1
|
Niu L, He Y, Zhang X, Peng Y, Wang D, Wang T, Zhang Z. Synthesis of 5-(2-hydroxyphenyl)-5-methyl-6H-benzo[c]carbazole-6-ones and their antitumor activities. Bioorg Chem 2025; 159:108364. [PMID: 40101579 DOI: 10.1016/j.bioorg.2025.108364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
A concise and efficient photo-induced rearrangement and oxidation of 2-(3-methylbenzofuran-2-yl)-3-phenyl-1H-indoles 1 for the synthesis of 5-(2-hydroxyphenyl)-5-methyl-5,7-dihydro-6H-benzocarbazol-6-ones 2 is described. Irradiation of compounds 1 in anhydrous dichloromethane solution, using 313 nm UV light in an air atmosphere, resulted in the formation of compounds 2 with yields ranging from 55% to 98%. Using the 6π-electrocyclization strategy of compounds 1 containing a methyl, a quaternary carbon stereocenter was introduced in the compounds 2. The carbonyl group of compounds 2 was formed by the photo-induced oxidation of C-H bond to C-OH and hemiketal-keto tautomerization. Additionally, the antitumor activities of compounds 2 were evaluated and found to demonstrate equivalent or superior activity compared to Cisplatin against various tumor cell lines, including leukemia HL-60, lung cancer A549, liver cancer HepG2, breast cancer MDA-MB-231 and colon cancer SW480. The anticancer activity of compound 2f was particularly significant, with IC50 values of 2.99, 9.06, 6.81, 9.29, and 14.93 μM respectively, and its IC50 value of normal cells 11.18 μM. Compound 2k had a relatively high IC50 values against cancer cells, whereas its IC50 value greater than 40μM for normal cells.
Collapse
Affiliation(s)
- Lixin Niu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yun He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Xing Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Yanfei Peng
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Ding Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Tao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China
| | - Zunting Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, People's Republic of China.
| |
Collapse
|
2
|
Zakharov AV, Evsikova EE, Grebennikova PD, Krylova MA, Fakhrutdinov AN, Shirinian VZ. Metal-free, visible-light-mediated phototransformations of ortho-biaryl appended chalcones: access to oxathia[5]helicenes and 1,2,3,4-tetrasubstituted cyclobutanes. Org Biomol Chem 2025; 23:5182-5190. [PMID: 40314218 DOI: 10.1039/d5ob00490j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Visible-light-mediated metal-free irreversible phototransformations of ortho-bihetaryl appended chalcones are reported. Isosteric replacement of one of the aryl residues with a chalcone fragment in diarylethene (terarylene) molecules leads to a significant expansion of the synthetic capabilities of these compounds, thereby opening up access to a wide range of new functional materials. It was found for the first time that protonation of the carbonyl group in the chalcone moiety of ortho-bihetarylchalcones exclusively promotes 6π-photocyclization leading to the formation of oxathia[5]helicenes, whereas 1,2,3,4-tetrasubstituted cyclobutanes are preferably formed upon photolysis in toluene in the presence of triethylamine. The formation of the helicene framework is due to visible light-induced 6π-electrocyclization of the hexatriene system of bihetaryl chalcones, and [2 + 2]-photocycloaddition is facilitated by the aggregation of chalcone molecules, which is a consequence of the formation of a head-to-head excimer due to π-π-stacking interactions of naphthofuran polyaromatic systems. These results will provide valuable information on the photocyclization of new diarylethene analogues, which can be used to develop new efficient protocols for the synthesis of fused heteroaromatic frameworks and promising materials with wide applications in material science, molecular electronics and medicine.
Collapse
Affiliation(s)
- A V Zakharov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prosp., 119991 Moscow, Russian Federation.
| | - E E Evsikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prosp., 119991 Moscow, Russian Federation.
| | - P D Grebennikova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prosp., 119991 Moscow, Russian Federation.
| | - M A Krylova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prosp., 119991 Moscow, Russian Federation.
| | - A N Fakhrutdinov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prosp., 119991 Moscow, Russian Federation.
| | - V Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Sui J, He Y, Wang D, Wang T, Ren K, Liang Y, Zhang Z. Synthesis of cis-(8b,14a)-hexahydro-14H-dibenzo[f,h]oxazolo[3,2-b]isoquinolin-14-ones via photo cascade reaction. Mol Divers 2025; 29:367-378. [PMID: 38643417 DOI: 10.1007/s11030-024-10857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/22/2024] [Indexed: 04/22/2024]
Abstract
A concise method for the synthesis of cis-(8b,14a)-hexahydro-14H-dibenzo[f,h]oxazolo[3,2-b]isoquinolin-14-ones 2 via photo-induced 3-([1,1'-biphenyl]-2-yl)-1-(2-hydroxyethyl)pyridin-2(1H)-ones 1 was developed. Irradiation of 1 in the solution of toluene with a 313 nm UV light in the presence of HCl gave cis-(8b,14a)-9a-α-hexahydro-14H-dibenzo[f,h]oxazolo[3,2-b]isoquinoli n-14-ones and cis-(8b,14a)-9a-β-hexahydro-14H-dibenzo[f,h]oxazolo[3,2-b]isoquinolin-14-ones 2 (2-α and 2-β) in good yields. The protocol simultaneously constructs dearomatized phenanthrene ring and oxindolizidinones ring by photo cascade reaction to achieve high bonding efficiency and high atomic efficiency. Additionally, the antitumor activities of 2 was evaluated and compounds 2b-α, 2b-β, 2j-β and 2 k-α showed similar or better activity compared to the cisplatin against tumor cell lines of Leukemia HL-60, lung cancer A594, liver cancer SMMC-7721 and breast cancer MDA-MB-231.
