1
|
Liu C, Zhu J, Zhu R, Yin Y. Neurotoxicity induced by difenoconazole in zebrafish larvae via activating oxidative stress and the protective role of resveratrol. Comp Biochem Physiol C Toxicol Pharmacol 2025; 295:110208. [PMID: 40246219 DOI: 10.1016/j.cbpc.2025.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/04/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Difenoconazole (DIF) is a typical triazole fungicide detected in the aquatic ecosystem and organisms. However, the neurotoxic effects of DIF remain largely unknown. This study aimed to investigate the neurotoxicity of DIF in zebrafish and the underlying neuroprotective properties of resveratrol (RES, an antioxidant polyphenol). Zebrafish embryos/larvae were treated with 0.6 and 1.2 mg/L DIF from 4 to 96 h post fertilization (hpf) and neurodevelopment was systematically assessed. DIF induced developmental toxicity and aberrant neurobehaviors, including decreased movement time, swimming distance and clockwise rotation times. DIF suppressed the neurogenesis of the central nervous system (CNS) in HuC:egfp transgenic zebrafish and the length of motor neuron axon in hb9:egfp transgenic zebrafish. DIF inhibited cholinesterase activities and downregulated neurodevelopment related genes. DIF also increased oxidative stress via excessive production of reactive oxygen species and decreased activities of antioxidant enzymes, subsequently triggering neuronal apoptosis in the brain. RES partially reinstated DIF-induced neurotoxicity and developmental toxicity by inhibiting excessive oxidative stress and apoptosis, suggesting the involvement of oxidative stress in DIF-induced neurotoxicity. Overall, this study identified the potential mechanisms underlying DIF-induced neurotoxicity and suggested RES as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Chunlan Liu
- School of Public Health Management, Jiangsu Health Vocational College, Nanjing 211800, PR China
| | - Jiansheng Zhu
- Department of Public Health, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Renfei Zhu
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, PR China.
| | - Yifei Yin
- Department of Thyroid and Breast Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian 223001, PR China.
| |
Collapse
|
2
|
Mäder P, Stache F, Engelbart L, Huhn C, Hochmanová Z, Hofman J, Poll C, Kandeler E. Effects of MCPA and difenoconazole on glyphosate degradation and soil microorganisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124926. [PMID: 39260542 DOI: 10.1016/j.envpol.2024.124926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Modern agriculture relies heavily on pesticide use to meet the demands of food quality and quantity. Therefore, pesticides are often applied in mixtures, leading to a diverse cocktail of chemicals and their metabolites in soils, which can affect non-target organisms such as soil microorganisms. Pesticides are tested for their single effects, but studies on their interactive effects are scarce. This study aimed to determine the effects of up to three simultaneously applied pesticides on the soil microbial community and on their special function in pesticide degradation. Agricultural soil without previous pesticide application was exposed to different mixtures of the herbicide glyphosate (GLP), the phenoxy herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) and the fungicide difenoconazole (DFC) for up to 56 days. Isotopic and molecular methods were used to investigate effects of the mixtures on the microbial community and to follow the mineralization and utilization of GLP. An initial increase in the metabolic quotient by up to 35 % in the presence of MCPA indicated a stress reaction of the microbial community. The presence of multiple pesticides reduced both gram positive bacterial fatty acid methyl esters (FAMEs) by 13 % and the abundance of microorganisms with the genetic potential for GLP degradation via the AMPA (aminomethylphosphonic acid) pathway. Both the number of pesticides and the identities of individual pesticides played major roles. Surprisingly, an increase in 13C-labelled GLP mineralization of up to 40 % was observed while carbon use efficiency (CUE) decreased. Interactions between multiple pesticides might alter the behavior of individual pesticides and be reflected in the microbial community. Our results highlight the importance of investigating not only single pesticides, but also pesticide mixtures and their interactions.
