3269. [PMID: 35195641 DOI: 10.1039/d1cc05584d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Stimuli-responsive nanosystems have attracted the interest of researchers due to their intelligent function of controlled release regulated by a variety of external stimuli and have been applied in biomedical fields. Pillar[n]arenes with the advantages of a rigid structure, electron holes and easy functionalization are considered as excellent candidates for the construction of host-guest nanosystems. In recent years, many pillararene modified nanosystems have been reported in response to different stimuli. In this feature article, we summarize the advance of stimuli-responsive pillararene modified nanosystems for controlled release of drugs from the perspectives of decomposition release and gated release, focusing on the control principles of these nanosystems. We expect that this review can enlighten and guide investigators in the field of stimuli-responsive controlled release.
Collapse
Affiliation(s)
- Qinglin Yang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Weiwei Xu
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Siyun Zhang
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Elena G Kovaleva
- Department of Technology for Organic Synthesis, Ural Federal University, Mira Street, 28, 620002 Yekaterinburg, Russia.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Demei Tian
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Jun-An Liu
- The Department of Applied Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Reda M Abdelhameed
- Applied Organic Chemistry Department, Chemical Industries Research Division, National Research Center, 33 El Buhouth St., Dokki, Siza, P.O. 12311, Egypt.
| | - Jing Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China.
| |
Collapse
|
9
|
Yao H, Niu YB, Hu YP, Sun XW, Zhang QP, Zhang YM, Wei TB, Lin Q. Metal-ion-mediated synergistic coordination: construction of AIE-metallogel sensor arrays for anions and amino acids. NEW J CHEM 2022. [DOI: 10.1039/d2nj02992h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metallogel-based six membered sensor arrays show applications in multi-analyte detection and fluorescence encryption.
Collapse
Affiliation(s)
- Hong Yao
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Yan-Bing Niu
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Yin-Ping Hu
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Xiao-Wen Sun
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Qin-Peng Zhang
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - You-Ming Zhang
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
- Deputy Director-General of Gansu Natural Energy Research Institute, Renmin Road 23, Lanzhou, Gansu, 730070, P. R. China
| | - Tai-Bao Wei
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Qi Lin
- Key laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| |
Collapse
|
10
|
Kyarikwal R, Malviya N, Chakraborty A, Mukhopadhyay S. Preparation of Tris-Tetrazole-Based Metallogels and Stabilization of Silver Nanoparticles: Studies on Reduction Catalysis and Self-Healing Property. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59567-59579. [PMID: 34855348 DOI: 10.1021/acsami.1c19217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An ionic multifunctional gelator molecule triethylammonium 5-(3,5-bis((1H-tetrazol-5-yl)carbamoyl)benzamido)tetrazol-1-ide G7 is synthesized and characterized by spectroscopic tools and mass spectrometry. G7 tends to form a stable organogel in a mixture of N,N-dimethylformamide/dimethylsulfoxide (DMF/DMSO) and water. Introduction of different metal perchlorate salts in a DMSO solution of G7 furnished a series of metallogels M1G7, M2G7, M3G7, M4G7, M5G7, M6G7, and M7G7 [M1 = Fe(III), M2 = Co(II), M3 = Cu(II), M4 = Zn(II), M5 = Ag(I), M6 = Ni, and M7 = Fe(II)]. Among them, M1G7, M3G7, M4G7, M6G7, and M7G7 help individually in the synthesis and stabilization of bimetallic nanocomposites containing silver nanoparticles (AgNPs). Iron(III)-containing nanocomposites M1G7AgNPs have been utilized in the form of catalysts in the reduction reaction of nitroaromatic compounds to corresponding amines with a quantitative yield. The organogel G7 has also shown the abilities to absorb different metal ions from aqueous solutions and allow selective transition of M1G7 from the gel state to the crystalline state. Fe(III) formed dual metallogels with Zn(II), which can be used for further applications. Furthermore, the nanocomposite M1G7AgNP powder, in the presence of the organogel G7, gets converted into a nanostructured metallogel, which shows exclusive self-healing properties. This is the first example where a nanocomposite powder contains the dual-metal system (Fe(III) and Ag(0)) and shows a reduction catalytic property, and its nanostructured dual-metallogel form manifests the self-healing property in a fabricated metallogel.
