1
|
Perdomo SA, Valencia DP, Velez GE, Jaramillo-Botero A. Advancing abiotic stress monitoring in plants with a wearable non-destructive real-time salicylic acid laser-induced-graphene sensor. Biosens Bioelectron 2024; 255:116261. [PMID: 38565026 DOI: 10.1016/j.bios.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Drought and salinity stresses present significant challenges that exert a severe impact on crop productivity worldwide. Understanding the dynamics of salicylic acid (SA), a vital phytohormone involved in stress response, can provide valuable insights into the mechanisms of plant adaptation to cope with these challenging conditions. This paper describes and tests a sensor system that enables real-time and non-invasive monitoring of SA content in avocado plants exposed to drought and salinity. By using a reverse iontophoretic system in conjunction with a laser-induced graphene electrode, we demonstrated a sensor with high sensitivity (82.3 nA/[μmol L-1⋅cm-2]), low limit of detection (LOD, 8.2 μmol L-1), and fast sampling response (20 s). Significant differences were observed between the dynamics of SA accumulation in response to drought versus those of salt stress. SA response under drought stress conditions proved to be faster and more intense than under salt stress conditions. These different patterns shed light on the specific adaptive strategies that avocado plants employ to cope with different types of environmental stressors. A notable advantage of the proposed technology is the minimal interference with other plant metabolites, which allows for precise SA detection independent of any interfering factors. In addition, the system features a short extraction time that enables an efficient and rapid analysis of SA content.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia
| | | | | | - Andres Jaramillo-Botero
- Omicas Alliance. Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
2
|
Nejad SK, Ma H, Al-Shami A, Soleimani A, Mohamed MA, Dankwah P, Lee HJ, Mousavi MPS. Sustainable Agriculture with LEAFS: a Low-cost Electrochemical Analyzer of Foliage Stress. SENSORS & DIAGNOSTICS 2024; 3:400-411. [PMID: 40352404 PMCID: PMC12064159 DOI: 10.1039/d3sd00296a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Sustainable agricultural practices are vital to meet the needs of a rapidly growing global demand for food. Monitoring plant health is crucial for enhancing crop yields. Salicylic acid (SA) is a plant hormone that plays a key role in the defense mechanisms plants employ against various stress factors. Changes in SA levels serve as an indicator that a plant is experiencing stress. Here, we present a low-cost electrochemical sensor fabricated using porous laser-induced graphene material for the measurement of plant stress. It employs square wave voltammetry to monitor SA levels using a wireless potentiostat. The sensor shows a high sensitivity of 144.28 μA/mM to SA, with a linear detection range of 6.6 μM to 200 μM and a limit of detection of 1.44 μM. The surface of the working electrode was modified with Nafion to enable continuous in-situ stress monitoring. The sensor's practicality has been demonstrated through real-time stress monitoring in aloe vera and philodendron hederaceum plant species.
Collapse
Affiliation(s)
- Sina Khazaee Nejad
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Haozheng Ma
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Abdulrahman Al-Shami
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Mona A Mohamed
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Preston Dankwah
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Hannah J Lee
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| | - Maral P S Mousavi
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, 90089, CA, US
| |
Collapse
|
3
|
Zhou S, Zhou J, Pan Y, Wu Q, Ping J. Wearable electrochemical sensors for plant small-molecule detection. TRENDS IN PLANT SCIENCE 2024; 29:219-231. [PMID: 38071111 DOI: 10.1016/j.tplants.2023.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 02/10/2024]
Abstract
Small molecules in plants - such as metabolites, phytohormones, reactive oxygen species (ROS), and inorganic ions - participate in the processes of plant growth and development, physiological metabolism, and stress response. Wearable electrochemical sensors, known for their fast response, high sensitivity, and minimal plant damage, serve as ideal tools for dynamically tracking these small molecules. Such sensors provide producers or agricultural researchers with noninvasive or minimally invasive means of obtaining plant signals. In this review we explore the applications of wearable electrochemical sensors in detecting plant small molecules, enabling scientific assessment of plant conditions, quantification of environmental stresses, and facilitation of plant health monitoring and disease prediction.