Collapse
Affiliation(s)
- Philipp Mäder
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany.
| | - Fabian Stache
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| | - Lisa Engelbart
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Carolin Huhn
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Zuzana Hochmanová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jakub Hofman
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Christian Poll
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation, Department of Soil Biology, University of Hohenheim, Emil-Wolff-Straße 27, 70599, Stuttgart, Germany
| |
Collapse
|
3
|
Yang Y, Chen T, Liu X, Wang S, Wang K, Xiao R, Chen X, Zhang T. Ecological risk assessment and environment carrying capacity of soil pesticide residues in vegetable ecosystem in the Three Gorges Reservoir Area. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128987. [PMID: 35487003 DOI: 10.1016/j.jhazmat.2022.128987] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Soil contamination by pesticide residues has become an increasing concern of ecological protection. However, the soil environmental carrying capacity (SECC) of pesticide residues in agricultural ecosystems was limited studied. Based on the concept of ecological risk assessment, a modified system on the environment carrying capacity was proposed for estimate SECC of pesticide residues in agricultural soils. Subsequently, the assessment on ecological risk and SECC of soil pesticide residues in vegetable ecosystem were performed in the Three Gorges Reservoir Area (TGRA). In 201 topsoil samples, 62.1% of the pesticide compounds were detected over limit of quantitation, and exhibit a high proportion of multiple pesticide contamination. Pyrethroid insecticides and herbicide glyphosate showed most frequent occurrence and high levels. The SECC of the TGRA varies with the limit standard, annual cumulative amount and risk quotient of each pesticide contaminant in soils. Except that fenpropathrin has exceeded SECC, chlorfenapyr, β-cyfluthrin and glyphosate posed the greatest threat to SECC in the next 50 years. Additionally, ecological risks by pesticide residues in vegetable ecosystem can be affected by various planting activities. These results will contribute to guide the rational application of pesticides and control soil environmental risks, thereby achieving the agricultural green development in the TGRA.
Collapse
Affiliation(s)
- Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
| | - Tongtong Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xuchen Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Shuai Wang
- Chongqing Agro-Tech Extension Station, Chongqing 400121, China
| | - Kai Wang
- College of Resources and Environment, China Agricultural University, Beijing 100193, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China.
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
4
|
Patil VK, Wagh UB, Phalak RP, Bhirud JD, Narkhede HP. A novel validated simple derivatization liquid chromatographic method with diode array detection for the simultaneous determination of mancozeb, azoxystrobin and difenoconazole in pesticide dosage form. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:907-920. [PMID: 35166733 DOI: 10.1039/d1ay01926k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel, rapid and simple reverse-phase high performance liquid chromatography (RP-HPLC) method for the simultaneous determination of three pesticides - mancozeb, azoxystrobin and difenoconazole by derivatization with ethyl iodide is presented. Analysis was performed on a C18 column (Agilent Eclipse plus, 150 mm × 4.6 mm; 5 μ) with the mobile phase consisting of acetonitrile + methanol (90 + 10 v/v) - water (0.1% v/v trifluoroacetic acid) (60 : 40, v/v) pumped isocratically at a flow rate of 1.0 mL min-1 and detection wavelength of 205 nm and 272 nm. The factors affecting the derivatization reaction and separation conditions were carefully evaluated and optimized. The method was linear over the concentration range of 3.50 mg L-1 to 31.48 mg L-1 for mancozeb, 0.32 mg L-1 to 2.85 mg L-1 for azoxystrobin and 0.32 mg L-1 to 2.89 mg L-1 for difenoconazole. The new method was successfully applied for the analysis of mancozeb, azoxystrobin and difenoconazole in the pesticide formulation with range recoveries of 99.46% to 100.76%, 99.07% to 101.09% and 98.59% to 101.59%, respectively. The present method is suitable and favorable for the simultaneous separation and analysis of tertiary mixture analytes on account of its sensitivity, rapidity and cost-effectiveness. In addition, it could have excellent application prospects for the simultaneous determination of all three pesticides in other formulated products.
Collapse
Affiliation(s)
- Vilas K Patil
- D. D. N. Bhole College, Bhusawal, Dist.-Jalgaon, Maharashtra-425201, India.
| | - Ujwala B Wagh
- Jain Irrigation Systems Limited, Jalgaon, Maharashtra-425001, India
| | - Raju P Phalak
- D. D. N. Bhole College, Bhusawal, Dist.-Jalgaon, Maharashtra-425201, India
| | | | - Hemant P Narkhede
- Smt. P. K. Kotecha Mahila Mahavidyalaya, Bhusawal, Dist.-Jalgaon, Maharashtra-425201, India.