Collapse
Affiliation(s)
- Reena Kyarikwal
- Department of Chemistry, School of Basic Science, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Novina Malviya
- Department of Chemistry, School of Basic Science, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Argha Chakraborty
- Department of Chemistry, School of Basic Science, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Suman Mukhopadhyay
- Department of Chemistry, School of Basic Science, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
11
|
Karuk Elmas SN, Dinckan S, Arslan FN, Aydin D, Savran T, Yilmaz I. A rhodamine based nanosensor platform for Hg2+ sensing in near–perfect aqueous medium: Smartphone, test strip and real sample applications. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Chen ZE, Zang XF, Zhang H. An ethyl thioglycolate-based chemosensor: Spectrophotometric detection of Fe 3+ and fluorometric detection of Hg 2+ with high selectivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119955. [PMID: 34082353 DOI: 10.1016/j.saa.2021.119955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
A novel symmetric bianthracene derivative (D2) containing one benzene ring and two ethyl thioglycolates connecting to the benzene ring on both sides of the bianthracene unit was designed and synthesized. D2 can detect Fe3+ and Hg2+ in acetonitrile/water (6:4, v/v) solution via different changes of absorbance and fluorescence in the pH range from 3 to 10. D2 exhibits high colorimetric sensitivity for Fe3+ with low detection limit (1.87 × 10-5 mol/L). The absorbance intensity of D2 in acetonitrile/water solution show a linear response to Fe3+ in the wide concentration range of 0 -1000 μM, which is beneficial for quantitative analysis. D2 also displays highly selective fluorescent sensing for Hg2+ with a low detection limit of 1.07 µM over other metal ions and can accurately detect the existence of Hg2+ in water samples.
Collapse
Affiliation(s)
- Zhen-E Chen
- School of Chemistry and Chemical Engineering, Academician Workstation, Zunyi Normal College, Zunyi 563006, China.
| | - Xu-Feng Zang
- Department of Applied Physics, Huzhou University, Huzhou 313000, China
| | - Hai Zhang
- School of Chemistry and Chemical Engineering, Academician Workstation, Zunyi Normal College, Zunyi 563006, China.
| |
Collapse
|
13
|
Liu J, Sun X, Huang T, Zhang Y, Yao H, Wei T, Lin Q. Influence of Monomers’ Structure on the Assembly and Material Property of Pillar[5]
arene‐Based
Supramolecular Polymer Gels. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Juan Liu
- College of Chemical Engineering, Northwest Minzu University (Northwest University for Nationalities), Xibei Xincun Lanzhou Gansu 730000 China
| | - Xiao‐Wen Sun
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Ting‐Ting Huang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Hong Yao
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| | - Qi Lin
- Key Laboratory of Eco‐functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco‐environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering Northwest Normal University Lanzhou Gansu 730070 China
| |
Collapse
|
14
|
Chao S, Shen Z, Pei Y, Pei Z. Covalently bridged pillararene-based oligomers: from construction to applications. Chem Commun (Camb) 2021; 57:10983-10997. [PMID: 34604891 DOI: 10.1039/d1cc04547d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covalently bridged pillararene-based oligomers (CBPOs) are formed by covalent bonding of pillararene monomers, and they play a critical role in expanding the multi-disciplinary application of pillararenes due to their excellent molecular complexing ability, specially designed geometry and multifunctional linking groups. This article provides a comprehensive review of the synthesis and applications of CBPOs. The design and synthetic strategies of a series of CBPOs (dimers, trimers, tetramers and others) are first introduced. Many CBPOs with multi-cavities and unique geometry are very attractive and efficient building blocks for constructing novel smart supramolecular polymers (SPs) with different topological structures through host-guest interactions. We describe the methods of constructing various SPs based on CBPOs in detail. Furthermore, the extensive applications of CBPOs and CBPO-based SPs in recognition and detection of ions and organic small molecules, selective adsorption and separation, artificial light-harvesting systems, catalysis, drug delivery systems, and others are systematically introduced. Finally, the future challenges and perspectives for CBPOs are also highlighted.