Collapse
Affiliation(s)
- Jingzhi Sui
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yun He
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ding Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Tao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Kexin Ren
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yong Liang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Zunting Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
4
|
Jíra T, Janoš J, Slavíček P. Sensitivity Analysis in Photodynamics: How Does the Electronic Structure Control cis-Stilbene Photodynamics? J Chem Theory Comput 2024; 20:10972-10985. [PMID: 39668373 DOI: 10.1021/acs.jctc.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The techniques of computational photodynamics are increasingly employed to unravel reaction mechanisms and interpret experiments. However, misinterpretations in nonadiabatic dynamics caused by inaccurate underlying potentials are often difficult to foresee. This work focuses on revealing the systematic errors in the nonadiabatic simulations due to the underlying potentials and suggests a thrifty approach to evaluate the sensitivity of the simulations to the potential. This issue is exemplified in the photochemistry of cis-stilbene, where similar experimental outcomes have been differently interpreted based on the electronic structure methods supporting nonadiabatic dynamics. We examine the predictions of cis-stilbene photochemistry using trajectory surface hopping methods coupled with various electronic structure methods (OM3-MRCISD, SA2-CASSCF, XMS-SA2-CASPT2, and XMS-SA3-CASPT2) and assess their ability to interpret experimental observations. While the excited-state lifetimes and calculated photoelectron spectra show consistency with experiments, the reaction quantum yields vary significantly: either completely suppressing cyclization or isomerization. Intriguingly, analyzing stationary points on the potential energy surface does not hint at any major discrepancy, making the electronic structure methods seemingly reliable when treated separately. We show that performing an ensemble of simulations with different potentials provides an estimate of the electronic structure sensitivity. However, this ensemble approach is costly. Thus, we propose running nonadiabatic simulations with an external bias at a resource-efficient underlying potential (semiempirical or machine-learned) for the sensitivity analysis. We demonstrate this approach using a semiempirical OM3-MRCISD method with a harmonic bias toward cyclization.
Collapse
Affiliation(s)
- Tomáš Jíra
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| | - Jiří Janoš
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| |
Collapse
|
5
|
Ma X, Wang S, Tang Z, Huang J, Jia T, Zhao X, Zhao D. Visible light-induced Mallory reaction of tertiary benzanilides via iminium intermediates. Chem Sci 2024:d4sc03907f. [PMID: 39364068 PMCID: PMC11446310 DOI: 10.1039/d4sc03907f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
The Mallory reaction, which involves the photocyclization of stilbenes/diarylethenes and their analogues into polycyclic aromatics, is of significant synthetic importance. However, its application to tertiary benzanilides has not been explored to date. Besides, most of the reported Mallory reactions require ultraviolet irradiation. In this study, we show the first Mallory reaction of tertiary benzanilides promoted by visible light via iminium intermediates formed in situ from tertiary benzanilide, Tf2O (triflic anhydride) and pyridine. UV/vis absorption spectroscopy combined with density functional theory (DFT) calculations revealed that the formation of the iminium intermediate decreased the HOMO-LUMO energy gap, thereby enhancing visible light absorption. This study provides a rapid and practical approach for the preparation of the phenanthridinone skeleton and provides a new idea for the design of new visible light photoswitches.
Collapse
Affiliation(s)
- Xiaoqiang Ma
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Si Wang
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Zhanyong Tang
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Jialin Huang
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Tianhao Jia
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Xingda Zhao
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| | - Depeng Zhao
- State Key Laboratory of Anti-infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
6
|
Li HY, Niu X, Zhang SS, Shen S, Meng QY, Yang XL. Intramolecular Dehydrogenative Photocyclization of N-Phenyl-1-naphthamides. Org Lett 2024; 26:5364-5369. [PMID: 38874571 DOI: 10.1021/acs.orglett.4c01805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Here, we explore a dehydrogenative 6π photocyclization method for N-substituted naphthalene carboxamides, which can be conducted in air. This method employs DMSO as both the reaction solvent and oxidant while also stabilizing the excited state of the substrate. Furthermore, the addition of photosensitizer enables the reaction to proceed under a 440-445 nm LED source via energy transfer. The proposed mechanism is initially validated through DFT calculations.
Collapse
Affiliation(s)
- Hao-Yuan Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Chemical Biology of Hebei Province (22567635H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Chemical Biology of Hebei Province (22567635H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shan-Shan Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Chemical Biology of Hebei Province (22567635H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Chemical Biology of Hebei Province (22567635H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Qing-Yuan Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Key Laboratory of Chemical Biology of Hebei Province (22567635H), College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
7
|
Hulley EB, Clennan EL. Dihydrophenanthrene Open-Shell Singlet Diradicals and Their Roles in the Mallory Photocyclization Reaction. J Am Chem Soc 2024; 146:1122-1131. [PMID: 38163932 DOI: 10.1021/jacs.3c12400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
A computational study (ωB97X-D/6-31G(d)) of the Mallory photocyclization reaction has revealed that the well-established dihydrophenanthrene (DHP) intermediates can adopt either closed-shell (CS) or open-shell-diradical (OS) singlet ground states. A detailed study of the properties of DHPs allowed their classifications as OS, borderline-OS, borderline-CS, or CS intermediates. The triplet electronic state and higher energy CS* isomer of all the OS singlet diradicals were computationally located, and the expected relationship between the diradical index, yo, and the triplet energy and the OS-CS* energy gaps was established. The importance of aromaticity in stabilizing the OS singlet diradicals was confirmed by using the Harmonic Oscillator Model of Aromaticity (HOMA). The thermal decompositions of DHPs by cycloreversions to regenerate the Mallory starting materials were also studied. The cycloreversion mechanism was described as a homolytic cleavage characterized by an anchimeric assistance continuum promoted by bis-β-homolytic cleavage.
