1
|
Luo Q, Wang H, Zhou J, Wang S, Li J, Sun B. Co(III) or Ru(II)-Catalyzed Selective C-H Alkynylation of 2-Pyridones and Their Derivatives with Bromoalkynes. J Org Chem 2024; 89:18400-18405. [PMID: 39632847 DOI: 10.1021/acs.joc.4c02258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
We successfully reported selective C-H alkynylation of 2-pyridones with bromoalkynes under the catalysis of Co(III) or Ru(II). The alkynylation reaction used easily accessible bromoalkynes instead of high-valent iodine alkynes. There is a broad substrate scope of 2-pyridones with good yields. In addition, 2-pyridone can be used as a weakly directing group for C-H alkynylation of the proximal aryl C-H bond. This method offers an efficient approach for synthesizing diverse 2-pyridone derivatives, yielding alkynylated products up to 95% yield (>40 examples).
Collapse
Affiliation(s)
- Quanjian Luo
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hanchi Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jierui Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Jinheng Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Bo Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
2
|
Drev M, Brodnik H, Grošelj U, Perdih F, Svete J, Štefane B, Požgan F. 2-Bromopyridines as Versatile Synthons for Heteroarylated 2-Pyridones via Ru(II)-Mediated Domino C-O/C-N/C-C Bond Formation Reactions. Molecules 2024; 29:4418. [PMID: 39339413 PMCID: PMC11433726 DOI: 10.3390/molecules29184418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
A novel methodology for the synthesis of 2-pyridones bearing a 2-pyridyl group on nitrogen and carbon atoms, starting from 2-bromopyridines, was developed employing a simple Ru(II)-KOPiv-Na2CO3 catalytic system. Unsubstituted 2-bromopyridine was successfully converted to the penta-heteroarylated 2-pyridone product using this method. Preliminary mechanistic studies revealed a possible synthetic pathway leading to the multi-heteroarylated 2-pyridone products, involving consecutive oxygen incorporation, a Buchwald-Hartwig-type reaction, and C-H bond activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Franc Požgan
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia (F.P.); (J.S.)
| |
Collapse
|
3
|
Sachin, Sharma T, Chandra D, Sumit, Sharma U. Inherent directing group-enabled Co(III)-catalyzed C-H allylation/vinylation of isoquinolones. Chem Commun (Camb) 2024; 60:5626-5629. [PMID: 38715526 DOI: 10.1039/d4cc01146e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Co(III)-catalysed site-selective C8-allylation and vinylation of isoquinolones with allyl acetate and vinyl acetates has been accomplished. The oxo group of isoquinolone has been utilised as an inherent directing group. Based on preliminary mechanistic studies, a plausible mechanism for the developed reaction has also been delineated. Broad substrate scope with good to excellent yields and post-synthetic transformations of allylated and vinylated isoquinolines highlight the importance of the reaction.