Collapse
Affiliation(s)
- Shuang Chao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Ziyan Shen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, P. R. China.
| |
Collapse
|
15
|
Li Z, Ji X, Xie H, Tang BZ. Aggregation-Induced Emission-Active Gels: Fabrications, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100021. [PMID: 34216407 DOI: 10.1002/adma.202100021] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/14/2021] [Indexed: 05/07/2023]
Abstract
Chromophores that exhibit aggregation-induced emission (i.e., aggregation-induced emission luminogens [AIEgens]) emit intense fluorescence in their aggregated states, but show negligible emission as discrete molecular species in solution due to the changes in restriction and freedom of intramolecular motions. As solvent-swollen quasi-solids with both a compact phase and a free space, gels enable manipulation of intramolecular motions. Thus, AIE-active gels have attracted significant interest owing to their various distinctive properties and promising application potential. Herein, a comprehensive overview of AIE-active gels is provided. The fabrication strategies employed are detailed, and the applications of AIEgens are summarized. In addition, the gel functions arising from the AIE moieties are revealed, along with their structure-property relationships. Furthermore, the applications of AIE-active gels in diverse areas are illustrated. Finally, ongoing challenges and potential means to address them are discussed, along with future perspectives on AIE-active gels, with the overall aim of inspiring research on novel materials and ideas.
Collapse
Affiliation(s)
- Zhao Li
- Institute of Engineering Medicine, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, China
| | - Xiaofan Ji
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan, Shenzhen, 518055, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institutes, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
16
|
Tavallali H, Rahimi E, Deilamy‐Rad G, Karimi MA, Tavallali M. A novel colorimetric chemosensor for selective and highly sensitive determination of thiourea: An approach toward a molecular keypad lock. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Eisa Rahimi
- Department of Chemistry Payame Noor University Tehran Iran
| | | | | | | |
Collapse
|
17
|
Sharma R, Haldar U, Turabee MH, Lee HI. Recyclable macromolecular thermogels for Hg(II) detection and separation via sol-gel transition in complex aqueous environments. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124625. [PMID: 33279321 DOI: 10.1016/j.jhazmat.2020.124625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The sensitive detection and quantitative separation of toxic heavy metal ions in aqueous media are of great importance. In this study, a thermogelling poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) triblock copolymer (P1) was synthesized, and difluoroboron dipyrromethene (BODIPY) fluorophore integrated with thiosemicarbazide units was attached to the chain ends of P1 through consecutive post-polymerization modifications, leading to P4. P4 exhibited rapid and selective detection of Hg(II) in 100% aqueous media via turn-on fluorescence emission with a limit of detection (LOD) of as low as 0.461 μM. This turn-on emission behavior is attributed to the suppression of C˭N isomerization caused by the formation of a coordination complex between P4 and Hg(II) ions. The selective and quantitative removal of Hg(II) among various metal ions was achieved by trapping chelated Hg(II) ions inside the dehydrated P4 gel via thermo-controlled sol-gel-dehydrated gel transitions. Treating the Hg(II) ion-trapped dehydrated gels with sodium sulfide (Na2S) in acetone/water at room temperature led to HgS precipitates, and P4 in solution was dried and recycled. This recyclable thermoresponsive macromolecular probe is promising for not only Hg(II) detection but also its separation and removal from complex aqueous environments.
Collapse
Affiliation(s)
- Rini Sharma
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Ujjal Haldar
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Md Hasan Turabee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea
| | - Hyung-Il Lee
- Department of Chemistry, University of Ulsan, Ulsan 680-749, Republic of Korea.