Collapse
Affiliation(s)
- Elliott B Hulley
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Edward L Clennan
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
8
|
Xi J, Wang D, Hu J, Shen H, Wang T, Zhang Z. Rearrangement of 2-(benzofuran-2-yl)-3-phenylpyridines via photoinduced 6π-electrocyclization. Org Biomol Chem 2023; 21:7188-7193. [PMID: 37642152 DOI: 10.1039/d3ob00883e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
By photoinduced 6π-electrocyclization of 2-(benzofuran-2-yl)-3-phenylpyridine derivatives 1, a method for the synthesis of trans-dihydrobenzo[f]quinolines 2, cis-dihydrobenzo[f]quinolines 3 and 8b-methyl-1,8b-dihydrobenzo[f]quinolines 4 was developed. Irradiation of 2-(benzofuran-2-yl)-3-phenylpyridine 1 in acetone-H2O (5 : 1, v/v) with a 313 nm UV lamp under an argon atmosphere at room temperature successfully yielded 2, which was further converted into 3 at elevated temperature (200 °C) in glycerol. However, irradiating 2-(3-methylbenzofuran-2-yl)-3-phenylpyridines 1 in CH2Cl2 with a 254 nm UV lamp gave 4 in good yields. The syntheses of 2, 3 and 4via the 6π-electrocyclization rearrangement of 1 not only offer high atom efficiency but also do not require transition metal catalysts or additives.
Collapse
Affiliation(s)
- Jin Xi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Ding Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jinxia Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Huan Shen
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zunting Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
9
|
Bolotova IA, Ustyuzhanin AO, Sergeeva ES, Faizdrakhmanova AA, Hai Y, Stepanov AV, Ushakov IA, Lyssenko KA, You L, Lvov AG. 2,3-Diarylmaleate salts as a versatile class of diarylethenes with a full spectrum of photoactivity in water. Chem Sci 2023; 14:9553-9559. [PMID: 37712048 PMCID: PMC10498723 DOI: 10.1039/d3sc02165c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
There is incessant interest in the transfer of common chemical processes from organic solvents to water, which is vital for the development of bioinspired and green chemical technologies. Diarylethenes feature a rich photochemistry, including both irreversible and reversible reactions that are in demand in organic synthesis, materials chemistry, and photopharmacology. Herein, we introduce the first versatile class of diarylethenes, namely, potassium 2,3-diarylmaleates (DAMs), that show excellent solubility in water. DAMs obtained from highly available precursors feature a full spectrum of photoactivity in water and undergo irreversible reactions (oxidative cyclization or rearrangement) or reversible photocyclization (switching), depending on their structure. This finding paves a way towards wider application of diarylethenes in photopharmacology and bioinspired technologies that require aqueous media for photochemical reactions.
Collapse
Affiliation(s)
- Iumzhana A Bolotova
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Alexander O Ustyuzhanin
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Ekaterina S Sergeeva
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Anna A Faizdrakhmanova
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Andrey V Stepanov
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Igor A Ushakov
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
| | | | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Andrey G Lvov
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| |
Collapse
|
10
|
Sun Y, Ding H, Tang M, Wen J, Yue S, Peng Y, Zheng L, Shi Y, Cao Q. Multicolor Adjustable B-N Molecular Switches: Simple, Efficient, Portable, and Visual Identification of Butanol Isomers. Anal Chem 2023; 95:5594-5600. [PMID: 36942711 DOI: 10.1021/acs.analchem.2c05045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
As intelligent probes, dynamic and controllable molecular switches are useful tools for probing and intervening in life processes. However, the types and properties of molecular switches are still relatively single and often can only make two actions: "off" and "on". Therefore, the development of novel molecular switches with multiple colors and multiple instructions is very challenging. Herein, we propose a novel strategy based on the instability of the Lewis acid-base pair (boron (B) and nitrogen (N)), such as introducing the Schiff base (C═N) group into the aminoborane skeleton and preparing the novel molecular switches BN-HDZ and BN-HDZ-N. These two molecules were found to have good multicolor fluorescence switching capability for methanol. Surprisingly, the compound BN-HDZ-N shows unprecedented visual identification for the butanol isomers and could be made into a portable strip for simple and rapid visual identification of the four isomers of butanol, promising an alternative to conventional Lucas reagents. This provides a novel strategy for the design and fabrication of novel multicolor-tunable molecular switches with visual identification of isomers.
