1
|
Liu G, Lai Z, Yang Y, Li M, Liu K, Tian B. Molecular Engineering of 2D Organic-Inorganic Hybrid Perovskites for Room-Temperature Warm-White Light Phosphorescence. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40370058 DOI: 10.1021/acsami.5c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Developing room-temperature phosphorescence (RTP) in organic-inorganic hybrid perovskites (OIHPs) with color tunability is an attractive topic for investigating how the coupling between organic and inorganic components affects spin-orbital effects and triplet state energy transfer. We demonstrate that the modulation of organic spacer cations in the OIHPs can effectively realize tunable white-light RTP. By gradually substituting the 2-phenylethylamine (PEA) cations in (PEA)2PbBr4 with naphthalene-type organic cations (N-naphthyl methylamine, NMA), triplet excitons can be extracted from the inorganic part and transferred to the organic part to produce a tunable RTP. In particular, the OIHP crystal with stoichiometry (PEA)0.8(NMA)1.2PbBr4 leads to warm-white light phosphorescence due to the contribution from additional ultraviolet absorption, which was then exploited to fabricate a phosphorescent warm-white light LED. A similar approach was also applied to 1-pyrenemethylamine (PRMA) cations. By controlling the content ratio between the PRMA and PEA molecules, colorful phosphorescence emissions were realized in (PEA)x(PRMA)2-xPbBr4 (0 ≤ x ≤ 2). The phosphorescence lifetimes of (PEA)0.8(NMA)1.2PbBr4 and (PEA)1.4(PRMA)0.6PbBr4 are 3.18 ms at 473 nm and 3.02 ms at 618 nm, respectively. Our results provide an effective strategy for synthesizing multicolor phosphorescent perovskites by tuning the ratio of different organic fluorophore molecules.
Collapse
Affiliation(s)
- Guangyou Liu
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China
- Hubei Province Engineering Research Centre for Intelligent Micro-Nano Medical Equipment and Key Technologies, Wuhan 430200, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Zheng Lai
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Yuchen Yang
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China
- Hubei Province Engineering Research Centre for Intelligent Micro-Nano Medical Equipment and Key Technologies, Wuhan 430200, China
| | - Maoxin Li
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Kan Liu
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China
- Hubei Province Engineering Research Centre for Intelligent Micro-Nano Medical Equipment and Key Technologies, Wuhan 430200, China
| | - Bingbing Tian
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
2
|
Zhang K, Qi Z, Zhang N, Zhao X, Fan Y, Sun L, Zhou G, Li SL, Zhang XM. Efficient energy transfer from organic triplet states to Mn 2+ dopants for dynamic tunable multicolor afterglow in 1D hybrid cadmium chloride. Chem Sci 2025; 16:6104-6113. [PMID: 40078606 PMCID: PMC11894465 DOI: 10.1039/d4sc08718f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Metal ion-doped organic-inorganic hybrid metal halides have emerged as promising room-temperature phosphorescence (RTP) materials owing to their tunable afterglow properties and significant potential in information security applications. However, optimizing RTP performance and achieving dynamic control over afterglow colors remain challenging in 1D hybrid systems, primarily because of the inefficient energy transfer from RTP-active organic components to external emissive sites. Herein, we report a novel 1D hybrid metal halide benchmark material, [(NBP)Cd2Cl5H2O] (NBP-Cd, NBP = N-benzylpiperidone), and a series of Mn2+-doped derivatives, NBP-Cd:xMn2+ (where x represents doping levels from 1% to 50%). The undoped compound exhibits blue-white fluorescence and exceptional long-lasting yellow-green organic RTP with a duration of up to 2 s. Upon Mn2+ doping, the afterglow color transitions progressively from yellow-green (1-5%) to yellow (10%), orange (20%), and finally red (50%), accompanied by a reduction in afterglow duration. This dynamic multicolor afterglow behavior is attributed to efficient energy transfer from the stable triplet states within the organic component to the 4T1 level of the Mn2+ dopants. Remarkably, the NBP-Cd:10% Mn2+ crystal demonstrates exceptional excitation-dependent dual-mode photoluminescence properties. These distinctive features underscore the significant potential of this model system for advanced applications in anti-counterfeiting technologies and high-level information encryption systems.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Zhikai Qi