| |
Collapse
|
18
|
Cao X, Gao A, Hou JT, Yi T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213792] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Chen YY, Jiang XM, Gong GF, Yao H, Zhang YM, Wei TB, Lin Q. Pillararene-based AIEgens: research progress and appealing applications. Chem Commun (Camb) 2021; 57:284-301. [DOI: 10.1039/d0cc05776b] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The pillararene-based AIEgens and AIE materials, constructed using different assembly forms, show attractive applications in various areas.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xiao-Mei Jiang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Guan-Fei Gong
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
20
|
Kumar R, Ravi S, Immanuel David C, Nandhakumar R. A photo-induced electron transfer based reversible fluorescent chemosensor for specific detection of mercury (II) ions and its applications in logic gate, keypad lock and real samples. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.11.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
21
|
Sun XW, Wang ZH, Li YJ, Zhang YF, Zhang YM, Yao H, Wei TB, Lin Q. Tri-pillar[5]arene-Based Multifunctional Stimuli-Responsive Supramolecular Polymer Network with Conductivity, Aggregation-Induced Emission, Thermochromism, Fluorescence Sensing, and Separation Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01972] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiao-Wen Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhong-Hui Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ying-Jie Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun-Fei Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - You-Ming Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hong Yao
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Qi Lin
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
22
|
Guan WL, Adam KM, Qiu M, Zhang YM, Yao H, Wei TB, Lin Q. Research progress of redox-responsive supramolecular gel. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1846738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wen-Li Guan
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Khalid Mohammed Adam
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Min Qiu
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - You-Ming Zhang
- Gansu Natural Energy Research Institute, Lanzhou, Gansu, China
| | - Hong Yao
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Tai-Bao Wei
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Qi Lin
- Northwest Normal University, College of Chemistry and Chemical Engineering, Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| |
Collapse
|
23
|
Zhang H, Liu Z, Xin F, Zhao Y. Metal-ligated pillararene materials: From chemosensors to multidimensional self-assembled architectures. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
López-Alled CM, Murfin LC, Kociok-Köhn G, James TD, Wenk J, Lewis SE. Colorimetric detection of Hg 2+ with an azulene-containing chemodosimeter via dithioacetal hydrolysis. Analyst 2020; 145:6262-6269. [PMID: 32926021 DOI: 10.1039/d0an01404d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Azulene is a bicyclic aromatic chromophore that absorbs in the visible region. Its absorption maximum undergoes a hypsochromic shift if a conjugated electron-withdrawing group is introduced at the C1 position. This fact can be exploited in the design of a colorimetric chemodosimeter that functions by the transformation of a dithioacetal to the corresponding aldehyde upon exposure to Hg2+ ions. This chemodosimeter exhibits good chemoselectivity over other metal cations, and responds with an unambiguous colour change clearly visible to the naked eye. Its synthesis is concise and its ease of use makes it appropriate in resource-constrained environments, for example in determing mercury content of drinking water sources in the developing world.
Collapse
Affiliation(s)
- Carlos M López-Alled
- Centre for Sustainable and Circular Technologies, University of Bath, Bath, BA2 7AY, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Fang Y, Deng Y, Dehaen W. Tailoring pillararene-based receptors for specific metal ion binding: From recognition to supramolecular assembly. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213313] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Ma J, Zhang Y, Zhao B, Jia Q. Supramolecular adsorbents in extraction and separation techniques - A review. Anal Chim Acta 2020; 1122:97-113. [DOI: 10.1016/j.aca.2020.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/03/2023]
|
27
|
Liu F, Ding Z, Xu Y, Gao J, Lalevée J. Polydiacetylene (
PDA
) based supramolecular gel upon coassembly with a bolaamphiphilic cogelator. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Feiyang Liu
- College of Chemistry and Materials Science Anhui Normal University Wuhu China
| | - Zhaofu Ding
- College of Chemistry and Materials Science Anhui Normal University Wuhu China
| | - Yangyang Xu
- College of Chemistry and Materials Science Anhui Normal University Wuhu China
- Institut de Science des Matériaux de Mulhouse, IS2M‐UMR CNRS 7361, UHA Mulhouse France
| | - Jiangang Gao
- School of Biological and Chemical Engineering Anhui Polytechnic University Wuhu China
| | - Jacques Lalevée
- Institut de Science des Matériaux de Mulhouse, IS2M‐UMR CNRS 7361, UHA Mulhouse France
| |
Collapse
|
28
|
Zhang H, Liu Z, Fu H. Pillararenes Trimer for Self-Assembly. NANOMATERIALS 2020; 10:nano10040651. [PMID: 32244442 PMCID: PMC7221528 DOI: 10.3390/nano10040651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/25/2022]
Abstract
Pillararenes trimer with particularly designed structural geometry and excellent capacity of recognizing guest molecules is a very efficient and attractive building block for the fabrication of advanced self-assembled materials. Pillararenes trimers could be prepared via both covalent and noncovalent bonds. The classic organic synthesis reactions such as click reaction, palladium-catalyzed coupling reaction, amidation, esterification, and aminolysis are employed to build covalent bonds and integrate three pieces of pillararenes subunits together into the “star-shaped” trimers and linear foldamers. Alternatively, pillararenes trimers could also be assembled in the form of host-guest inclusions and mechanically interlocked molecules via noncovalent interactions, and during those procedures, pillararenes units contribute the cavity for recognizing guest molecules and act as a “wheel” subunit, respectively. By fully utilizing the driving forces such as host-guest interactions, charge transfer, hydrophobic, hydrogen bonding, and C–H…π and π–π stacking interactions, pillararenes trimers-based supramolecular self-assemblies provide a possibility in the construction of multi-dimensional materials such as vesicular and tubular aggregates, layered networks, as well as frameworks. Interestingly, those assembled materials exhibit interesting external stimuli responsiveness to e.g., variable concentrations, changed pH values, different temperature, as well as the addition/removal of competition guests and ions. Thus, they could further be used for diverse applications such as detection, sorption, and separation of significant multi-analytes including metal cations, anions, and amino acids.