Collapse
Affiliation(s)
- Yitong Sun
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Huangting Ding
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Meng Tang
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Jingyi Wen
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Shiwen Yue
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Ye Peng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Liyan Zheng
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Yonggang Shi
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming, Yunnan 650091, P. R. China
| |
Collapse
|
11
|
Zakharov AV, Timofeeva SM, Yadykov AV, Krayushkin MM, Shirinian VZ. Skeletal photoinduced rearrangement of diarylethenes: ethene bridge effects. Org Biomol Chem 2023; 21:2015-2023. [PMID: 36790344 DOI: 10.1039/d2ob02315f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
A skeletal photorearrangement involving UV-induced 6π-electrocyclization of diarylethenes with various ethene bridges has been studied. It has been found that deprotonation is the predominant step among the three possible alternative reaction pathways (radical abstraction, deprotonation, or sigmatropic shift) following 6π-electrocyclization, and incorporation of an electronegative carbonyl group into the geminal position to the phenyl residue results in a reduction in the reaction time and an increase in the yield of the desired product. The significant increase in the reaction time in less polar solvents (toluene, TCM) also indicates a large contribution of the deprotonation step to the skeletal photorearrangement of diarylethenes. Performing the reaction in toluene in the presence of tertiary amines leads to a reduction in the reaction time and an increase in the yield of the desired product. The best results were achieved when the reaction was carried out in toluene in the presence of DIPEA. The experimental results are in good agreement with the DFT calculations.
Collapse
Affiliation(s)
- A V Zakharov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - S M Timofeeva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - A V Yadykov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - M M Krayushkin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| | - V Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
12
|
Mlakić M, Odak I, Faraho I, Bosnar M, Banjanac M, Lasić Z, Marinić Ž, Barić D, Škorić I. Synthesis, Photochemistry, Computational Study and Potential Application of New Styryl-Thiophene and Naphtho-Thiophene Benzylamines. Int J Mol Sci 2022; 24:ijms24010610. [PMID: 36614053 PMCID: PMC9820070 DOI: 10.3390/ijms24010610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
In this research, the synthesis, photochemistry, and computational study of new cis- and trans-isomers of amino-thienostilbenes is performed to test the efficiency of their production and acid resistance, and to investigate their electronic structure, photoreactivity, photophysical characteristics, and potential biological activity. The electronic structure and conformations of synthesized thienostilbene amines and their photocyclization products are examined computationally, along with molecular modeling of amines possessing two thiophene rings that showed inhibitory potential toward cholinesterases. New amino-styryl thiophenes, with favorable photophysical properties and proven acid resistance, represent model compounds for their water-soluble ammonium salts as potential styryl optical dyes. The comparison with organic dyes possessing a trans-aminostilbene subunit as the scaffold shows that the newly synthesized trans-aminostilbenes have very similar absorbance wavelengths. Furthermore, their functionalized cis-isomers and photocyclization products are good candidates for cholinesterase inhibitors because of the structural similarity of the molecular skeleton to some already proven bioactive derivatives.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ivan Faraho
- Pharmacology In Vitro, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Martina Bosnar
- Pharmacology In Vitro, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Mihailo Banjanac
- Pharmacology In Vitro, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Zlata Lasić
- Teva api Analytical R&D, Pliva, Prilaz Baruna Filipovića 25, HR-10000 Zagreb, Croatia
| | - Željko Marinić
- NMR Center, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- Correspondence: (D.B.); (I.Š.); Tel.: +385-1-4571-385 (D.B.); +385-1-4597-241 (I.Š.)
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
- Correspondence: (D.B.); (I.Š.); Tel.: +385-1-4571-385 (D.B.); +385-1-4597-241 (I.Š.)
| |
Collapse
|
13
|
P CAS, Raveendran AV, Sivakrishna N, Nandi RP. Triarylborane-triphenylamine based luminophore for the mitochondria targeted live cell imaging and colorimetric detection of aqueous fluoride. Dalton Trans 2022; 51:15339-15353. [PMID: 36135598 DOI: 10.1039/d2dt01887j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioimaging of subcellular organelles such as mitochondria is crucial for detecting physiological abnormalities induced by fluctuations in the levels of various analytes. Herein, we report the design and synthesis of two novel water-soluble cationic Lewis acid triarylborane-triarylamine conjugates 1 and 2. The optical characteristics of 1 and 2 and their precursor compounds BTPA-NMe2 and BTPA-2NMe2 were evaluated, which show similar absorption and fluorescence spectra, with 1 and 2 exhibiting higher quantum yields of 0.73 and 0.64, respectively, than those of the precursors BTPA-NMe2 and BTPA-2NMe2, indicating the partial disruption of the ICT process and the activation of alternative emission bands in 1 and 2. The live cell imaging ability of compound 2 was examined in HeLa cells using a confocal microscope. Moreover, mitochondrial internalisation using compound 2 was effective and it was found to have high photostability under UV light conditions. Furthermore, compound 2 demonstrated an evident colorimetric response with a colour change to dark yellow in aqueous environments, indicating that it could be used for anion sensing. The spectral changes were observed in UV-visible and fluorescence titration experiments, which were strongly supported by DFT calculations. In short, compound 2 synthesized by us can be exclusively utilized for the selective localization of mitochondria with less cytotoxicity and shows excellent colorimetric response to aqueous inorganic fluoride at levels as low as 0.1 ppm with high selectivity.
Collapse
Affiliation(s)
- Chinna Ayya Swamy P
- Main group Organometallics Materials, Supramolecular Chemistry and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut, India-673601.
| | - Archana V Raveendran
- Main group Organometallics Materials, Supramolecular Chemistry and Catalysis lab, Department of Chemistry, National Institute of Technology, Calicut, India-673601.