Collapse
Affiliation(s)
- Sachin
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tamanna Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Devesh Chandra
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Sumit
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Shan Y, Huang G, Yu JT, Pan C. Rh(III)‐catalyzed C6‐selective C–H 3‐oxoalkylation of 2‐pyridones with allylic alcohols. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yujia Shan
- Changzhou University School of Petrochemical Engineering CHINA
| | - Gao Huang
- Changzhou University School of Petrochemical Engineering CHINA
| | - Jin-Tao Yu
- Changzhou University School of Petrochemical Engineering Changzhou 213000 Changzhou CHINA
| | - Changduo Pan
- Jiangsu University of Technology School of Chemical and Environmental Engineering CHINA
| |
Collapse
|
5
|
Suzuki H, Ito Y, Matsuda T. Rhodium-Catalyzed C6-Selective Alkoxycarbonylation of Pyridones. CHEM LETT 2022. [DOI: 10.1246/cl.220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hirotsugu Suzuki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
| | - Yuki Ito
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
| | - Takanori Matsuda
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
| |
Collapse
|
6
|
Chandra D, Manisha, Sharma U. Recent Advances in the High-Valent Cobalt-Catalyzed C-H Functionalization of N-Heterocycles. CHEM REC 2021; 22:e202100271. [PMID: 34932274 DOI: 10.1002/tcr.202100271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/21/2021] [Indexed: 12/18/2022]
Abstract
Direct functionalization of heterocycles using C-H activation widely relies on the precious metal complexes. In past decade, the use of earth abundant and inexpensive transition metal to functionalize heterocycles has become an attractive alternate strategy. This concept is also interesting due to the unique reactivity pattern of these inexpensive metals. In this context we and other research groups have utilized the high-valent cobalt complexes as an inexpensive and readily available catalyst for the functionalization of heterocycles. In this review, we intend to brief recent progress made in the area of high-valent cobalt complexes catalyzed C-H functionalization of N-containing heterocycles.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manisha
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
7
|
Chandra D, Kumar N, Sumit, Parmar D, Gupta P, Sharma U. Co(III)-catalysed regioselective linear C(8)-H olefination of isoquinolone with terminal aromatic and aliphatic alkynes. Chem Commun (Camb) 2021; 57:11613-11616. [PMID: 34636826 DOI: 10.1039/d1cc04541e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A regioselective C8 linear olefination of isoquinoline-1H-2-one with terminal (aromatic and aliphatic) alkynes is reported under Co(III) catalysis. This is an exclusive report on the C8 functionalization of isoquinolone using non-noble transition metal complexes. Experimental and computational mechanistic studies have also been performed to depict the reaction pathway.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nikunj Kumar
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sumit
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Diksha Parmar
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
|
9
|
Ahadi EM, Kejani AA, Khosravi H, Vavsari VF, Balalaie S, Rominger F, Bijanzadeh HR. Domino Decarboxylative Arylation and C-O Selective Bond Formation toward Chromeno[2,3- b]pyridine-2-one Skeletons. J Org Chem 2021; 86:12705-12713. [PMID: 34495658 DOI: 10.1021/acs.joc.1c01220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Practical Pd-catalyzed 2-pyridones were designed to achieve chromeno[2,3-b]pyridine-2-ones. The reaction proceeds through domino nucleophilic addition and decarboxylative arylation, respectively. This methodology offers a moderately efficient approach to construct the bioactive, fused-heterocyclic skeletons via selective C-O bond formation and decarboxylative arylation in a single step with high selectivity and good yields.
Collapse
Affiliation(s)
- Elmira Meghrazi Ahadi
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Alireza Abbasi Kejani
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Hormoz Khosravi
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Vaezeh Fathi Vavsari
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, 6715847141 Kermanshah, Iran
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 46417-76489 Tehran, Iran
| |
Collapse
|
10
|
Hong D, Liu Y, Wu L, Lo VK, Toy PH, Law S, Huang J, Che C. Ru
V
‐Acylimido Intermediate in [Ru
IV
(Por)Cl
2
]‐Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dan‐Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Yungen Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Vanessa Kar‐Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Patrick H. Toy
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Siu‐Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503–1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories Hong Kong SAR China
| |
Collapse
|
11
|
Huang G, Shan Y, Yu JT, Pan C. Rh III -Catalyzed C6-Selective Oxidative C-H/C-H Crosscoupling of 2-Pyridones with Thiophenes. Chemistry 2021; 27:12294-12299. [PMID: 34156130 DOI: 10.1002/chem.202101769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/24/2022]
Abstract
A rhodium(III)-catalyzed C6-selective dehydrogenative cross-coupling of 2-pyridones with thiophenes was developed for the synthesis of 6-thiophenyl pyridin-2(1H)-one derivatives. In this reaction, the excellent site selectivity was controlled by the 2-pyridyl directing group on the nitrogen of the pyridone ring. Control experiments indicated that the N-pyridyl was essential for the transformation. To the best of our knowledge, this procedure is the first successful example of the direct C6 heteroarylation of 2-pyridones with electron-rich thiophene derivatives. 4-Pyridone was also used as substrate to generate the corresponding C2 heteroarylated product. Moreover, this pyridyl directing group was readily removable to generate the biheteroaryl structures with a free N-H group.
