1
|
Lei Z, Ang HT, Wu J. Advanced In-Line Purification Technologies in Multistep Continuous Flow Pharmaceutical Synthesis. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Schulte R, Ihmels H. Borylated norbornadiene derivatives: Synthesis and application in Pd-catalyzed Suzuki-Miyaura coupling reactions. Beilstein J Org Chem 2022; 18:368-373. [PMID: 35422884 PMCID: PMC8978913 DOI: 10.3762/bjoc.18.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 11/23/2022] Open
Abstract
The photochromic norbornadiene/quadricyclane system is among the most promising candidates for molecular solar thermal (MOST) energy storage. As in this context there is still the need for new tailor-made derivatives, borylated norbornadienes were synthesized that may be used as versatile building blocks. Thus, the 4,4,5,5-tetramethyl-2-(bicyclo[2.2.1]heptadien-2-yl)-1,3,2-dioxaborolane was prepared and shown to be a suitable substrate for Pd-catalyzed Suzuki-Miyaura coupling reactions with selected haloarenes. It was demonstrated exemplarily that the novel monosubstituted 2-(1-naphthyl)norbornadiene, that is accessible through this route, is transformed to the corresponding quadricyclane upon irradiation, whereas the back reaction can be accomplished by thermal treatment.
Collapse
Affiliation(s)
- Robin Schulte
- Department of Chemistry and Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ); Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, University of Siegen, and Center of Micro- and Nanochemistry and (Bio)Technology (Cμ); Adolf-Reichwein-Str. 2, 57068 Siegen, Germany
| |
Collapse
|
3
|
Orrego‐Hernández J, Hölzel H, Quant M, Wang Z, Moth‐Poulsen K. Scalable Synthesis of Norbornadienes via
in situ
Cracking of Dicyclopentadiene Using Continuous Flow Chemistry. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jessica Orrego‐Hernández
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 412 96 Gothenburg Sweden
| | - Helen Hölzel
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 412 96 Gothenburg Sweden
| | - Maria Quant
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 412 96 Gothenburg Sweden
| | - Zhihang Wang
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 412 96 Gothenburg Sweden
| | - Kasper Moth‐Poulsen
- Department of Chemistry and Chemical Engineering Chalmers University of Technology Kemigården 4 412 96 Gothenburg Sweden
| |
Collapse
|
4
|
Inoue K, Feng Y, Mori A, Okano K. "Snapshot" Trapping of Multiple Transient Azolyllithiums in Batch. Chemistry 2021; 27:10267-10273. [PMID: 33960030 DOI: 10.1002/chem.202101256] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 12/23/2022]
Abstract
Recent developments in flow microreactor technology have allowed the use of transient organolithium compounds that cannot be realized in a batch reactor. However, trapping the transient aryllithiums in a "halogen dance" is still challenging. Herein is reported the trapping of such short-lived azolyllithiums in a batch reactor by developing a finely tuned in situ zincation using zinc halide diamine complexes. The reaction rate is controlled by the appropriate choice of diamine ligand. The reaction is operationally simple and can be performed at 0 °C with high reproducibility on a multigram scale. This method was applicable to a wide range of brominated azoles allowing deprotonative functionalization, which was used for the concise divergent syntheses of both constitutional isomers of biologically active azoles.
Collapse
Affiliation(s)
- Kengo Inoue
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yuxuan Feng
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
5
|
Sakurai H. The Dawn of Sumanene Chemistry: My Personal History with π-Figuration. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
6
|
Tamaki T, Nagaki A. Reaction Selectivity Control in Flash Synthetic Chemistry. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Aiichiro Nagaki
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| |
Collapse
|
7
|
Lee HJ, Yonekura Y, Kim N, Yoshida JI, Kim H. Regioselective Synthesis of α-Functional Stilbenes via Precise Control of Rapid cis- trans Isomerization in Flow. Org Lett 2021; 23:2904-2910. [PMID: 33797929 DOI: 10.1021/acs.orglett.1c00538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid cis-trans isomerization of α-anionic stilbene was regioselectively controlled by using flow microreactors, and its reaction with various electrophiles was conducted. The reaction time was precisely controlled within milliseconds to seconds at -50 °C to selectively give the cis- or trans-isomer in high yields. This synthetic method in flow was well-applied to synthesize precursors of commercial drug compound, (E)- and (Z)-tamoxifen with high regioselectivity and productivity.
Collapse
Affiliation(s)
- Hyune-Jea Lee
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Yuya Yonekura
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan
| | - Nayoung Kim
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Jun-Ichi Yoshida
- Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan.,National Institution of Technology, Suzuka College, Suzuka, Mie 510-0294, Japan
| | - Heejin Kim
- Department of Chemistry, College of Science, Korea University, Seongbuk-gu, Seoul 02841, South Korea.,Department of Synthetic and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-08510, Japan
| |
Collapse
|
8
|
Jiao J, Nie W, Yu T, Yang F, Zhang Q, Aihemaiti F, Yang T, Liu X, Wang J, Li P. Multi-Step Continuous-Flow Organic Synthesis: Opportunities and Challenges. Chemistry 2021; 27:4817-4838. [PMID: 33034923 DOI: 10.1002/chem.202004477] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/11/2022]
Abstract
Continuous-flow multi-step synthesis takes the advantages of microchannel flow chemistry and may transform the conventional multi-step organic synthesis by using integrated synthetic systems. To realize the goal, however, innovative chemical methods and techniques are urgently required to meet the significant remaining challenges. In the past few years, by using green reactions, telescoped chemical design, and/or novel in-line separation techniques, major and rapid advancement has been made in this direction. This minireview summarizes the most recent reports (2017-2020) on continuous-flow synthesis of functional molecules. Notably, several complex active pharmaceutical ingredients (APIs) have been prepared by the continuous-flow approach. Key technologies to the successes and remaining challenges are discussed. These results exemplified the feasibility of using modern continuous-flow chemistry for complex synthetic targets, and bode well for the future development of integrated, automated artificial synthetic systems.
Collapse
Affiliation(s)
- Jiao Jiao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenzheng Nie
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Fan Yang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Feierdaiweisi Aihemaiti
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Tingjun Yang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanyu Liu
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiachen Wang
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
9
|
Wong JYF, Tobin JM, Vilela F, Barker G. Batch Versus Flow Lithiation–Substitution of 1,3,4‐Oxadiazoles: Exploitation of Unstable Intermediates Using Flow Chemistry. Chemistry 2019; 25:12439-12445. [DOI: 10.1002/chem.201902917] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jeff Y. F. Wong
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| | - John M. Tobin
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| | - Filipe Vilela
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| | - Graeme Barker
- Institute of Chemical SciencesHeriot-Watt University Riccarton Edinburgh UK
| |
Collapse
|
10
|
Lee H, Kim H, Kim D. From
p
‐Xylene to Ibuprofen in Flow: Three‐Step Synthesis by a Unified Sequence of Chemoselective C−H Metalations. Chemistry 2019; 25:11641-11645. [PMID: 31338883 DOI: 10.1002/chem.201903267] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Hyune‐Jea Lee
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering POSTECH (Pohang University of Science and Technology) Pohang 790-784 South Korea
| | - Heejin Kim
- Department of Chemistry College of Science Korea University Seoul 02841 South Korea
| | - Dong‐Pyo Kim
- Centre for Intelligent Microprocess of Pharmaceutical Synthesis Department of Chemical Engineering POSTECH (Pohang University of Science and Technology) Pohang 790-784 South Korea
| |
Collapse
|