| | - Narra Sivakrishna
- Humanities & Sciences, Vallurupalli Nageswara Rao Vignana Jyothi Institute of Engineering and Technology, Hyderabad, India-500090
| | - Rajendra Prasad Nandi
- Inorganic and Physical Chemistry Department, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
14
|
Zhao F, Zhao J, Wang Y, Liu HT, Shang Q, Wang N, Yin X, Zheng X, Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10 -2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans 2022; 51:6226-6234. [PMID: 35362491 DOI: 10.1039/d2dt00677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constructing chiral luminescent systems with both large luminescence dissymmetry factor (glum) and high luminous efficiency has been considered a great challenge. We herein describe a highly efficient approach to sterically stabilize the helical configurations of carbo[5]helicenes for improved CPL properties in a series of π-donor and π-acceptor substituted [5]helicenes (1, 2, 3, 4 and 5). Enabled by the ortho-installation of methyl groups as well as the steric effects of triarylamine (Ar3N) and triarylborane (Ar3B) handles in meta-substituted [5]helicenes, their optical resolution into enantiomers has been accomplished using preparative chiral HPLC. The molecular chirality of [5]helicenes can be transferred to Ar3B and Ar3N as light emitters, which allowed further investigations of their chiroptics, including optical rotation, circular dichroism (CD) and circularly polarized luminescence (CPL). Remarkably, 4 has been demonstrated to display dramatically enhanced CPL performance with a much larger glum (>1.2 × 10-2) and an increased emission quantum efficiency (ΦS = 0.75) compared with the other analogues, as a result of the isomeric tuning of substitutions with differential steric and electronic effects. These experimentally observed CPL activities were rationalized by TD-DFT computations for the angle (θμ,m) between electric and magnetic transition dipole moments in the excited states. In addition, the conspicuous intramolecular donor-acceptor charge transfer led to thermal responses in the emissions of 2 and 4 over a broad temperature range.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | | | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
15
|
Zhang Z, Kang Y, Hou R, Min X, Wang T, Liang Y. An Oxidant- and Catalyst-Free Synthesis of Dibenzo[a,c]carbazoles via UV Light Irradiation of 2,3-Diphenyl-1H-indoles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1677-4881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAn efficient methodology for the synthesis of dibenzo[a,c]carbazoles via annulation of 2,3-diphenyl-1H-indoles in EtOH under UV light irradiation (λ = 365 nm) along with hydrogen evolution is described. This method exhibits the advantages of mild reaction conditions, no requirement of any oxidants and catalysts, and release of hydrogen as the only byproduct. Notably, the mechanism investigation confirms that the trans-4b,8a-dihydro-9H-dibenzo[a,c]carbazole intermediate could convert into cis-4b,8a-dihydro-9H-dibenzo[a,c]carbazole, which relies on the nitrogen atom of the indole ring. This is followed by intramolecular dehydrogenation which yields the dibenzo[a,c]carbazoles.
Collapse
Affiliation(s)
- Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Yang Kang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Rong Hou
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Xiaoyan Min
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University
| | - Yong Liang
- Department of Molecular Medicine, Beckman Research Institute of City of Hope
| |
Collapse
|
16
|
Wang N, Wang D, He Y, Xi J, Wang T, Liang Y, Zhang Z. Photoinduced annulation of N‐phenylbenzamides for the synthesis phenanthridin‐6(5H)‐ones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | | | - Jin Xi
- Shaanxi Normal University CHINA
| | | | - Yong Liang
- Beckman Research Institute UNITED STATES
| | | |
Collapse
|
17
|
Chen JF, Yin X, Zhang K, Zhao Z, Zhang S, Zhang N, Wang N, Chen P. Pillar[5]arene-Based Dual Chiral Organoboranes with Allowed Host-Guest Chemistry and Circularly Polarized Luminescence. J Org Chem 2021; 86:12654-12663. [PMID: 34449233 DOI: 10.1021/acs.joc.1c01175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We first describe two examples of highly luminescent organoboranes (NP5BN1 and NP5BN2) with dual chirality that were achieved by molecular functionalization of planar chiral pillar[5]arenes with naphthyls. Sufficiently strong steric effects are imposed by triarylamine (Ar3N) and triarylborane (Ar3B) moieties and further enhanced by the proximity of the chiral building blocks, leading to the isolation of multiple enantiomers via chiral high-performance liquid chromatography. The intramolecular charge transfer from N-donor to B-acceptor across both chiral subunits enabled the circularly polarized luminescence and thermally robust colorimetric responses in their emissions. Furthermore, their remarkable host-guest chemistry was allowed at no expense in the pursuit of advanced chiroptical properties using pillar[5]arene-based supramolecular scaffolds.
Collapse
Affiliation(s)
- Jin-Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Zhenhui Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology of China, Beijing 102488, China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, China.,College of Materials and Chemical Engineering, Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
18
|
Gao W, Niu L, Wang T, Liang Y, Wang D, Zhang Z. Synthesis of cis/trans-dihydrochromenones via a photoinduced rearrangement of 4-phenyl-3-aryl/cyclohexenylcoumarins. Org Biomol Chem 2021; 19:7176-7180. [PMID: 34374407 DOI: 10.1039/d1ob01058a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A concise and environmentally friendly protocol has been developed for the synthesis of cis-dihydrochromenones and trans-dihydrochromenones in EtOH at room temperature. Irradiation of 4-phenyl-3-arylcoumarins in EtOH with 313 nm UV light under an argon atmosphere at room temperature gave cis-4b,15c-dihydro-16H-benzofuro[3',2':7,8]phenanthro[9,10-c]chromen-16-ones and cis-8c,14b-dihydro-9H-benzo[11,12]chryseno[5,6-c]chromen-9-ones in good yields. And an analogous treatment of 4-phenyl-3-alkenylcoumarins as 4-phenyl-3-arylcoumarins provided trans-1,2,3,4,4a,14b-hexahydro-5H-phenanthro[9,10-c]chromen-5-ones. The described photorearrangement proceeded smoothly without the addition of any transition metals and additives. The photorearrangement of 4-phenyl-3-arylcoumarins is believed to proceed via 6π-electrocyclization, a [1,3]-hydrogen shift and keto-enol isomerization.