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Nan Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Xingxing Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Yanli Fan
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Long Sun
- Department of Chemistry, Changzhi Universtiy Changzhi 046011 P. R. China
| | - Guojun Zhou
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Shi-Li Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
- College of Chemistry and Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Taiyuan University of Technology Taiyuan 030024 P. R. China
| |
Collapse
|
3
|
Maufort A, Van Landeghem M, Deutsch M, Banks P, La Magna P, Van Hecke K, Cerdá J, Lutsen L, Vanderzande D, Quarti C, Beljonne D, Pillet S, Vandewal K, Van Gompel WTM. Structural rigidity, thermochromism and piezochromism of layered hybrid perovskites containing an interdigitated organic bilayer. Chem Sci 2025; 16:5662-5675. [PMID: 40041807 PMCID: PMC11874244 DOI: 10.1039/d4sc06637e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/22/2025] [Indexed: 03/28/2025] Open
Abstract
Layered hybrid perovskites are intensively researched today as highly tunable materials for efficient light harvesting and emitting devices. In classical layered hybrid perovskites, the structural rigidity mainly stems from the crystalline inorganic sublattice, whereas the organic sublattice has a minor contribution to the rigidity of the material. Here, we report two layered hybrid perovskites, (BTa)2PbI4 and (F2BTa)2PbI4, which possess substantially more rigid organic layers due to hydrogen bonding, π-π stacking, and dipole-dipole interactions. These layered perovskites are phase stable under elevated pressures up to 5 GPa and upon temperature lowering down to 80 K. The organic layers, composed of benzotriazole-derived ammonium cations, are among the most rigid in the field of layered hybrid perovskites. We characterize structural rigidity using in situ single-crystal X-ray diffraction during compression up to 5 GPa. Interestingly, the enhanced rigidity of the organic sublattice does not seem to transfer to the inorganic sublattice, leading to an uncommon material configuration with rigid organic layers and deformable inorganic layers. The deformability of the inorganic sublattice is apparent from differences in optical properties between the crystal bulk and surface. Supported by first-principles calculations, we assign these differences to energy transfer processes from the surface to the bulk. The deformability also leads to reversible piezochromism due to shifting of the photoluminescence emission peak with increasing pressure up to 5 GPa, and thermochromism due to narrowing of the photoluminescence emission linewidth with decreasing temperature down to 80 K. This raises the possibility of applying these phase-stable layered hybrid perovskite materials in temperature and/or pressure sensors.
Collapse
Affiliation(s)
- Arthur Maufort
- Hybrid Materials Design, Institute for Materials Research (imo-imomec), Hasselt University Martelarenlaan 42 B-3500 Hasselt Belgium
| | - Melissa Van Landeghem
- Organic Opto-Electronics, Institute for Materials Research (imo-imomec), Hasselt University Martelarenlaan 42 B-3500 Hasselt Belgium
| | - Maxime Deutsch
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, CNRS 54000 Nancy France
| | - Peter Banks
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons Place du Parc 20 B-7000 Mons Belgium
| | - Paola La Magna
- XStruct, Department of Chemistry, Ghent University Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University Krijgslaan 281-S3 B-9000 Ghent Belgium
| | - Jesús Cerdá
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons Place du Parc 20 B-7000 Mons Belgium
| | - Laurence Lutsen
- Hybrid Materials Design, Institute for Materials Research (imo-imomec), Hasselt University Martelarenlaan 42 B-3500 Hasselt Belgium
- Imec-imomec Wetenschapspark 1 B-3590 Diepenbeek Belgium
- EnergyVille Thor Park 8310 B-3600 Genk Belgium
| | - Dirk Vanderzande
- Hybrid Materials Design, Institute for Materials Research (imo-imomec), Hasselt University Martelarenlaan 42 B-3500 Hasselt Belgium
- Imec-imomec Wetenschapspark 1 B-3590 Diepenbeek Belgium
- EnergyVille Thor Park 8310 B-3600 Genk Belgium