Collapse
Affiliation(s)
- Shenghan Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Jin Zhou
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Yuxiang Pan
- Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China
| | - Qingyu Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, PR China; Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China; Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural, Anhui Agricultural University, Anhui, PR China.
| |
Collapse
|
4
|
Perdomo SA, De la Paz E, Del Caño R, Seker S, Saha T, Wang J, Jaramillo-Botero A. Non-invasive in-vivo glucose-based stress monitoring in plants. Biosens Bioelectron 2023; 231:115300. [PMID: 37058961 DOI: 10.1016/j.bios.2023.115300] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/11/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Plant stress responses involve a suite of genetically encoded mechanisms triggered by real-time interactions with their surrounding environment. Although sophisticated regulatory networks maintain proper homeostasis to prevent damage, the tolerance thresholds to these stresses vary significantly among organisms. Current plant phenotyping techniques and observables must be better suited to characterize the real-time metabolic response to stresses. This impedes practical agronomic intervention to avoid irreversible damage and limits our ability to breed improved plant organisms. Here, we introduce a sensitive, wearable electrochemical glucose-selective sensing platform that addresses these problems. Glucose is a primary plant metabolite, a source of energy produced during photosynthesis, and a critical molecular modulator of various cellular processes ranging from germination to senescence. The wearable-like technology integrates a reverse iontophoresis glucose extraction capability with an enzymatic glucose biosensor that offers a sensitivity of 22.7 nA/(μM·cm2), a limit of detection (LOD) of 9.4 μM, and a limit of quantification (LOQ) of 28.5 μM. The system's performance was validated by subjecting three different plant models (sweet pepper, gerbera, and romaine lettuce) to low-light and low-high temperature stresses and demonstrating critical differential physiological responses associated with their glucose metabolism. This technology enables non-invasive, non-destructive, real-time, in-situ, and in-vivo identification of early stress response in plants and provides a unique tool for timely agronomic management of crops and improving breeding strategies based on the dynamics of genome-metabolome-phenome relationships.
Collapse
Affiliation(s)
- Sammy A Perdomo
- Omicas Alliance, Pontificia Universidad Javeriana, Cali, 760031, Colombia; Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Ernesto De la Paz
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Rafael Del Caño
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States; Department of Physical Chemistry and Applied Thermodynamics, University of Cordoba, E- 14014, Spain
| | - Sumeyye Seker
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Tamoghna Saha
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, San Diego, CA, 92093, United States.
| | - Andres Jaramillo-Botero
- Omicas Alliance, Pontificia Universidad Javeriana, Cali, 760031, Colombia; Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
5
|
Zhai J, Luo B, Li A, Dong H, Jin X, Wang X. Unlocking All-Solid Ion Selective Electrodes: Prospects in Crop Detection. SENSORS (BASEL, SWITZERLAND) 2022; 22:5541. [PMID: 35898054 PMCID: PMC9331676 DOI: 10.3390/s22155541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
This paper reviews the development of all-solid-state ion-selective electrodes (ASSISEs) for agricultural crop detection. Both nutrient ions and heavy metal ions inside and outside the plant have a significant influence on crop growth. This review begins with the detection principle of ASSISEs. The second section introduces the key characteristics of ASSISE and demonstrates its feasibility in crop detection based on previous research. The third section considers the development of ASSISEs in the detection of corps internally and externally (e.g., crop nutrition, heavy metal pollution, soil salinization, N enrichment, and sensor miniaturization, etc.) and discusses the interference of the test environment. The suggestions and conclusions discussed in this paper may provide the foundation for additional research into ion detection for crops.
Collapse
Affiliation(s)
- Jiawei Zhai
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaotong Jin
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (J.Z.); (B.L.); (A.L.); (H.D.); (X.J.)
| |
Collapse
|
6
|
Zhang Q, Ying Y, Ping J. Recent Advances in Plant Nanoscience. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103414. [PMID: 34761568 PMCID: PMC8805591 DOI: 10.1002/advs.202103414] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/24/2021] [Indexed: 05/15/2023]
Abstract
Plants have complex internal signaling pathways to quickly adjust to environmental changes and harvest energy from the environment. Facing the growing population, there is an urgent need for plant transformation and precise monitoring of plant growth to improve crop yields. Nanotechnology, an interdisciplinary research field, has recently been boosting plant yields and meeting global energy needs. In this context, a new field, "plant nanoscience," which describes the interaction between plants and nanotechnology, emerges as the times require. Nanosensors, nanofertilizers, nanopesticides, and nano-plant genetic engineering are of great help in increasing crop yields. Nanogenerators are helping to develop the potential of plants in the field of energy harvesting. Furthermore, the uptake and internalization of nanomaterials in plants and the possible effects are also worthy of attention. In this review, a forward-looking perspective on the plant nanoscience is presented and feasible solutions for future food shortages and energy crises are provided.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
7
|
Szabelak A, Bownik A. Behavioral and physiological responses of Daphnia magna to salicylic acid. CHEMOSPHERE 2021; 270:128660. [PMID: 33268096 DOI: 10.1016/j.chemosphere.2020.128660] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA), a metabolite of acetylsalicylic acid is a monohydroxybenzoic acid a common non-steroidal analgesic and anti-inflammatory drug (NSAID) frequently detected in various aquatic ecosystems at concentrations up to 19.50 μg L-1 in surface waters near livestock farms and 59.6 μg L-1 in wastewaters. Little is known on the effects of short-term exposure of freshwater crustaceans to salicylic acid. Therefore, the aim of our study was to determine the effects of SA at concentrations of 5 μg L-1, 500 μg L-1, 5 mg L-1, 50 mg L-1 and 500 mg L-1 on the behavior (swimming speed, swimming height, distance travelled) and physiological endpoints (heart rate, mandible movement) of Daphnia magna exposed for 24 h, 48 h and 72 h. The results showed that SA inhibited the swimming speed, swimming height and distance travelled, heart rate and mandible movement at 5 mg L-1, 50 mg L-1 and 500 mg L-1 when compared to the control. On the other hand, SA at 5 μg L-1 and 500 μg L-1 transiently increased swimming speed and distance travelled after 24 h of the exposure, except for swimming height. Behavioral and physiological disturbances were observed much earlier than lethality. Our study showed SA at environmental levels may be an ecotoxicological agent imparing behavior and physiology of freshwater crustaceans.
