1
|
Stolarek M, Pycior A, Bonarek P, Opydo M, Kolaczkowska E, Kamiński K, Mogielnicki A, Szczubiałka K. Biological Properties of Heparins Modified with an Arylazopyrazole-Based Photoswitch. J Med Chem 2023; 66:1778-1789. [PMID: 36657057 PMCID: PMC9923745 DOI: 10.1021/acs.jmedchem.2c01616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Unfractionated heparin (UFH) and enoxaparin (Enox) were substituted with a photoswitch (PS) showing quantitative trans-cis and cis-trans photoisomerizations. Long half-life of the cis photoisomer enabled comparison of the properties of heparins substituted with both PS photoisomers. Hydrodynamic diameter, Dh, of UFH-PS decreased upon trans-cis photoisomerization, the change being more pronounced for UFH-PS with a higher degree of substitution (DS), while Dh of Enox-PS did not significantly change. The anticoagulative properties of substituted heparins were significantly attenuated compared to non-substituted compounds. The interaction of UFH-PS with HSA, lysozyme, and protamine was studied with ITC. Under serum-free conditions, UFH-PS-trans with a high DS stimulated proliferation of murine fibroblasts, while UFH-PS-cis decreased the viability of these cells. Under serum conditions, both UFH-PS-cis and UFH-PS-trans decreased cell viability, the reduction for UFH-PS-cis being higher than that for UFH-PS-trans. Neither Enox-PS-trans nor Enox-PS-cis influenced the viability at concentrations prolonging aPTT, while at higher concentrations their cytotoxicity did not differ.
Collapse
Affiliation(s)
- Marta Stolarek
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Aleksandra Pycior
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Piotr Bonarek
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Małgorzata Opydo
- Laboratory
of Experimental Hematology, Institute of Zoology and Biomedical Research,
Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Elzbieta Kolaczkowska
- Laboratory
of Experimental Hematology, Institute of Zoology and Biomedical Research,
Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Kamil Kamiński
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Andrzej Mogielnicki
- Department
of Pharmacodynamics, Medical University
of Bialystok, Mickiewicza 2c, 15-089 Bialystok, Poland
| | - Krzysztof Szczubiałka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland,
| |
Collapse
|
2
|
Kaczor-Kamińska M, Kamiński K, Wróbel M. Heparan Sulfate, Mucopolysaccharidosis IIIB and Sulfur Metabolism Disorders. Antioxidants (Basel) 2022; 11:antiox11040678. [PMID: 35453363 PMCID: PMC9026333 DOI: 10.3390/antiox11040678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Mucopolysaccharidosis, type IIIB (MPS IIIB) is a rare disease caused by mutations in the N-alpha-acetylglucosaminidase (NAGLU) gene resulting in decreased or absent enzyme activity. On the cellular level, the disorder is characterized by the massive lysosomal storage of heparan sulfate (HS)—one species of glycosaminoglycans. HS is a sulfur-rich macromolecule, and its accumulation should affect the turnover of total sulfur in cells; according to the studies presented here, it, indeed, does. The lysosomal degradation of HS in cells produces monosaccharides and inorganic sulfate (SO42−). Sulfate is a product of L-cysteine metabolism, and any disruption of its levels affects the entire L-cysteine catabolism pathway, which was first reported in 2019. It is known that L-cysteine level is elevated in cells with the Naglu−/− gene mutation and in selected tissues of individuals with MPS IIIB. The level of glutathione and the Naglu−/− cells’ antioxidant potential are significantly reduced, as well as the activity of 3-mercaptopyruvate sulfurtransferase (MPST, EC 2.8.1.2) and the level of sulfane sulfur-containing compounds. The direct reason is not yet known. This paper attempts to identify some of cause-and-effect correlations that may lead to this condition and identifies research directions that should be explored.