| | - Claudio Quarti
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons Place du Parc 20 B-7000 Mons Belgium
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons Place du Parc 20 B-7000 Mons Belgium
| | - Sébastien Pillet
- Laboratoire de Cristallographie, Résonance Magnétique et Modélisations, Université de Lorraine, CNRS 54000 Nancy France
| | - Koen Vandewal
- Organic Opto-Electronics, Institute for Materials Research (imo-imomec), Hasselt University Martelarenlaan 42 B-3500 Hasselt Belgium
- Imec-imomec Wetenschapspark 1 B-3590 Diepenbeek Belgium
- EnergyVille Thor Park 8310 B-3600 Genk Belgium
| | - Wouter T M Van Gompel
- Hybrid Materials Design, Institute for Materials Research (imo-imomec), Hasselt University Martelarenlaan 42 B-3500 Hasselt Belgium
- EnergyVille Thor Park 8310 B-3600 Genk Belgium
| |
Collapse
|
4
|
Zhi R, Kong L, Peng H, Wei Q, Dai G, Zou B. Highly efficient tunable white emission with ultralong afterglow in Sb 3+/Mn 2+-codoped CsCdCl 3 crystals for multifunctional applications. Dalton Trans 2025; 54:2027-2036. [PMID: 39688446 DOI: 10.1039/d4dt03038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Recently, metal halides have attracted much attention due to their fascinating optical properties. However, achieving efficient white emission with ultralong afterglow remains a great challenge. Herein, we report Sb3+/Mn2+-codoped CsCdCl3 and multiple emission bands can be observed, which are derived from the self-trapped exciton emission of the Sb-Cl moiety and the d-d transition of Mn2+. Thus, tunable emission from cyan to orange light can be obtained. Moreover, efficient white emission with a luminous efficiency of 74% is observed when the energy-transfer efficiency from Sb3+ to Mn2+ is 34.5%. In particular, Sb3+/Mn2+-codoped CsCdCl3 shows bright orange afterglow emission, and the afterglow intensity is 1000 times that of CsCdCl3 and 20 times that of CsCdCl3:Mn2+. Upon combining this with thermoluminescence spectra, it is found that Mn2+/Sb3+ codoping can effectively regulate the depth and density distribution of trap defects, resulting in the ultralong afterglow duration exceeding 12 h at room temperature. Surprisingly, white light stimulation can provide additional photonic energy for Sb3+/Mn2+-codoped CsCdCl3, which enables the rapid release of trapped carriers to the emission center and rejuvenates afterglow emission after 12 h pre-delay. Finally, we demonstrated the applications of the as-synthesized compounds in single-component white light illumination, multiple optical anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Ruonan Zhi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
- Johnson&Johnson (Shanghai) Medical Equipment Co., Ltd, Shanghai, 200245, China
| | - Linghang Kong
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Hui Peng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Qilin Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guang Dai
- Tianjin Key Laboratory of Quantum Optics and Intelligent Photonics, School of Science, Tianjin University of Technology, Tianjin 300384, China.
| | - Bingsuo Zou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Dong Q, Zhu X, Wang Y, He L. Dual-emission CPB@SMSO@SiO 2 composites with tunable afterglow through energy transfer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124742. [PMID: 38950474 DOI: 10.1016/j.saa.2024.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024]
Abstract
Afterglow materials face limitations in color variety, low luminosity, and stability. Thus, developing materials with adjustable afterglow color, increased photoluminescence (PL) intensity, and enhanced stability is crucial. This paper reports the fabrication of a series of core-shell composites, CPB@SMSO@SiO2, which combine Sr2MgSi2O7: Eu2+, Dy3+ (SMSO) and lead halide perovskite quantum dots (CsPbBr3/CPB PeQDs) through a process involving in-situ growth and hydrolytic coating. The SMSO in the composite can absorb 365 nm UV light and then emit 470 nm light, which can be absorbed by the CsPbBr3 PeQDs, resulting in an overall increase in the PL intensity of the composite. The afterglow color can be turned from green to blue by adjusting the ratio of SMSO and CsPbBr3. Furthermore, the stability of the composites is improved by the SiO2 shell layer formed by hydrolysis of tetramethyl orthosilicate (TMOS). This study presents an opportunity to develop innovative afterglow materials.