Collapse
Affiliation(s)
- Gao Huang
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Yujia Shan
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou, 213164, P. R. China
| | - Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou, 213001, P. R. China
| |
Collapse
|
12
|
Mohanty SR, Prusty N, Gupta L, Biswal P, Ravikumar PC. Cobalt(III)-Catalyzed C-6 Alkenylation of 2-Pyridones by Using Terminal Alkyne with High Regioselectivity. J Org Chem 2021; 86:9444-9454. [PMID: 34227380 DOI: 10.1021/acs.joc.1c00769] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Co(III)-catalyzed alkenylation of 2-pyridones by using terminal alkyne as a reaction partner with high regioselectivity has been demonstrated for the first time. The reaction conditions are mild and compatible with a wide range of substrate combinations. It also shows good functional group tolerance. It proceeds through cyclometalation followed by alkyne insertion and protodemetalation steps. The formation of five- and seven-membered cobaltacycle intermediates was also detected through high-resolution mass spectrometry.
Collapse
Affiliation(s)
- Smruti Ranjan Mohanty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Jatani, Khurda 752050, Odisha, India
| | - Namrata Prusty
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Jatani, Khurda 752050, Odisha, India
| | - Lokesh Gupta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Jatani, Khurda 752050, Odisha, India
| | - Pragati Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Jatani, Khurda 752050, Odisha, India
| | - Ponneri Chandrababu Ravikumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, Jatani, Khurda 752050, Odisha, India
| |
Collapse
|
13
|
|
14
|
Kittikool T, Phakdeeyothin K, Chantarojsiri T, Yotphan S. Manganese‐Promoted Regioselective Direct
C3
‐Phosphinoylation of 2‐Pyridones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanakorn Kittikool
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| |
Collapse
|
15
|
Hong DY, Liu Y, Wu L, Lo VKY, Toy PH, Law SM, Huang JS, Che CM. Ru V -Acylimido Intermediate in [Ru IV (Por)Cl 2 ]-Catalyzed C-N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021; 60:18619-18629. [PMID: 33847064 DOI: 10.1002/anie.202100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Metal-catalyzed C-N bond formation reactions via acylnitrene transfer have recently attracted much attention, but direct detection of the proposed acylnitrenoid/acylimido M(NCOR) (R=aryl or alkyl) species in these reactions poses a formidable challenge. Herein, we report on Ru(NCOR) intermediates in C-N bond formation catalyzed by [RuIV (Por)Cl2 ]/N3 COR, a catalytic method applicable to aziridine/oxazoline formation from alkenes, amination of substituted indoles, α-amino ketone formation from silyl enol ethers, amination of C(sp3 )-H bonds, and functionalization of natural products and carbohydrate derivatives (up to 99 % yield). Experimental studies, including HR-ESI-MS and EPR measurements, coupled with DFT calculations, lend evidence for the formulation of the Ru(NCOR) acylnitrenoids as a RuV -imido species.