Collapse
Affiliation(s)
- Huacheng Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: ; Tel.: +86-029-8266-5836
| | - Zhaona Liu
- Medical School, Xi’an Peihua University, Xi’an 710125, China;
| | - Hui Fu
- College of Science, China University of Petroleum, Qingdao 266580, China;
| |
Collapse
|
29
|
Li YF, Li Z, Lin Q, Yang YW. Functional supramolecular gels based on pillar[n]arene macrocycles. NANOSCALE 2020; 12:2180-2200. [PMID: 31916548 DOI: 10.1039/c9nr09532b] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supramolecular gels constructed from low-molecular-weight gelators via noncovalent interactions have received increasing attention. The rapid development of stimuli-responsive supramolecular gels with attractive properties is highly desirable to meet the ever-growing demand of materials science and chemistry. The inherent reversible and dynamic nature of noncovalent interactions in supramolecular gels endows the materials with sensing, processing, and actuating functions in response to specific environmental changes and offers them great potential in flexible biomaterials and intelligent devices. In particular, pillar[n]arenes with symmetrical pillar-shaped architectures have been recognized as an emerging class of synthetic macrocycles after crown ethers, cyclodextrins, calixarenes, and cucurbiturils, and proven to be excellent candidates for the fabrication of functional supramolecular gels due to their many advantages including facile synthesis, diverse functionalization, and appealing host-guest properties. This review provides a comprehensive overview of recent progress in supramolecular gels involving pillar[n]arenes and their derivatives as synthetic macrocyclic arenes, from the viewpoints of the synthetic approach, controllable assembly, stimuli-responsiveness, and functions. Perspectives of this burgeoning field of research are also given at the end.
Collapse
Affiliation(s)
- Yong-Fu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Zheng Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.
| | - Ying-Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China. and The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
30
|
Hu JH, Yin ZY, Gui K, Fu QQ, Yao Y, Fu XM, Liu HX. A novel supramolecular polymer gel-based long-alkyl-chain-functionalized coumarin acylhydrazone for the sequential detection and separation of toxic ions. SOFT MATTER 2020; 16:1029-1033. [PMID: 31854429 DOI: 10.1039/c9sm02270h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel approach for the detection and separation of toxic ions was successfully developed via the introduction of competitive reactions into a long-alkyl-chained acylhydrazone-based coumarin supramolecular polymer, chemosensor OGC (3%, n-BuOH/H2O), which showed sequential detection and separation of CN-, Fe3+ and S2-, Ag+ in the gel state with high selectivity and sensitivity. Moreover, the ion-responsive films were prepared for the convenient and continuous detection of CN-, Fe3+ and S2-, Ag+ in water solution.
Collapse
Affiliation(s)
- Jing-Han Hu
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China.
| | - Zhi-Yuan Yin
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China.
| | - Kai Gui
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China.
| | - Qing-Qing Fu
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China.
| | - Ying Yao
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China.
| | - Xu-Mei Fu
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China.
| | - Hui-Xin Liu
- College of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China.