Collapse
Affiliation(s)
- Qizheng Dong
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China; School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Xueyou Zhu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China; School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yuanyuan Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China; School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Ling He
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China; School of Material Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
6
|
Shi W, Guan L, He Y, Wang X, Liu J, Kong X. Long organic persistent luminescence triggered by photo-induced charge-separation for water-resistant information encryption. OPTICS LETTERS 2024; 49:6065-6068. [PMID: 39485413 DOI: 10.1364/ol.537052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 11/03/2024]
Abstract
The long persistent luminescence (LPL) phenomenon in the water environment presents us with a broad blueprint to struggle for a new generation of optical materials. However, the realization of water-resistant LPL remains a formidable challenge due to severe quenching of triplet excitons inflowing media. Here, an electron donor-acceptor system is designed based on a B2O3 host and carbon dot (CD) guest, which exhibits deep-blue LPL with a lasting time of about 21 s to the naked eye. The average LPL lifetime is over 2 s, and the LPL quantum yield is 10.78%. This host-guest system possesses charge-separated states and charge-transferred states triggered by an optical source, which is the foundation for LPL. Importantly, in water environments (HCl, NaOH, electrolyte NaCl, and H2O), the LPL of as-obtained CDs@B2O3 can still remain due to high environmental stability of B2O3. Based on the excellent LPL with ultra-long lifetime and water-resistant feature, the CDs@B2O3 successfully applies in water-resistant information encryption.
Collapse
|
7
|
Du YP, Wang Q, Zhu MY, Ma YJ, Li JH, Wang GM. Halogen Engineering Strategy-Induced Color-Tunable Room Temperature Phosphorescence in Metal-Organic Halides. Inorg Chem 2024; 63:17127-17133. [PMID: 39226543 DOI: 10.1021/acs.inorgchem.4c02800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Color-tunable room temperature phosphorescence (RTP) materials possess potential applications in multicolor imaging, multichannel anticounterfeiting, and information encryption. Herein, we synthesized two zero-dimensional cadmium-organic halides, (H-aepy)2CdX4 (referred to as CdX-aepy; X = Cl-, Br-; aepy = 3-(2-aminoethyl)pyridine), both of which exhibit long-lived excitation wavelength- and time-dependent RTP. Experimental and theoretical results suggest that the multicolor RTP can be ascribed to the coemission of pristine H-aepy ligands and halogen-affected H-aepys, supporting that suitably introducing halogens can be an efficient strategy for constructing multicolor RTP materials. Additionally, we also demonstrate that the two phosphors can be applied in multichannel anticounterfeiting and information encryption. This work reports two hybrids with color-tunable RTP, as well as provides new insight into the effect of halogens on the regulation of RTP.
Collapse
Affiliation(s)
- Ya-Ping Du
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao, Shandong 266071, P.R. China
| | - Qian Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao, Shandong 266071, P.R. China
| | - Meng-Yuan Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao, Shandong 266071, P.R. China
| | - Yu-Juan Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao, Shandong 266071, P.R. China
| | - Jin-Hua Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao, Shandong 266071, P.R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
8
|
Bhatt M, Nayak PK, Ghosh D. Data-Driven Design of Electroactive Spacer Molecules to Tune Charge Carrier Dynamics in Layered Halide Perovskite Heterostructures. ACS NANO 2024; 18:24484-24494. [PMID: 39172126 DOI: 10.1021/acsnano.4c08208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Crafting rational heterojunctions with nanostructured materials is instrumental in fostering effective interfacial charge separation and transport for optoelectronics. Layered halide perovskites (LHPs) that form heterojunctions between organic spacer molecules and inorganic metal halide layers exhibit tunable photophysics owing to their customizable band alignment. However, controlling photogenerated carrier dynamics by strategically designing layered perovskite heterojunctions remains largely unexplored. We combine a data-driven approach with time-domain density functional theory (TD-DFT) and non-adiabatic molecular dynamics (NAMD) to screen and select electronically active spacer dications (A') that introduce a type-II heterojunction in the lead iodide-based Dion-Jacobson phase LHPs. The composition-structure-electronic property correlations reveal that the number of nitrogens in aromatic heterocycles is the key factor in designing electron-accepting spacers in these perovskites. The detailed atomistic simulations validate the design strategy further by modeling (A')PbI4 perovskites, which incorporate three different screened electroactive A' spacers. The computed excited charge carrier dynamics illustrate the phonon-mediated ultrafast interfacial electron transfer from the inorganic conduction band edge to the lower-lying unoccupied orbitals of spacers, exhibiting photoluminescence quenching in these (A')PbI4 perovskites. The spatially separated electrons and holes at the type-II heterojunction interface prolong the excited charge carrier lifetime, boosting the carrier transport and exciton dynamics. Our work illustrates a robust in silico approach for designing LHPs with exciting optoelectronic properties originating from their fine-tuned heterojunctions.