Collapse
Affiliation(s)
- Dan-Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Vanessa Kar-Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Patrick H Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Siu-Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
16
|
Wang X, He Z, Xu X, Zhao H, Pan Y, Li H, Xu L. Rh(III)‐catalyzed C6‐selective Acylmethylation and Carboxymethylation of 2‐Pyridones with Diazo Compounds. ChemCatChem 2021. [DOI: 10.1002/cctc.202002016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyu Wang
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Zhongyu He
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Xin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Haoqiang Zhao
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Huanrong Li
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 P.R. China
| |
Collapse
|
17
|
Yin G, Li Y, Wang RH, Li JF, Xu XT, Luan YX, Ye M. Ligand-Controlled Ni(0)–Al(III) Bimetal-Catalyzed C3–H Alkenylation of 2-Pyridones by Reversing Conventional Selectivity. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00750] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ge Yin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yue Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Rong-Hua Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiang-Fei Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengchun Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Wan S, Luo Z, Xu X, Yu H, Li J, Pan Y, Zhang X, Xu L, Cao R. Manganese(I)‐Catalyzed Site‐Selective C6‐Alkenylation of 2‐Pyridones Using Alkynes via C−H Activation. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shanhong Wan
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Zhenli Luo
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Xin Xu
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Haiyang Yu
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Jiajie Li
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Yixiao Pan
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Xin Zhang
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Lijin Xu
- Department of Chemistry Renmin University of China Beijing 100872 People's Republic of China
| | - Rui Cao
- School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 People's Republic of China
| |
Collapse
|
19
|
Dumas A, Garsi JB, Poissonnet G, Hanessian S. Ni-Catalyzed Reductive and Merged Photocatalytic Cross-Coupling Reactions toward sp 3/sp 2-Functionalized Isoquinolones: Creating Diversity at C-6 and C-7 to Address Bioactive Analogues. ACS OMEGA 2020; 5:27591-27606. [PMID: 33134723 PMCID: PMC7594327 DOI: 10.1021/acsomega.0c04181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Naturally occurring isoquinolones have gained considerable attention over the years for their bioactive properties. While the late-stage introduction of various functionalities at certain positions, namely, C-3, C-4, and C-8, has been widely documented, the straightforward introduction of challenging sp3 carbon-linked acyclic aminoalkyl or aza- and oxacyclic appendages at C-6 and C-7 remains largely underexplored. Interest in 6-substituted azacyclic analogues has recently garnered attention in connection with derivatives exhibiting anticancer activity. Reported here is the first application of the versatile and recently emerging field of Ni-catalyzed reductive cross-coupling reactions to the synthesis of 6- and 7- hetero(cyclo)alkyl-substituted isoquinolones. In a second and complementary approach, a new set of C-6- and C-7-substituted positional isomers of hetero(cyclo)alkyl appendages were obtained from the merging of photocatalytic and Ni-catalyzed coupling reactions. In both cases, 6- and 7-bromo isoquinolones served as dual-purpose reacting partners with readily available tosylates and carboxylic acids, respectively.
Collapse
Affiliation(s)
- Adrien Dumas
- Department
of Chemistry, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Jean-Baptiste Garsi
- Department
of Chemistry, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada H3C 3J7
| | - Guillaume Poissonnet
- CentEX
Chemistry, Institut de Recherches Servier, 11 rue des Moulineaux, 92150 Suresnes, France
| | - Stephen Hanessian
- Department
of Chemistry, Université de Montréal, PO Box 6128, Station Centre-Ville, Montréal, QC, Canada H3C 3J7
| |
Collapse
|
20
|
Dhiman AK, Thakur A, Kumar I, Kumar R, Sharma U. Co(III)-Catalyzed C-H Amidation of Nitrogen-Containing Heterocycles with Dioxazolones under Mild Conditions. J Org Chem 2020; 85:9244-9254. [PMID: 32558566 DOI: 10.1021/acs.joc.0c01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobalt(III)-catalyzed C-8 selective C-H amidation of quinoline N-oxide using dioxazolone as an amidating reagent under mild conditions is disclosed. The reaction proceeds efficiently with excellent functional group compatibility. The utility of the current method is demonstrated by gram scale synthesis of C-8 amide quinoline N-oxide and by converting this amidated product into functionalized quinolines. Furthermore, the developed catalytic method is also applicable for C-7 amidation of N-pyrimidylindolines and ortho-amidation of benzamides.