Collapse
Affiliation(s)
- Marta Kaczor-Kamińska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-422-7400
| | - Kamil Kamiński
- Department of Physical Chemistry, Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa St., 30-387 Krakow, Poland;
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
| |
Collapse
|
3
|
Wille I, Harre J, Oehmichen S, Lindemann M, Menzel H, Ehlert N, Lenarz T, Warnecke A, Behrens P. Development of Neuronal Guidance Fibers for Stimulating Electrodes: Basic Construction and Delivery of a Growth Factor. Front Bioeng Biotechnol 2022; 10:776890. [PMID: 35141211 PMCID: PMC8819688 DOI: 10.3389/fbioe.2022.776890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
State-of-the-art treatment for sensorineural hearing loss is based on electrical stimulation of residual spiral ganglion neurons (SGNs) with cochlear implants (CIs). Due to the anatomical gap between the electrode contacts of the CI and the residual afferent fibers of the SGNs, spatial spreading of the stimulation signal hampers focused neuronal stimulation. Also, the efficiency of a CI is limited because SGNs degenerate over time due to loss of trophic support. A promising option to close the anatomical gap is to install fibers as artificial nerve guidance structures on the surface of the implant and install on these fibers drug delivery systems releasing neuroprotective agents. Here, we describe the first steps in this direction. In the present study, suture yarns made of biodegradable polymers (polyglycolide/poly-ε-caprolactone) serve as the basic fiber material. In addition to the unmodified fiber, also fibers modified with amine groups were employed. Cell culture investigations with NIH 3T3 fibroblasts attested good cytocompatibility to both types of fibers. The fibers were then coated with the extracellular matrix component heparan sulfate (HS) as a biomimetic of the extracellular matrix. HS is known to bind, stabilize, modulate, and sustainably release growth factors. Here, we loaded the HS-carrying fibers with the brain-derived neurotrophic factor (BDNF) which is known to act neuroprotectively. Release of this neurotrophic factor from the fibers was followed over a period of 110 days. Cell culture investigations with spiral ganglion cells, using the supernatants from the release studies, showed that the BDNF delivered from the fibers drastically increased the survival rate of SGNs in vitro. Thus, biodegradable polymer fibers with attached HS and loaded with BDNF are suitable for the protection and support of SGNs. Moreover, they present a promising base material for the further development towards a future neuronal guiding scaffold.
Collapse
Affiliation(s)
- Inga Wille
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Jennifer Harre
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Sarah Oehmichen
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Lindemann
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Henning Menzel
- Institut für Technische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nina Ehlert
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Thomas Lenarz
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Cluster of Excellence Hearing4all, Hannover, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Peter Behrens
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
- Cluster of Excellence PhoenixD, Hannover, Germany
| |
Collapse
|
4
|
Xu L, He D, Zhang C, Bai Y, Zhang C. The regulate function of polysaccharides and oligosaccharides that with sulfate group on immune-related disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
5
|
Huang Q, Zhao H, Shui M, Guo DS, Wang R. Heparin reversal by an oligoethylene glycol functionalized guanidinocalixarene. Chem Sci 2020; 11:9623-9629. [PMID: 34094229 PMCID: PMC8162181 DOI: 10.1039/d0sc03922e] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 02/02/2023] Open
Abstract
Unfractionated heparin (UFH), a naturally occurring anionic polysaccharide, is widely used as an anticoagulant agent in clinical practice. When overdosed or used in sensitive patients, UFH may cause various risks and a UFH neutralizer needs to be administered immediately to reverse heparinization. However, the most common UFH neutralizer, protamine sulfate, often causes various adverse effects, some of which are life-threatening. Herein, we designed a highly biocompatible, oligoethylene glycol functionalized guanidinocalixarene (GC4AOEG) as an antidote against UFH. GC4AOEG and UFH exhibited a strong binding affinity, ensuring specific recognition and neutralization of UFH by GC4AOEG in vitro and in vivo. As a consequence, UFH-induced excessive bleeding was significantly alleviated by GC4AOEG in different mouse bleeding models. Additionally, no adverse effects were observed during these treatments in vivo. Taken together, GC4AOEG, as a strategically designed, biocompatible artificial receptor with strong recognition affinity towards UFH, may have significant clinical potential as an alternative UFH reversal agent.