Collapse
Affiliation(s)
- Monal Bhatt
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Pabitra Kumar Nayak
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Dibyajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Sun C, Li D, Dan W, Yin J, Fei H. Mixed-Layered Lead Halide Frameworks with High Stability and Efficient Room-Temperature Phosphorescence. J Phys Chem Lett 2024; 15:8451-8458. [PMID: 39121497 DOI: 10.1021/acs.jpclett.4c01880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Room-temperature phosphorescent (RTP) materials play a crucial role in optical anticounterfeiting science and information security technologies. Ionically bonded organic metal halides have emerged as promising RTP material systems due to their excellent self-assembly and unique photophysical property, but their intrinsic instability largely hinders their advanced practical applications. Herein, we employ a coordination-driven synthetic strategy utilizing organocarboxylates for the synthesis of two isostructural layered lead halide frameworks. The frameworks adopt a new mixed-layered topology, consisting of alternating [Pb10X9]11+ (X = Cl-/Br-) layers and [Pb6XO3]11+ (X = Cl-/Br-) layers that are coordinatively sandwiched by organocarboxylate layers. The frameworks exhibit long-lived green afterglow emission with the long lifetime of up to 45.89 ms and the photoluminescence quantum yield (PLQY) of up to 43.13%. The Pb2+-carboxylate coordination accelerates the metal-to-ligand charge transfer from the light-harvesting lead halide layers to the phosphorescent organic component, promoting efficient spin-orbit coupling and intersystem crossing. Moreover, the coordination networks exhibit good structural robustness under ambient conditions for at least 12 months, as well as stability in boiling water, acidic and basic aqueous environments. The highly efficient afterglow and high structural integrity enable multiple anticounterfeiting applications across diverse chemical environments.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Dongyang Li
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Wenyan Dan
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Jinlin Yin
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
10
|
Sun C, Li Y, Yin J, Li D, Wu C, Zhang C, Fei H. Highly Stable MOF-Type Lead Halide Luminescent Ferroelectrics. Angew Chem Int Ed Engl 2024; 63:e202407102. [PMID: 38744673 DOI: 10.1002/anie.202407102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
Lead halide molecular ferroelectrics represent an important class of luminescent ferroelectrics, distinguished by their high chemical and structural tunability, excellent processability and distinctive luminescent characteristics. However, their inherent instability, prone to decomposition upon exposure to moisture and light, hinders their broader ferroelectric applications. Herein, for the first time, we present a series of isoreticular metal-organic framework (MOF)-type lead halide luminescent ferroelectrics, demonstrating exceptional robustness under ambient conditions for at least 15 months and even when subjected to aqueous boiling conditions. Unlike conventional metal-oxo secondary building units (SBUs) in MOFs adopting highly centrosymmetric structure with limited structural distortion, our lead halide-based MOFs occupy structurally deformable [Pb2X]+ (X=Cl-/Br-/I-) SBUs that facilitate a c-axis-biased displacement of Pb2+ centers and substantially contribute to thermoinducible structural transformation. Importantly, this class of MOF-type lead halide ferroelectrics undergo ferroelectric-to-paraelectric phase transitions with remarkably high Curie temperature of up to 505 K, superior to most of molecular ferroelectrics. Moreover, the covalent bonding between phosphorescent organic component and the light-harvesting inorganic component achieves efficient spin-orbit coupling and intersystem crossing, resulting in long-lived afterglow emission. The compelling combination of high stability, ferroelectricity and afterglow emission exhibited by lead halide MOFs opens up many potential opportunities in energy-conversion applications.