Collapse
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ankita Thakur
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Inder Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
21
|
Biswas A, Maity S, Pan S, Samanta R. Transition Metal‐Catalysed Direct C−H Bond Functionalizations of 2‐Pyridone Beyond C3‐Selectivity. Chem Asian J 2020; 15:2092-2109. [PMID: 32500612 DOI: 10.1002/asia.202000506] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| | - Saurabh Maity
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
- Current Address: Institute of Organic and Biomolecular ChemistryGeorg-August University Goettingen 37077 Germany
| | - Subarna Pan
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302, West Bengal India
| |
Collapse
|
22
|
Kong X, Xu B. OrthoC H amidations enabled by a recyclable manganese-ionic liquid catalytic system. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Vivek Kumar S, Banerjee S, Punniyamurthy T. Transition metal-catalyzed coupling of heterocyclic alkenes via C–H functionalization: recent trends and applications. Org Chem Front 2020. [DOI: 10.1039/d0qo00279h] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterocyclic alkenes and their derivatives are an important class of reactive feedstock and valuable synthons. This review highlights the transition-metal-catalyzed coupling of heterocyclic alkenes via a C–H functionalization strategy.
Collapse
|
24
|
Fu Y, Wang Z, Zhang Q, Li Z, Liu H, Bi X, Wang J. Ru(ii)-catalyzed C6-selective C–H acylmethylation of pyridones using sulfoxonium ylides as carbene precursors. RSC Adv 2020; 10:6351-6355. [PMID: 35496007 PMCID: PMC9049633 DOI: 10.1039/c9ra10749e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 02/02/2023] Open
Abstract
In this study, we describe a method using sulfoxonium ylides as carbene precursors to achieve C6-selective acylmethylation of pyridones catalyzed by a ruthenium(ii) complex. This approach featured mild reaction conditions, moderate to excellent yields, high step economy, and had excellent functional group tolerance with good site selectivity. Besides, gram-scale preparation, synthetic utility, and mechanistic studies were conducted. It offers a direct and efficient way to synthesize pyridone derivatives. In this study, we describe a method using sulfoxonium ylides as carbene precursors to achieve C6-selective acylmethylation of pyridones catalyzed by a ruthenium(ii) complex.![]()
Collapse
Affiliation(s)
- Yangjie Fu
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhaohui Wang
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qiyu Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hong Liu
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xiaoling Bi
- Jiangsu Key Laboratory of Drug Design and Optimization
- Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jiang Wang
- State Key Laboratory of Drug Research
- Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| |
Collapse
|
25
|
Zhao H, Xu X, Luo Z, Cao L, Li B, Li H, Xu L, Fan Q, Walsh PJ. Rhodium(i)-catalyzed C6-selective C-H alkenylation and polyenylation of 2-pyridones with alkenyl and conjugated polyenyl carboxylic acids. Chem Sci 2019; 10:10089-10096. [PMID: 32055363 PMCID: PMC6991184 DOI: 10.1039/c9sc03672e] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/09/2019] [Indexed: 01/02/2023] Open
Abstract
A versatile Rh(i)-catalyzed C6-selective decarbonylative C-H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C-H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc2O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C-H bond cleavage is likely the turnover-limiting step.
Collapse
Affiliation(s)
- Haoqiang Zhao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
- Roy and Diana Vagelos Laboratories , Penn/Merck Laboratory for High-Throughput Experimentation , Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , USA .
| | - Xin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Zhenli Luo
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Lei Cao
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Bohan Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Huanrong Li
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
| | - Lijin Xu
- Department of Chemistry , Renmin University of China , Beijing 100872 , China .
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Qinghua Fan
- Beijing National Laboratory for Molecular Sciences and Institute of Chemistry , Chinese Academy of Sciences , Beijing , 100190 , China .
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories , Penn/Merck Laboratory for High-Throughput Experimentation , Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104-6323 , USA .
| |
Collapse
|
26
|
Zhou C, Zhao J, Guo W, Jiang J, Wang J. N-Methoxyamide: An Alternative Amidation Reagent in the Rhodium(III)-Catalyzed C–H Activation. Org Lett 2019; 21:9315-9319. [DOI: 10.1021/acs.orglett.9b03357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chao Zhou
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Junqi Zhao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Weicong Guo
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|