1
|
Simon S, Harikumar P, Sreeja PB. Green Power: The Role of Plant-Based Biochar in Advanced Energy Storage. Chemphyschem 2025; 26:e202400569. [PMID: 39327809 DOI: 10.1002/cphc.202400569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
This comprehensive review aims to provide an overview of recent progress in utilizing plant-based biochar for supercapacitors. It specifically focuses on biochar derived from plant biomass such as agricultural residues, weeds and aquatic plants, examining their potential in energy storage applications. It explores various synthesis methods like pyrolysis and hydrothermal carbonization and evaluates their impact on biochar's structure and electrochemical properties. Additionally, it examines the electrochemical performance of biochar-based supercapacitors, focusing on parameters such as capacitance, cycling stability, and rate capability. Strategies to enhance biochar's electrochemical performance, such as surface modification and composite fabrication, are also discussed. Furthermore, it addresses existing challenges and prospects in harnessing plant-based biochar for supercapacitor applications, highlighting its potential as a sustainable and efficient electrode material for next-generation energy storage devices.
Collapse
Affiliation(s)
- Shilpa Simon
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560029, IN
| | - Parvathy Harikumar
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560029, IN
| | - P B Sreeja
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560029, IN
| |
Collapse
|
2
|
Bai YL, Zhang CC, Rong F, Guo ZX, Wang KX. Biomass-Derived Carbon Materials for Electrochemical Energy Storage. Chemistry 2024; 30:e202304157. [PMID: 38270279 DOI: 10.1002/chem.202304157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/26/2024]
Abstract
The environmental impact from the waste disposal has been widely concerned around the world. The conversion of wastes to useful resources is important for the sustainable society. As a typical family of wastes, biomass materials basically composed of collagen, protein and lignin are considered as useful resources for recycle and reuse. In recent years, the development of carbon material derived from biomasses, such as plants, crops, animals and their application in electrochemical energy storage have attracted extensive attention. Through the selection of the appropriate biomass, the optimization of the activation method and the control of the pyrolysis temperatures, carbon materials with desired features, such as high-specific surface area, variable porous framework, and controllable heteroatom-doping have been fabricated. Herein, this review summarized the preparation methods, morphologies, heteroatoms doping in the plant/animal-derived carbonaceous materials, and their application as electrode materials for secondary batteries and supercapacitors, and as electrode support for lithium-sulfur batteries. The challenges and prospects for the controllable synthesis and large-scale application of biomass-derived carbonaceous materials have also been outlooked.
Collapse
Affiliation(s)
- Yu-Lin Bai
- College of Aeronautics and Astronautics, Taiyuan University of Technology, No. 79 West Street Yingze, 030024, Taiyuan, P. R. China
| | - Chen-Chen Zhang
- College of Aeronautics and Astronautics, Taiyuan University of Technology, No. 79 West Street Yingze, 030024, Taiyuan, P. R. China
| | - Feng Rong
- College of Aeronautics and Astronautics, Taiyuan University of Technology, No. 79 West Street Yingze, 030024, Taiyuan, P. R. China
| | - Zhao-Xia Guo
- College of Aeronautics and Astronautics, Taiyuan University of Technology, No. 79 West Street Yingze, 030024, Taiyuan, P. R. China
| | - Kai-Xue Wang
- Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| |
Collapse
|
3
|
He H, Zhang R, Zhang P, Wang P, Chen N, Qian B, Zhang L, Yu J, Dai B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205557. [PMID: 36988448 PMCID: PMC10238227 DOI: 10.1002/advs.202205557] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Biomass is considered as a promising source to fabricate functional carbon materials for its sustainability, low cost, and high carbon content. Biomass-derived-carbon materials (BCMs) have been a thriving research field. Novel structures, diverse synthesis methods, and versatile applications of BCMs have been reported. However, there has been no recent review of the numerous studies of different aspects of BCMs-related research. Therefore, this paper presents a comprehensive review that summarizes the progress of BCMs related research. Herein, typical types of biomass used to prepare BCMs are introduced. Variable structures of BCMs are summarized as the performance and properties of BCMs are closely related to their structures. Representative synthesis strategies, including both their merits and drawbacks are reviewed comprehensively. Moreover, the influence of synthetic conditions on the structure of as-prepared carbon products is discussed, providing important information for the rational design of the fabrication process of BCMs. Recent progress in versatile applications of BCMs based on their morphologies and physicochemical properties is reported. Finally, the remaining challenges of BCMs, are highlighted. Overall, this review provides a valuable overview of current knowledge and recent progress of BCMs, and it outlines directions for future research development of BCMs.