Collapse
Affiliation(s)
- Wangxi Gao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | | | | | |
Collapse
|
19
|
Yadykov AV, Lvov AG, Krayushkin MM, Zakharov AV, Shirinian VZ. Photocyclization of Diarylethenes: The Effect of Electron and Proton Acceptors as Additives. J Org Chem 2021; 86:10023-10031. [PMID: 34314191 DOI: 10.1021/acs.joc.1c00723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of electron and proton acceptors on the photocyclization of diarylethenes has been studied. Without any additives, the deprotonation reaction is predominant, although other processes, including the sigmatropic shift, are not excluded. A deuterium exchange experiment has shown that a strong base (DABCO) facilitates the deprotonation reaction, thereby limiting the sigmatropic shift. In the presence of an oxidizing agent or additional sources of radicals (O2, I2, TEMPO), the processes of deprotonation and rearrangement (H-shift) are practically not observed, and the reaction proceeds along a radical pathway with the formation of phenanthrene or its heterocyclic analogue.
Collapse
Affiliation(s)
- Anton V Yadykov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prospect, Moscow 119991, Russian Federation
| | - Andrey G Lvov
- Irkutsk National Research Technical University, 83, Lermontov Street, Irkutsk 664074, Russian Federation
| | - Mikhail M Krayushkin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prospect, Moscow 119991, Russian Federation
| | - Alexey V Zakharov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prospect, Moscow 119991, Russian Federation
| | - Valerii Z Shirinian
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47, Leninsky Prospect, Moscow 119991, Russian Federation
| |
Collapse
|
20
|
Sui J, He Y, Wang T, Liang Y, Zhang Z. Synthesis of
Trans
‐4
a
,12
b
/3,4‐Dihydrodibenzo[
f
,
h
]quinolin‐2(1
H
)‐Ones and Dibenzo[
f
,
h
]quinolin‐2(1
H
)‐Ones
via
Irradiation of 6‐Biphenylpyridine‐2(1
H
)‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jingzhi Sui
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| | - Yun He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| | - Yong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
- Department of Molecular Medicine Beckman Research Institute of City of Hope Duarte California 91010 United States
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 People's Republic of China
| |
Collapse
|
21
|
Zhang W, Wang P, Zhang X, Wang R, Wang T, Liu Z, Zhang Z. Synthesis of
2
H
‐benzo[
g
]furo/thieno/pyrrolo[2,3‐
e
]indazoles
via
Intramolecular Dehydrogenation Photocyclization. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wei Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry and Chemical Engineering, and Basic Experimental Teaching Center, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Ping Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry and Chemical Engineering, and Basic Experimental Teaching Center, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Xi Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry and Chemical Engineering, and Basic Experimental Teaching Center, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Rui Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry and Chemical Engineering, and Basic Experimental Teaching Center, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Tao Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry and Chemical Engineering, and Basic Experimental Teaching Center, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Zhicun Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry and Chemical Engineering, and Basic Experimental Teaching Center, Shaanxi Normal University Xi'an Shaanxi 710062 China
| | - Zunting Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, School of Chemistry and Chemical Engineering, and Basic Experimental Teaching Center, Shaanxi Normal University Xi'an Shaanxi 710062 China
| |
Collapse
|
22
|
Baciu B, Vergés JA, Guijarro A. Exploring the Photocyclization Pathways of Styrylthiophenes in the Synthesis of Thiahelicenes: When the Theory and Experiment Meet. J Org Chem 2021; 86:5668-5679. [PMID: 33769823 PMCID: PMC8459451 DOI: 10.1021/acs.joc.1c00147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 12/04/2022]
Abstract
The introduction of thiophene rings to the helical structure of carbohelicenes has electronic effects that may be used advantageously in organic electronics. The performance of these devices is highly dependent on the sulfur atom topology, so a precise knowledge of the synthetic routes that may afford isomeric structures is necessary. We have studied the photocyclization pathway of both 2- and 3-styrylthiophenes on their way to thiahelicenes by experiment and theory. To begin with, the synthesis of stereochemically well-defined 2- and 3-styrylthiophenes allowed us to register first, and simulate later, the UV-vis electronic spectra of these precursors. This information gave us access through time-dependent density functional theory calculations to the very nature of the excited states involved in the photocyclization step and from there to the regio- and stereochemical outcome of the reaction. For the widely known case of a 2-styrylthiophene derivative, the expected naphtho[2,1-b]thiophene type of ring fusion was predicted and experimentally observed by synthesis. On the contrary, 3-styrylthiophene derivatives have been seldom used in synthetic photocyclizations. Among the two possible structural outcomes, only the naphtho[1,2-b]thiophene type of ring fusion was found to be mechanistically sound, and this was actually the only compound observed by synthesis.
