1
|
Henke AH, Flores K, Goodman AJ, Magurany K, LeVanseler K, Ranville J, Gardea-Torresdey JL, Westerhoff PK. Interlaboratory comparison of centrifugal ultrafiltration with ICP-MS detection in a first-step towards methods to screen for nanomaterial release during certification of drinking water contact materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168686. [PMID: 38000751 DOI: 10.1016/j.scitotenv.2023.168686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
A key requirement for evaluating the safety of nano-enabled water treatment devices is measuring concentrations of insoluble nanomaterials released from devices into water that may be ingested by consumers. Therefore, there is a need for simple technique that uses commonly available commercial laboratory techniques to discriminate between nanoparticles and dissolved by-products of the nanomaterial (e.g., ionic metals). Such capabilities would enable screening for particulate or dissolved metals released into water from nanomaterial-containing drinking water contact materials (e.g., paint coatings) or devices (e.g., filters). This multi-laboratory study sought to investigate the use of relatively inexpensive centrifugal ultrafilters to separate nanoparticulate from ionic metal in combination with inductively-coupled plasma mass spectrometry (ICP-MS) detection. The accuracy, precision, and reproducibility for the proposed method were assessed using mixtures of nanoparticulate and ionic gold (Au) in a standard and widely utilized model water matrix (NSF International Standard 53/61). Concentrations for both ionic and nanoparticulate gold based upon measurements of Au mass in the initial solutions and Au permeating the centrifugal ultrafilters. Results across different solution compositions and different participating labs showed that ionic and nanoparticulate Au could be consistently discriminated with ppb concentrations typically resulting in <10 % error. A mass balance was not achieved because nanoparticles were retained on membranes embedded in plastic holders inside the centrifuge tubes, and the entire apparatus could not be acid and/or microwave digested. This was a minor limitation considering the ultrafiltration method is a screening tool, and gold concentration in the permeate indicates the presence of ionic metal rather than nanoforms. With further development, this approach could prove to be an effective tool in screening for nanomaterial release from water-system or device materials as part of third-party certification processes of drinking water compatible products.
Collapse
Affiliation(s)
- Austin H Henke
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Kenneth Flores
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemistry & Biochemistry, Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Aaron J Goodman
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | | | | | - James Ranville
- Department of Chemistry, Colorado School of Mines, Golden, CO 80401, USA
| | - Jorge L Gardea-Torresdey
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Department of Chemistry & Biochemistry, Environmental Science and Engineering, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul K Westerhoff
- National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
2
|
Miura H, Toyomasu T, Nishio H, Shishido T. Gold-catalyzed thioetherification of allyl, benzyl, and propargyl phosphates. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02085d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supported gold catalysts showed high activity for thioetherification of various phosphates. The surface of gold nanoparticles supported on ZrO2 served as a source for active cationic Au species.
Collapse
Affiliation(s)
- Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Element Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Tomoya Toyomasu
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Element Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| |
Collapse
|
3
|
Zissi GD, Angelis G, Pampalakis G. The Generation and Study of a Gold‐Based Chemobrionic Plant‐Like Structure. CHEMSYSTEMSCHEM 2020. [DOI: 10.1002/syst.202000018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Georgia D. Zissi
- Department of Pharmacy University of Patras Panepistimioupolis, Rion Patras 26504 Greece
| | - George Angelis
- Department of Pharmacognosy-Pharmacology Aristotle University Thessaloniki Thessaloniki 54124 Greece
| | - Georgios Pampalakis
- Department of Pharmacognosy-Pharmacology Aristotle University Thessaloniki Thessaloniki 54124 Greece
| |
Collapse
|