| |
Collapse
|
31
|
He J, Zhang Y, Hu J, Li Y, Zhang Q, Qu W, Yao H, Wei T, Lin Q. Novel fluorescent supramolecular polymer metallogel based on Al
3+
coordinated cross‐linking of quinoline functionalized‐ pillar[5]arene act as multi‐stimuli‐responsive materials. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun‐Xia He
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - You‐Ming Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
- Natural Energy Research Institute Lanzhou Gansu 730046 P. R. China
| | - Jian‐Peng Hu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Ying‐Jie Li
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Zhang
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Wen‐Juan Qu
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Hong Yao
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Tai‐Bao Wei
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| | - Qi Lin
- Key Laboratory of Eco‐Environment‐Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou Gansu 730070 P. R. China
| |
Collapse
|
32
|
Xiao T, Zhou L, Sun XQ, Huang F, Lin C, Wang L. Supramolecular polymers fabricated by orthogonal self-assembly based on multiple hydrogen bonding and macrocyclic host–guest interactions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Kumar A, Bawa S, Ganorkar K, Ghosh SK, Bandyopadhyay A. Syntheses, characterization, multi-acid fluorescence sensing and electroluminescence properties of Cr( ii)-based metallopolymers. Polym Chem 2020. [DOI: 10.1039/d0py00953a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cr(ii)-Based multifunctional fluorescent metallopolymers with different degrees of backbone rigidity were synthesized and applied as multi-acid sensors and electroluminescent ON–OFF switches.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Polymer and Process Engineering
- Saharanpur-247001
- India
| | - Shubham Bawa
- Department of Polymer and Process Engineering
- Saharanpur-247001
- India
| | - Kapil Ganorkar
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | - Sujit Kumar Ghosh
- Department of Chemistry
- Visvesvaraya National Institute of Technology
- Nagpur
- India
| | | |
Collapse
|
34
|
Yang HL, Dang ZJ, Zhang YM, Wei TB, Yao H, Zhu W, Fan YQ, Jiang XM, Lin Q. Novel cyanide supramolecular fluorescent chemosensor constructed from a quinoline hydrazone functionalized-pillar[5]arene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117136. [PMID: 31136864 DOI: 10.1016/j.saa.2019.117136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
Herein, we report a simple and novel approach for the design of fluorescent chemosensor through the self-assembly of functionalized monomer molecules. According to these approach, a novel supramolecular fluorescent chemosensor (SPMS) was successfully constructed by self-assembly of a quinoline hydrazone functionalized pillar[5]arene monomer PM. Interestingly, upon the addition of CN-, the solution of SPMS instantly shows dramatic fluorescent enhancement and emitting bright blue emission. Meanwhile, the fluorescence quantum yields show distinct increase from 0.0582 of SPMS to 0.3952 of SPMS + CN-. The detection limit (LOD) of SPMS for CN- is 9.70 × 10-8 M, which indicated high sensitivity. Moreover, the SPMS is selective for CN- even in the presence of other anions, the fluorescent detection process of SPMS for CN- was not interfered by other competitive anions (F-, Cl-, Br-, I-, N3-, OH-, SCN-, HSO4-, AcO-, H2PO4- and ClO4-). Notably, in the CN- sensing process, the self-assembly structure of the supramolecular chemosensor SPMS didn't show any disassembly. This work provides a novel approach for instant detection of CN- through a self-assembled supramolecular fluorescent chemosensor in aqueous system. Moreover, the test strips based on SPMS were fabricated, which could serve as convenient and efficient CN- test kits.
Collapse
Affiliation(s)
- Hai-Long Yang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Zi-Jia Dang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - You-Ming Zhang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China; College of Chemistry and Chemical Engineering, Lanzhou City University, Lanzhou, Gansu 730070, PR China.
| | - Tai-Bao Wei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Hong Yao
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Wei Zhu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Yan-Qing Fan
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Xiao-Mei Jiang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China
| | - Qi Lin
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China.
| |
Collapse
|
35
|
Qi LH, Ding JD, Ma XQ, Guan XW, Zhu W, Yao H, Zhang YM, Wei TB, Lin Q. An azine-containing bispillar[5]arene-based multi-stimuli responsive supramolecular pseudopolyrotaxane gel for effective adsorption of rhodamine B. SOFT MATTER 2019; 15:6836-6841. [PMID: 31402364 DOI: 10.1039/c9sm01126a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An azine-containing bispillar[5]arene was designed and synthesized by the reaction of aldehyde functionalized-pillar[5]arene and hydrazine. Then, a novel bispillar[5]arene-based supramolecular pseudopolyrotaxane has been successfully prepared via host-guest interaction. Interestingly, by taking advantage of the host-guest interactions, π-π stacking interactions and hydrogen bonding interactions, the multi-stimuli-responsive gel-sol phase transitions of such a supramolecular pseudopolyrotaxane gel were successfully realized under different stimuli, such as acid, temperature, concentration, and competitive guests. Moreover, this supramolecular system could effectively adsorb dye molecule rhodamine B. It is worth noting that this supramolecular pseudopolyrotaxane gel prepared in cyclohexanol solution (BP5·G·C) could be used as an adsorbent material for adsorbing rhodamine B with adsorption efficiency of 98.4%. Meanwhile, the adsorption efficiency was 97.6% for supramolecular pseudopolyrotaxane gel prepared in DMSO-H2O (v : v, 8 : 2) binary solution (BP5·G·D), also indicating the superior adsorption effect of BP5·G·D toward the dye molecule rhodamine B.