Collapse
Affiliation(s)
- Bianca
C. Baciu
- Departamento
de Química Orgánica and Instituto Universitario de Síntesis
Orgánica, Campus de San Vicente del Raspeig, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| | - José Antonio Vergés
- Departamento
de Teoría y Simulación de Materiales, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
| | - Albert Guijarro
- Departamento
de Química Orgánica and Instituto Universitario de Síntesis
Orgánica, Campus de San Vicente del Raspeig, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
| |
Collapse
|
23
|
Graça V, Berthet J, Sousa CM, Delbaere S, Coelho PJ. Synthesis of Vinylnaphthofurans and NMR Analysis of their Photoswitching. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Vânia Graça
- Centro de Química – Vila Real Universidade de Trás-os-Montes e Alto Douro 5001-801 Vila Real Portugal
| | - Jérôme Berthet
- Univ Lille INSERM CHU Lille UMR−S 1172 Lille Neuroscience and Cognition Research Center 59000 Lille France
| | - Céu M. Sousa
- Centro de Química – Vila Real Universidade de Trás-os-Montes e Alto Douro 5001-801 Vila Real Portugal
| | - Stephanie Delbaere
- Univ Lille INSERM CHU Lille UMR−S 1172 Lille Neuroscience and Cognition Research Center 59000 Lille France
| | - Paulo J. Coelho
- Centro de Química – Vila Real Universidade de Trás-os-Montes e Alto Douro 5001-801 Vila Real Portugal
| |
Collapse
|
24
|
Chen L, Tan Y, Xu H, Wang K, Chen ZH, Zheng N, Li YQ, Lin LR. Enhanced E/ Z-photoisomerization and luminescence of stilbene derivative co-coordinated in di-β-diketonate lanthanide complexes. Dalton Trans 2020; 49:16745-16761. [PMID: 33146650 DOI: 10.1039/d0dt03383a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new tetradentate chelating ligand appending a stilbene derivative, E-N',N'-bis(pyridin-2-ylmethyl)-4-styrylbenzohydrazide (HL) was synthesized, together with two β-diketonates (4,4,4-trifluoro-1-phenylbutane-1,3-dionate, tfd), with or without the trifluoroacetate anion present as a ligand for coordination with lanthanide(iii) ions to form [Ln(tfd)2(HL)(CF3CO2)] (LnC49H36F9N4O7, Ln = La (1), Nd (2), Eu (3), Gd (4)) and [Yb(tfd)2(L)] (YbC47H35F6N4O5 (5), L = deprotonated HL). All five complexes were structurally characterized, and five crystals were obtained and analyzed by single-crystal X-ray diffraction. The quantum yield of trans-to-cis photoisomerization of the stilbene group in gadolinium complex 4 was enhanced about five-fold compared with that of HL itself. Other complexes showed slightly enhanced or depressed photoisomerization. The total luminescence quantum yield/sensitization efficiency of europium complex 3 in the solid state and acetonitrile solution were 22.1%/96.7% and 19.3%/97.9%, respectively. The transfer of ligand energy to the Eu3+ ion was highly efficient. This enhanced photoisomerization and luminescence of the stilbene group within complexes was found to be related to the energy level of lanthanide ions and whether a ligand-to-metal center or ligand-to-ligand charge transfer process was present. The interpretation of experimental results is rationally supported by time-dependent density-functional theory calculations. In complex 4, except for the intramolecular absorption transition of HL ligand itself (IL, πHL-π*HL), the presence of the ligand-to-ligand charge transfer transition from tfd to HL (LLCT, πtfd-π*HL) and the triplet state energy of HL being unable to transfer to the higher 6P7/2 excited energy level of the Gd3+ ion would facilitate HL photoisomerization. For complex 3, this was due to reversed ligand-to-ligand charge transfer transition from HL to tfd (LLCT, πHL-π*tfd) and its energy transfer to the metal center. Although the observed radiative lifetimes of NIR luminescent complexes 2 and 5 were around 10 μs, these systems contained only two diketone ligands, indicating that HL still had a certain promoting effect compared with tris(diketonate) lanthanide complexes. These results offer an important route for the design of new lanthanide-based molecular switching materials.
Collapse
Affiliation(s)
- Lu Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Lei P, Zhang S, Zhang N, Yin X, Wang N, Chen P. Triptycene-Based Luminescent Materials in Homoconjugated Charge-Transfer Systems: Synthesis, Electronic Structures, AIE Activity, and Highly Tunable Emissions. ACS OMEGA 2020; 5:28606-28614. [PMID: 33195912 PMCID: PMC7658946 DOI: 10.1021/acsomega.0c03565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
We have developed a new family of luminescent materials featuring through-space charge transfer from electron donors to acceptors that are electronically separated by triptycene. Most of these molecules are highly fluorescent, and modulation of their emissions was achieved by tuning the electron-accepting strength in a range from the weak triptycene acceptor over triarylborane (BMes) to strongly accepting naphthalimide (Npa) moieties. Pz-Pz shows an aggregation-induced emission in aggregates and in the solid state coupled with a highly red-shifted broad emission (ca. 160 nm) of the excimer, indicating that phenothiazine (Pz) also plays a vital role in the emission responses as an electron donor. This work may help develop new approaches to photophysical mechanism based on the rigid, homoconjugated, and structurally unusual 3D triptycene scaffold.