Collapse
Affiliation(s)
- Qiaoxian Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau SAR China
| | - Hong Zhao
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin China
| | - Mingju Shui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau SAR China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau SAR China
| |
Collapse
|
6
|
Kalaska B, Miklosz J, Kamiński K, Swieton J, Jakimczuk A, Yusa SI, Pawlak D, Nowakowska M, Szczubiałka K, Mogielnicki A. Heparin-Binding Copolymer as a Complete Antidote for Low-Molecular-Weight Heparins in Rats. J Pharmacol Exp Ther 2020; 373:51-61. [PMID: 31937564 DOI: 10.1124/jpet.119.262931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/09/2020] [Indexed: 11/22/2022] Open
Abstract
Bleeding resulting from the application of low-molecular-weight heparins (LMWHs) may be treated with protamine sulfate, but this treatment lacks efficiency; its action against antifactor Xa activity is limited to ∼60%. Moreover, protamine sulfate can cause life-threatening hypersensitivity reactions. We developed diblock heparin-binding copolymer (HBC), which can neutralize the anticoagulant activity of parenteral anticoagulants. In the present study, we explored the safety profile of HBC and its potential to reverse enoxaparin, nadroparin, dalteparin, and tinzaparin in human plasma and at in vivo conditions. HBC-LMWH complexes were characterized using zeta potential, isothermal titration calorimetry, and dynamic light scattering. The rat cardiomyocytes and human endothelial cells were used for the assessment of in vitro toxicity. Male Wistar rats were observed for up to 4 days after HBC administration for clinical evaluation, gross necropsy, and biochemistry and histopathological analysis. Rats were treated with LMWHs alone or followed by short-time intravenous infusion of HBC, and bleeding time and antifactor Xa activity were measured. HBC completely reversed antifactor Xa activity prolonged in vitro by all LMWHs with an optimal weight ratio of 2.5:1. The complexes of HBC-LMWHs were below 5 µm. We observed no effects on the viability of cardiovascular cells treated with HBC at concentrations up to 0.05 mg/ml. Single doses up to 20 mg/kg of HBC were well tolerated by rats. HBC completely reversed the effects of LMWHs on bleeding time and antifactor Xa activity in vivo after 20 minutes and retained ∼80% and ∼60% of reversal activity after 1 and 2 hours, respectively. Well-documented efficacy and safety of HBC both in vitro and in vivo make this polymer a promising candidate for LMWHs reversal. SIGNIFICANCE STATEMENT: Over the last decade, there has been significant progress in developing antidotes for the reversal of anticoagulants. Until now, there has been no effective and safe treatment for patients with severe bleeding under low-molecular-weight heparin therapy. Based on our in vitro and in vivo studies, heparin-binding copolymer seems to be a promising candidate for neutralizing all clinically relevant low-molecular-weight heparins.
Collapse
Affiliation(s)
- Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland (B.K., J.M., J.S., A.J., D.P., A.M.); Faculty of Chemistry, Jagiellonian University, Krakow, Poland (K.K., M.N., K.S.); and Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan (S.-I.Y.)
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland (B.K., J.M., J.S., A.J., D.P., A.M.); Faculty of Chemistry, Jagiellonian University, Krakow, Poland (K.K., M.N., K.S.); and Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan (S.-I.Y.)
| | - Kamil Kamiński
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland (B.K., J.M., J.S., A.J., D.P., A.M.); Faculty of Chemistry, Jagiellonian University, Krakow, Poland (K.K., M.N., K.S.); and Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan (S.-I.Y.)
| | - Justyna Swieton
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland (B.K., J.M., J.S., A.J., D.P., A.M.); Faculty of Chemistry, Jagiellonian University, Krakow, Poland (K.K., M.N., K.S.); and Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan (S.-I.Y.)
| | - Aleksandra Jakimczuk
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland (B.K., J.M., J.S., A.J., D.P., A.M.); Faculty of Chemistry, Jagiellonian University, Krakow, Poland (K.K., M.N., K.S.); and Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan (S.-I.Y.)
| | - Shin-Ichi Yusa
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland (B.K., J.M., J.S., A.J., D.P., A.M.); Faculty of Chemistry, Jagiellonian University, Krakow, Poland (K.K., M.N., K.S.); and Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan (S.-I.Y.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland (B.K., J.M., J.S., A.J., D.P., A.M.); Faculty of Chemistry, Jagiellonian University, Krakow, Poland (K.K., M.N., K.S.); and Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan (S.-I.Y.)
| | - Maria Nowakowska
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland (B.K., J.M., J.S., A.J., D.P., A.M.); Faculty of Chemistry, Jagiellonian University, Krakow, Poland (K.K., M.N., K.S.); and Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan (S.-I.Y.)
| | - Krzysztof Szczubiałka
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland (B.K., J.M., J.S., A.J., D.P., A.M.); Faculty of Chemistry, Jagiellonian University, Krakow, Poland (K.K., M.N., K.S.); and Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan (S.-I.Y.)
| | - Andrzej Mogielnicki
- Department of Pharmacodynamics, Medical University of Bialystok, Bialystok, Poland (B.K., J.M., J.S., A.J., D.P., A.M.); Faculty of Chemistry, Jagiellonian University, Krakow, Poland (K.K., M.N., K.S.); and Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan (S.-I.Y.)