Collapse
Affiliation(s)
- Li-Hua Qi
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wei TB, Ma XQ, Fan YQ, Jiang XM, Dong HQ, Yang QY, Zhang YF, Yao H, Lin Q, Zhang YM. Aggregation-induced emission supramolecular organic framework (AIE SOF) gels constructed from tri-pillar[5]arene-based foldamer for ultrasensitive detection and separation of multi-analytes. SOFT MATTER 2019; 15:6753-6758. [PMID: 31397832 DOI: 10.1039/c9sm01385g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a novel aggregation-induced emission supramolecular organic framework (AIE SOF) with ultrasensitive response, termed FSOF, was constructed using a tri-pillar[5]arene-based foldamer. Interestingly, benefiting from the noise signal shielding properties of FSOF as well as the competition between the cationπ and ππ interactions, the FSOF shows an ultrasensitive response for multi-analytes, such as Fe3+, Hg2+ and Cr3+. The limits of detection (LODs) of the FSOF for Fe3+, Hg2+ and Cr3+ are in the range of 9.40 × 10-10-1.86 × 10-9. More importantly, the xerogel of FSOF exhibits porous mesh structures, which could effect high-efficiency separation above metal ions from their aqueous solution, with adsorption percentages in the range 92.39-99.99%. In addition, by introducing metal ions into the FSOF, a series of metal ions coordinated supramolecular organic frameworks (MSOFs) were successfully constructed. Moreover, MSOFs show selective fluorescence "turn on" ultrasensitive detection CN- (LOD = 2.12 × 10-9) and H2PO4- (LOD = 1.78 × 10-9). This is a novel approach to construct SOFs through a tri-pillar[5]arene-based foldamer, and also provides a new way to achieve ultrasensitive detection and high-efficiency separation.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Haldar U, Lee HI. BODIPY-Derived Polymeric Chemosensor Appended with Thiosemicarbazone Units for the Simultaneous Detection and Separation of Hg(II) Ions in Pure Aqueous Media. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13685-13693. [PMID: 30882200 DOI: 10.1021/acsami.9b00408] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Developing a simple and cheap analytical method for the selective detection and quantitative separation of toxic ions present in aqueous media is the biggest challenge faced by the chemosensing research community. Here, a 5,5-difluoro-1,3,7,9-tetramethyl-10-phenyl-5 H-dipyrrolo-diazaborinine-derived water-soluble polymer integrated with thiosemicarbazone units was rationally designed and synthesized for the simultaneous detection and separation of Hg(II) ions in pure aqueous solution. The water-soluble polymer scaffold poly( N, N'-dimethyl acrylamide- co-5,5-difluoro-1,3,7,9-tetramethyl-10-phenyl-5 H-dipyrrolo-diazaborinine-2-carbaldehyde) was synthesized by reversible addition-fragmentation chain transfer polymerization, followed by post-polymerization modification with thiosemicarbazide, leading to the formation of the target probe, P1. The nonemitting P1 exhibited bright yellow emission upon exposure to Hg(II) ions, with a limit of detection as low as 0.37 μM. This turn-on emission behavior triggered by Hg(II) ions might originate from the suppression of isomerization around the C═N bond of the thiosemicarbazone moiety caused by the formation of a coordination complex between P1 and Hg(II) ions. In addition, P1 displayed excellent selectivity toward Hg(II) ions over other metal cations. Finally, the selective removal of Hg(II) ions from an aqueous solution containing various metal ions was achieved by precipitation, which is probably caused by the fact that coordination complexes whereby Hg(II) ions acted as bridgeheads between P1 molecules had formed.