| |
Collapse
|
5
|
Li R, Liu B, Xu W, Yu L, Zhang C, Cheng J, Tao L, Li Z, Zhang Y. DNA damage and cell apoptosis induced by fungicide difenoconazole in mouse mononuclear macrophage RAW264.7. ENVIRONMENTAL TOXICOLOGY 2022; 37:650-659. [PMID: 34877763 DOI: 10.1002/tox.23432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole (DFC) is a typical triazole fungicide. Because of its effective bactericidal activity, it has been widely used in agricultural products such as fruits and vegetables. This study revealed the cytotoxic effect of fungicide DFC on mouse monocyte macrophage RAW264.7. The results showed that the IC50 value of DFC on RAW264.7 cells was 37.08 μM (24 h). DFC can significantly inhibit the viability of RAW264.7 cells, induce DNA damage and enhance apoptosis. The established cytotoxicity test showed that DFC-induced DNA double strand breaks in RAW264.7 cells. DFC-treated cells showed typical morphological changes of apoptosis, including chromatin condensation and nuclear lysis. In addition, DFC can induce the release of Cyt c, promote the collapse of mitochondrial membrane potential and increase the Bax/Bcl-2 ratio in RAW264.7 cells. Through this research, people further understand the toxicity of DFC and provide a more scientific basis for its safety application and risk management.
Collapse
Affiliation(s)
- Ruirui Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Bin Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Shanghai Qingpu District Agricultural Technology Extension Service Center, Shanghai, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Lvnan Yu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, Texas, USA
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Man Y, Stenrød M, Wu C, Almvik M, Holten R, Clarke JL, Yuan S, Wu X, Xu J, Dong F, Zheng Y, Liu X. Degradation of difenoconazole in water and soil: Kinetics, degradation pathways, transformation products identification and ecotoxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126303. [PMID: 34329017 DOI: 10.1016/j.jhazmat.2021.126303] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Difenoconazole is a widely used triazole fungicide that has been frequently detected in the environment, but comprehensive study about its environmental fate and toxicity of potential transformation products (TPs) is still lacking. Here, laboratory experiments were conducted to investigate the degradation kinetics, pathways, and toxicity of transformation products of difenoconazole. 12, 4 and 4 TPs generated by photolysis, hydrolysis and soil degradation were identified via UHPLC-QTOF/MS and the UNIFI software. Four intermediates TP295, TP295A, TP354A and TP387A reported for the first time were confirmed by purchase or synthesis of their standards, and they were further quantified using UHPLC-MS/MS in all tested samples. The main transformation reactions observed for difenoconazole were oxidation, dechlorination and hydroxylation in the environment. ECOSAR prediction and laboratory tests showed that the acute toxicities of four novel TPs on Brachydanio rerio, Daphnia magna and Selenastrum capricornutum are substantially lower than that of difenoconazole, while all the TPs except for TP277C were predicted chronically very toxic to fish, which may pose a potential threat to aquatic ecosystems. The results are important for elucidating the environmental fate of difenoconazole and assessing the environmental risks, and further provide guidance for scientific and reasonable use.
Collapse
Affiliation(s)
- Yanli Man
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marianne Stenrød
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Chi Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marit Almvik
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Roger Holten
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Jihong Liu Clarke
- Norwegian Institute of Bioeconomy Research (NIBIO), Division Biotechnology and Plant Health, Høgskoleveien 7, 1433 Aas, Norway
| | - Shankui Yuan
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
7
|
Investigation and Validation of Detection of Storage Stability of Difenoconazole Residue in Mango. J FOOD QUALITY 2019. [DOI: 10.1155/2019/5641643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the stability of the pesticide residue in storage samples is a part of detection, which is also an improvement to the accuracy of analytical results. In this work, the UPLC-MS/MS method with perfect accuracy and stability was established for determining residues of difenoconazole in mango. The stability of the residue under different temperatures (4°C and −20°C) and media (fruit samples and pretreated sample solution) was investigated. At 0.1 mg/kg, the residue degraded in 6 months by 12% when at −20°C, while in a week by only 12.2% at 4°C. However, when pretreated and preserved in the solution, the residue remained more than 90% for 6–8 weeks. The results indicated that the main causes of degradation are biochemical factors, and the factors are affected by temperature. The findings also provided appropriate conditions for sample storage. This investigation promotes the accuracy in detection and hence guarantees food safety and quality.
Collapse
|