| |
Collapse
|
7
|
Liu Q, Välimäki S, Shaukat A, Shen B, Linko V, Kostiainen MA. Serum Albumin-Peptide Conjugates for Simultaneous Heparin Binding and Detection. ACS OMEGA 2019; 4:21891-21899. [PMID: 31891067 PMCID: PMC6933801 DOI: 10.1021/acsomega.9b02883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/26/2019] [Indexed: 05/14/2023]
Abstract
Heparin is a polysaccharide-based anticoagulant agent, which is widely used in surgery and blood transfusion. However, overdosage of heparin may cause severe side effects such as bleeding and low blood platelet count. Currently, there is only one clinically licensed antidote for heparin: protamine sulfate, which is known to provoke adverse effects. In this work, we present a stable and biocompatible alternative for protamine sulfate that is based on serum albumin, which is conjugated with a variable number of heparin-binding peptides. The heparin-binding efficiency of the conjugates was evaluated with methylene blue displacement assay, dynamic light scattering, and anti-Xa assay. We found that multivalency of the peptides played a key role in the observed heparin-binding affinity and complex formation. The conjugates had low cytotoxicity and low hemolytic activity, indicating excellent biocompatibility. Furthermore, a sensitive DNA competition assay for heparin detection was developed. The detection limit of heparin was 0.1 IU/mL, which is well below its therapeutic range (0.2-0.4 IU/mL). Such biomolecule-based systems are urgently needed for next-generation biocompatible materials capable of simultaneous heparin binding and sensing.
Collapse
Affiliation(s)
- Qing Liu
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Salla Välimäki
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Ahmed Shaukat
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Boxuan Shen
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Mauri A. Kostiainen
- Biohybrid
Materials, Department of Bioproducts and Biosystems and HYBER Center of Excellence, Department
of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
8
|
Zhang C, Tang F, Zhang J, Cao J, Li H, Liu C. Uncovering the detailed mode of cleavage of heparinase I toward structurally defined heparin oligosaccharides. Int J Biol Macromol 2019; 141:756-764. [PMID: 31479666 DOI: 10.1016/j.ijbiomac.2019.08.260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Abstract
For a more insightful investigation into the specificity of bacterial heparinase I, a series of structurally well-defined heparin oligosaccharides was synthesized using a highly efficient chemoenzymatic strategy. Apart from the primary cleavage site, five glycosidic linkages of oligosaccharides with varying modifications to obtain secondary cleavage sites were degraded by a high concentration of heparinase I. The reactivity of linkages toward heparinase I was not entirely dependent on the 2-O-sulfated iduronic acid being cleaved or the neighboring 6-O-sulfated glucosamine residues, but it was dependent on higher degrees of sulfation of oligosaccharides and indispensable N-substituted glucosamine adjacent to the cleavable linkage. Moreover, the enzyme demonstrated less preferential cleavage toward glycosidic linkages containing glucuronic acid than those containing iduronic acid of the counterpart oligosaccharides. Biolayer interferometry revealed differences in reactivity that are not completely consistent with different affinities of substrates to enzyme. Our study presented accurate information on the cleavage promiscuity of heparinase I that is crucial for heparin depolymerization.
Collapse
Affiliation(s)
- Chengying Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Fengyan Tang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Jingjing Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Jichao Cao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China
| | - Huijuan Li
- Department of Bioengineering, College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, PR China
| | - Chunhui Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, PR China; National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, PR China.
| |
Collapse
|
9
|
Tena-Solsona M, Marson D, Rodrigo AC, Bromfield SM, Escuder B, Miravet JF, Apostolova N, Laurini E, Pricl S, Smith DK. Self-assembled multivalent (SAMul) ligand systems with enhanced stability in the presence of human serum. Biomater Sci 2019; 7:3812-3820. [PMID: 31264671 DOI: 10.1039/c9bm00745h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled cationic micelles are an attractive platform for binding biologically-relevant polyanions such as heparin. This has potential applications in coagulation control, where a synthetic heparin rescue agent could be a useful replacement for protamine, which is in current clinical use. However, micelles can have low stability in human serum and unacceptable toxicity profiles. This paper reports the optimisation of self-assembled multivalent (SAMul) arrays of amphiphilic ligands to bind heparin in competitive conditions. Specifically, modification of the hydrophobic unit kinetically stabilises the self-assembled nanostructures, preventing loss of binding ability in the presence of human serum - cholesterol hydrophobic units significantly outperform systems with a simple aliphatic chain. It is demonstrated that serum albumin disrupts the binding thermodynamics of the latter system. Molecular simulation shows aliphatic lipids can more easily be removed from the self-assembled nanostructures than the cholesterol analogues. This agrees with the experimental observation that the cholesterol-based systems undergo slower disassembly and subsequent degradation via ester hydrolysis. Furthermore, by stabilising the SAMul nanostructures, toxicity towards human cells is decreased and biocompatibility enhanced, with markedly improved survival of human hepatoblastoma cells in an MTT assay.
Collapse
Affiliation(s)
- Marta Tena-Solsona
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|