Collapse
Affiliation(s)
- Ujjal Haldar
- Department of Chemistry , University of Ulsan , Ulsan 680-749 , Republic of Korea
| | - Hyung-Il Lee
- Department of Chemistry , University of Ulsan , Ulsan 680-749 , Republic of Korea
| |
Collapse
|
38
|
Guan XW, Lin Q, Zhang YM, Wei TB, Wang J, Fan YQ, Yao H. Pillar[5]arene-based spongy supramolecular polymer gel and its properties in multi-responsiveness, dye sorption, ultrasensitive detection and separation of Fe 3. SOFT MATTER 2019; 15:3241-3247. [PMID: 30916674 DOI: 10.1039/c8sm02482k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, a novel way to design and construct multi-functional spongy supramolecular polymer gels through an easy to make tripodal guest (TA) and a naphthalimide functionalized-pillar[5]arene host (AP5) has been developed. According to this approach, a novel pillar[5]arene-based supramolecular polymer gel (SHG) was constructed via multi-non-covalent interactions such as host-guest inclusion, C-Hπ, ππ and hydrogen bonds and so on. Interestingly, the SHG exhibits a spongy structure and strong aggregation induced emission (AIE). Furthermore, the SHG also exhibited multi-responsiveness toward outer stimuli such as heating-cooling, pH, competitive agents and mechanical. More importantly, the SHG xerogel shows separation properties for Fe3+, methyl orange, methylene blue and sudan I dyes. The separation rates of SHG xerogel for Fe3+ ions and organic dyes can reach up to 99.8%. Simultaneously, the SHG could ultrasensitively detect Fe3+ (LOD is 0.9 nM). In addition, a thin film based on SHG was also prepared, which was confirmed to be a convenient test kit for detecting Fe3+.
Collapse
Affiliation(s)
- Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Wang Y, Pei Z, Feng W, Pei Y. Stimuli-responsive supramolecular nano-systems based on pillar[n]arenes and their related applications. J Mater Chem B 2019; 7:7656-7675. [DOI: 10.1039/c9tb01913h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stimuli-responsive supramolecular nano-systems (SRNS) have been a trending interdisciplinary research area due to the responsiveness upon appropriate stimuli, which makes SRNS very attractive in multiple fields where precise control is vital.
Collapse
Affiliation(s)
- Yang Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Weiwei Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| | - Yuxin Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
40
|
Chen L, Cai Y, Feng W, Yuan L. Pillararenes as macrocyclic hosts: a rising star in metal ion separation. Chem Commun (Camb) 2019; 55:7883-7898. [PMID: 31236553 DOI: 10.1039/c9cc03292d] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pillararenes are macrocyclic oligomers of alkoxybenzene akin to calixarenes but tethered at the 2,5-positions via methylene bridges. Benefiting from their unique pillar-shaped architecture favorable for diverse functionalization and versatile host-guest properties, pillararenes decorated with chelating groups worked excellently as supporting platforms to construct extractants or adsorbents for metal ion separation. This feature article provides a detailed summary of pillararenes in Ln/An separation by liquid-liquid extraction and heavy metal separation by solid-liquid extraction. The preorganization effect of the rigid pillararene framework has a profound impact on the extraction of metal ions, and a unique extraction mechanism is observed when employing ionic liquids as solvents. The rich host-guest chemistry of pillararenes enables construction of a wide variety of supramolecular materials as metal ion adsorbents. We also discuss the differences between pillararenes and several well-known macrocycles, with a focus on the metal-ligand coordination and its influencing factors. We hope this review will provide useful information and unleash new opportunities in this field.
Collapse
Affiliation(s)
- Lixi Chen
- Institute of Nuclear Science and Technology, Key Laboratory for Radiation Physics and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | | | | | | |
Collapse
|
41
|
Lin Q, Guan XW, Song SS, Fan H, Yao H, Zhang YM, Wei TB. A novel supramolecular polymer π-gel based on bis-naphthalimide functionalized-pillar[5]arene for fluorescence detection and separation of aromatic acid isomers. Polym Chem 2019. [DOI: 10.1039/c8py01299g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pillar[5]arene-based supramolecular polymer π-gel, BPN-G, can selectively identify and separate benzoic acid isomers through rationally introduced multi-intermolecular interactions.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Shan-Shan Song
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Haiyan Fan
- Chemistry Department
- School of Science and Technology
- Nazarbayev University Astana 010000
- Kazakhstan
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province College of Chemistry and Chemical Engineering Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
42
|
Ding JD, Chen JF, Lin Q, Yao H, Zhang YM, Wei TB. A multi-stimuli responsive metallosupramolecular polypseudorotaxane gel constructed by self-assembly of a pillar[5]arene-based pseudo[3]rotaxane via zinc ion coordination and its application for highly sensitive fluorescence recognition of metal ions. Polym Chem 2018. [DOI: 10.1039/c8py01319e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel pillar[5]arene-based metallosupramolecular polypseudorotaxane gel has been successfully prepared.
Collapse
Affiliation(s)
- Jin-Dong Ding
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Jin-Fa Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|