Collapse
Affiliation(s)
- Aleksandra Szabelak
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland
| | - Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-262, Lublin, Poland.
| |
Collapse
|
8
|
Yang L, Chen D, Wang X, Luo B, Wang C, Gao G, Li H, Li A, Chen L. Ratiometric electrochemical sensor for accurate detection of salicylic acid in leaves of living plants. RSC Adv 2020; 10:38841-38846. [PMID: 35518421 PMCID: PMC9057353 DOI: 10.1039/d0ra05813k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/16/2020] [Indexed: 11/30/2022] Open
Abstract
Detection of signal molecules in living plants is of great relevance for precision farming. In this work, to establish a more effective method for monitoring salicylic acid (SA) in the leaves of living plants, a ratiometric electrochemical sensor was fabricated based on a Cu metal-organic framework (Cu-MOF) and carbon black (CB) composite. The Cu-MOF and CB composite was used to catalyze SA oxidation. Ratiometric oxidation current peak intensities I SA/I Cu-MOFs were used as the response signal for SA. I SA/I Cu-MOFs linearly enhanced with the increase of SA concentration, together with low limits of detection (12.50 μM). Moreover, our sensor is fabricated on a screen-printed electrode (SPE), which is especially suitable for applying to the flat leaves of plants. Using this sensor, the SA level in the leaves of cucumber seedlings was monitored in vivo under salt stress. The proposed sensor is accurate, reliable and practical. This is the first report for developing a ratiometric electrochemical sensor for detecting SA in living plants. Our work can also provide a strategy for in vivo studies on the leaves of plants.
Collapse
Affiliation(s)
- Lei Yang
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
- College of Electronic and Information Engineering, Shandong University of Science and Technology Qingdao 266590 China
| | - Da Chen
- College of Electronic and Information Engineering, Shandong University of Science and Technology Qingdao 266590 China
| | - Xiaodong Wang
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
| | - Bin Luo
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
| | - Cheng Wang
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
- School of Agricultural Equipment Engineering, Jiangsu University Zhenjiang 212013 China
| | - Guangheng Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Biosensors of Shandong Province Jinan 250353 China
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology Tianjin 300384 China
| | - Aixue Li
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
- School of Agricultural Equipment Engineering, Jiangsu University Zhenjiang 212013 China
| | - Liping Chen
- Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences Beijing 100097 China
- School of Agricultural Equipment Engineering, Jiangsu University Zhenjiang 212013 China
| |
Collapse
|
9
|
Xiong X, Li C, Yang X, Shu Y, Jin D, Zang Y, Shu Y, Xu Q, Hu XY. In situ grown TiO2 nanorod arrays functionalized by molecularly imprinted polymers for salicylic acid recognition and detection. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Digitalized pencil trace modified electrodes for real time evaluation of salicylic acid in detached Arabidopsis thaliana leaves during regeneration. Anal Chim Acta 2020; 1120:59-66. [DOI: 10.1016/j.aca.2020.04.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/23/2023]
|
11
|
Hu Y, Wang X, Wang C, Hou P, Dong H, Luo B, Li A. A multifunctional ratiometric electrochemical sensor for combined determination of indole-3-acetic acid and salicylic acid. RSC Adv 2020; 10:3115-3121. [PMID: 35497723 PMCID: PMC9048418 DOI: 10.1039/c9ra09951d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
For the first time, a multifunctional ratiometric electrochemical sensor was developed for quantifying IAA and SA simultaneously.
Collapse
Affiliation(s)
- Ye Hu
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- School of Chemical Sciences
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| | - Cheng Wang
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| | - Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| | - Hongtu Dong
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| | - Bin Luo
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| | - Aixue Li
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| |
Collapse
|