Collapse
Affiliation(s)
- Hongzhe He
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ruoqun Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Pengcheng Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ping Wang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials ScienceState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Binbin Qian
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Lian Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Jianglong Yu
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Baiqian Dai
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| |
Collapse
|
4
|
Double-network ionogel solid electrolytes for long-cycling supercapacitors. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Appiah ES, Dzikunu P, Mahadeen N, Ampong DN, Mensah-Darkwa K, Kumar A, Gupta RK, Adom-Asamoah M. Biopolymers-Derived Materials for Supercapacitors: Recent Trends, Challenges, and Future Prospects. Molecules 2022; 27:6556. [PMID: 36235093 PMCID: PMC9571253 DOI: 10.3390/molecules27196556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Supercapacitors may be able to store more energy while maintaining fast charging times; however, they need low-cost and sophisticated electrode materials. Developing innovative and effective carbon-based electrode materials from naturally occurring chemical components is thus critical for supercapacitor development. In this context, biopolymer-derived porous carbon electrode materials for energy storage applications have gained considerable momentum due to their wide accessibility, high porosity, cost-effectiveness, low weight, biodegradability, and environmental friendliness. Moreover, the carbon structures derived from biopolymeric materials possess unique compositional, morphological, and electrochemical properties. This review aims to emphasize (i) the comprehensive concepts of biopolymers and supercapacitors to approach smart carbon-based materials for supercapacitors, (ii) synthesis strategies for biopolymer derived nanostructured carbons, (iii) recent advancements in biopolymer derived nanostructured carbons for supercapacitors, and (iv) challenges and future prospects from the viewpoint of green chemistry-based energy storage. This study is likely to be useful to the scientific community interested in the design of low-cost, efficient, and green electrode materials for supercapacitors as well as various types of electrocatalysis for energy production.
Collapse
Affiliation(s)
- Eugene Sefa Appiah
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Perseverance Dzikunu
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Nashiru Mahadeen
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Daniel Nframah Ampong
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| | - Kwadwo Mensah-Darkwa
- Department of Materials Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
- The Brew-Hammond Energy Centre, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi AK-448-7139, Ghana
| | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura 281406, India
| | - Ram K. Gupta
- Department of Chemistry, Kansas Polymer Research Center, Pittsburg State University, Pittsburg KS 66762, USA
| | - Mark Adom-Asamoah
- Department of Civil Engineering, College of Engineering, Kwame Nkrumah University of Science and Technology, Kumasi AK-448-7139, Ghana
| |
Collapse
|
6
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
7
|
Chen W, Luo M, Liu C, Hong S, Wang X, Yang P, Zhou X. Fast microwave self-activation from chitosan hydrogel bead to hierarchical and O, N co-doped porous carbon at an air-free atmosphere for high-rate electrodes material. Carbohydr Polym 2019; 219:229-239. [DOI: 10.1016/j.carbpol.2019.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 11/26/2022]
|
8
|
Mangisetti SR, M K, Ramaprabhu S. N-doped 3D porous carbon-graphene/polyaniline hybrid and N-doped porous carbon coated gC3N4 nanosheets for excellent energy density asymmetric supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
He Y, Li H, Zhang Q, He C, Zhang X, Yang Y. Homogeneous coating of carbon nanotubes with tailored N-doped carbon layers for improved electrochemical energy storage. RSC Adv 2019; 9:40933-40939. [PMID: 35540035 PMCID: PMC9076390 DOI: 10.1039/c9ra06289k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023] Open
Abstract
The combination of activity-enriched heteroatoms and highly-conductive networks is a powerful strategy to craft carbon-based electrodes for high-efficiency electrochemical energy storage. Herein, N-doped carbon (N-C) coated carbon nanotubes (N-CNTs) were fabricated via a facile in situ synthesis of polyimide in the presence of carbon nanotubes (CNTs), followed by carbonization. The polyimide-divided N-C layers were uniformly covered on the surface of CNTs with a tailored layer thickness. The as-fabricated N-CNTs were further used as electrode active materials for energy storage. When employed as the electrodes for supercapacitors, the N-CNTs exhibited a specific capacitance of 63 F g−1 at 0.1 A g−1 (an energy density of 1.4 W h kg−1 at a power density of 20 W kg−1), which was much higher than that of pure N-C (5 F g−1) and CNTs (13 F g−1). The supercapacitor also retained 66.7% of its initial capacitance (42 F g−1 at 10 A g−1) after a 100-fold increase in the current density and nearly 100% of its initial capacitance after running 10 000 cycles. Furthermore, functioning as an anode material for a Li-ion battery, the N-CNTs also delivered a larger reversible capacity (432 mA h g−1 at 50 mA g−1), higher rate capability, and better cycling stability compared to pure CNTs. The electrochemical performances of the N-CNTs were improved overall due to the synergistic effects of interconnected 3D networks and core–shell structures capable of facilitating electrolyte percolation and charge transportation, enhancing conductivity and surface/interface wettability, and contributing additional pseudocapacitance. Polyimide-derived N-doped carbon layers were coated onto carbon nanotubes for high-rate electrodes with enhanced energy storage.![]()
Collapse
Affiliation(s)
- Yi He
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education
- Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Hong Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education
- Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education
- Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Chengen He
- Hubei Engineering Technology Research Centre of Energy Polymer Materials
- School of Chemistry and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Xiaofang Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education
- Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| | - Yingkui Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education
- Hubei Key Laboratory of Catalysis and Materials Science
- South-Central University for Nationalities
- Wuhan 430074
- China
| |
Collapse
|