Collapse
Affiliation(s)
- Puyi Lei
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Songhe Zhang
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Niu Zhang
- Analysis
and Testing Centre, Beijing Institute of
Technology of China, Beijing 102488, People’s Republic
of China
| | - Xiaodong Yin
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Nan Wang
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Pangkuan Chen
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| |
Collapse
|
26
|
Ji G, Wang N, Yin X, Chen P. Substituent Effect Induces Emission Modulation of Stilbene Photoswitches by Spatial Tuning of the N/B Electronic Constraints. Org Lett 2020; 22:5758-5762. [DOI: 10.1021/acs.orglett.0c01777] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guangqian Ji
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China
| |
Collapse
|
27
|
Chen J, Yin X, Wang B, Zhang K, Meng G, Zhang S, Shi Y, Wang N, Wang S, Chen P. Planar Chiral Organoboranes with Thermoresponsive Emission and Circularly Polarized Luminescence: Integration of Pillar[5]arenes with Boron Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jin‐Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Bowen Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Canada
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
28
|
Chen J, Yin X, Wang B, Zhang K, Meng G, Zhang S, Shi Y, Wang N, Wang S, Chen P. Planar Chiral Organoboranes with Thermoresponsive Emission and Circularly Polarized Luminescence: Integration of Pillar[5]arenes with Boron Chemistry. Angew Chem Int Ed Engl 2020; 59:11267-11272. [PMID: 32220121 DOI: 10.1002/anie.202001145] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Jin‐Fa Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Bowen Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Kai Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Guoyun Meng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Songhe Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| | - Suning Wang
- Department of Chemistry Queen's University Kingston Ontario K7L 3N6 Canada
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science of the Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology of China Beijing 102488 China
| |
Collapse
|
29
|
Ge Y, Ando N, Liu L, Wang X, Sauriol F, Yamaguchi S, Wu G, Wang S. Multistep Photoisomerization of Dimesitylboron-Functionalized Stilbene Analogues. Org Lett 2020; 22:3258-3262. [PMID: 32251598 DOI: 10.1021/acs.orglett.0c01042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dimesitylboron-functionalized stilbene derivatives have been found to undergo an unusual regioselective photoisomerization upon irradiation at 365 nm. Using NMR to follow the photoreaction, the structures of key reaction intermediates and the final products were established. This photoisomerization occurs in four steps: trans-cis isomerization, Diels-Alder reaction, di-π-methane rearrangement, and ring opening with [1,3]-H migration. This results in the formation of a rare structure with three fused five-membered rings and a six-membered one.
Collapse
Affiliation(s)
- Yuxin Ge
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Lijie Liu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Xiang Wang
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Françoise Sauriol
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya 464-8602, Japan
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Suning Wang
- Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
30
|
Fan J, Zhang W, Gao W, Wang T, Duan WL, Liang Y, Zhang Z. Syntheses of Benzofuranoquinolines and Analogues via Photoinduced Acceptorless Dehydrogenative Annulation of o-Phenylfuranylpyridines. Org Lett 2019; 21:9183-9187. [DOI: 10.1021/acs.orglett.9b03556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinming Fan
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Wangxi Gao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Wei-Liang Duan
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Yong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| |
Collapse
|
31
|
Hu GF, Li HJ, Zeng C, Wang X, Wang N, Peng T, Wang S. Internal B-O Bond-Facilitated Photoisomerization of Boranes: Ring Expansion Versus Oxyborane Elimination/Intramolecular Diels-Alder Addition. Org Lett 2019; 21:5285-5289. [PMID: 31247779 DOI: 10.1021/acs.orglett.9b01892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Boron compounds (1-4) containing an internal B-O bond have been found to undergo facile multistructural transformations upon irradiation at 365 or 410 nm, generating rare 8-membered B,O-heterocycles (1c-4c). In addition, 2 and 3 also undergo an intramolecular Diels-Alder addition and oxyborane elimination concomitantly, via intermediates 2b/3b, producing 2d/3d. The pathways to isomer c and product d were found to be a thermal process and a photo process, respectively.
Collapse
Affiliation(s)
- Guo-Fei Hu
- Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , China
| | - Hai-Jun Li
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Chao Zeng
- Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , China
| | - Xiang Wang
- Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Nan Wang
- Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , China
| | - Tai Peng
- Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , China
| | - Suning Wang
- Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing , China.,Department of Chemistry , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| |
Collapse
|
32
|
Li Y, Yagi A, Itami K. Synthesis of sterically hindered 4,5-diarylphenanthrenes via acid-catalyzed bisannulation of benzenediacetaldehydes with alkynes. Chem Sci 2019; 10:5470-5475. [PMID: 31293729 PMCID: PMC6552489 DOI: 10.1039/c9sc00334g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/16/2019] [Indexed: 11/21/2022] Open
Abstract
The synthesis of sterically hindered phenanthrenes via acid-catalyzed bisannulation reaction is described. Treatment of 1,4-benzenediacetaldehyde with terminal aryl alkynes in the presence of B(C6F5)3 provides 4,5-diarylphenanthrenes in good yields with excellent regioselectivity. The use of internal alkyne substrates enabled the synthesis of sterically hindered 3,4,5,6-tetrasubstituted phenanthrenes displaying augmented backbone helicity. Furthermore, 1,5-disubstituted, 1,8-disubstituted, 1,2,5,6-tetrasubstituted, and 1,2,7,8-tetrasubstituted phenanthrenes can be obtained through the reaction of alkynes with 1,3-benzenediacetaldehyde or 1,2-benzenediacetaldehyde disilyl acetal.
Collapse
Affiliation(s)
- Yuanming Li
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan .
| | - Akiko Yagi
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan .
- Graduate School of Science , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Kenichiro Itami
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan .
- Graduate School of Science , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
- JST-ERATO , Itami Molecular Nanocarbon Project , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| |
Collapse
|
33
|
Sun CJ, Wang N, Peng T, Yin X, Wang S, Chen P. BN-Functionalized Benzotrithiophene-Based Azaborines: Synthesis, Structures, and Anion Binding Properties. Inorg Chem 2019; 58:3591-3595. [DOI: 10.1021/acs.inorgchem.8b03579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Chao-Jing Sun
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Tai Peng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| | - Suning Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
- Department of Chemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing 102488, People’s Republic of China
| |
Collapse
|