Collapse
Affiliation(s)
- Chen Sun
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Yukong Li
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Jinlin Yin
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Dongyang Li
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chao Wu
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Chi Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustain ability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Rd., Shanghai, 200092, China
| |
Collapse
|
11
|
Shenbagapushpam M, Ashwin BCMA, Mareeswaran PM, Yuvaraj P, Kodirajan S. Active Hydrogen Free, Z-Isomer Selective Isatin Derived "Turn on" Fluorescent Dual Anions Sensor. J Fluoresc 2024:10.1007/s10895-024-03762-1. [PMID: 38896304 DOI: 10.1007/s10895-024-03762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
An efficient and anions fluorescence "on-off" sensor of 1-(prop-2-yn-1-yl)-3-(quinolin-3-ylimino)indolin-2-one (PQI) has been developed for the selective sensing of dual anions of F- and NO3- ions in aqueous medium. Active hydrogen and Lewis acidic binding sites free, Z- isomer of isatin based π-conjugated quinoline exhibited excellent sensing activity against F- and NO3- ions in UV light. The fluorescence turns on the process accomplished via the PET "on-off" mechanism. The interaction between probe molecule and anions is thought to be a non-covalent interaction of the low electron density covalently bonded N-methylene moiety of propargyl isatin (-N-CH2-) of probe molecule with F- ion and the terminal acidic proton of propargyl group of isatin (-C≡C-H) with NO3- ions. The modes of anions binding with PQI and plausible mechanisms are proposed by 1H and 13C NMR titrations. The selectivity of anions sensing may be offered by the bucked structure of the Z-isomer. The calculated association constant values for PQI and F- and NO3- are ions 2.5 × 104 M-1 and 2.2 × 103 M-1, respectively, indicating strong binding interaction between the PQI and anions. The association nature of anions and probes was analyzed by a Jobs plot and the finding indicates both F- and NO3- ions are in 1:1 complexation with PQI. The limit of detection (LOD) of the probe with F- and NO3- ions is calculated and is to be 6.91 × 10-7 M and 9.93 × 10-7 M, respectively. The proposed PQI fluorophore possesses a low limit of detection (LOD) for both F- and NO3- ions which is within the WHO prescribed detection limit.
Collapse
Affiliation(s)
- Muthumanickam Shenbagapushpam
- Department of Chemistry, Thiagarajar College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India
- Department of Chemistry, Mannar Thirumalai Naicker College, Madurai, Tamil Nadu, India
| | | | | | - Paneerselvam Yuvaraj
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Selvakumar Kodirajan
- Department of Chemistry, Thiagarajar College (Affiliated to Madurai Kamaraj University), Madurai, Tamil Nadu, India.
| |
Collapse
|
12
|
Tai S, Zhang C, Shi S, Yang K, Han S, Wu J, Zhang S, Zhang K. Excitation wavelength-dependent lanthanide-disalicylaldehyde coordination hybrid capable of distinguishing D 2O from H 2O. Talanta 2024; 271:125732. [PMID: 38309109 DOI: 10.1016/j.talanta.2024.125732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/24/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
The increasing demands in fields of anti-counterfeiting, fluorescence analysis, clinical therapy and LED illumination are urgently eager for more excellent optically switchable luminescent materials with the stable and multimodal fluorescence in single-component matrix. Herein, the lanthanide-disalicylaldehyde coordination hybrid H2Qj4/TbxEuy is proposed as an efficient luminescent matrix to connect terbium sensibilization with ESIPT (excited-state intramolecular proton transfer) effects, and three multi-emission hybrids are finally designed and synthesized by regulating Tb3+ and Eu3+ ratios. Surprisingly, the H2Qj4/Tb0.91Eu0.09 shows the excitation wavelength-dependent luminescence in solution which originates from two energy transfer ways of terbium sensibilization effect. It exhibits green and red lights under the 369 and 394 nm UV lamp, respectively. Three hybrids are further used as lab-on-a-molecule fluorescent probes to perform multianalyte detection for various solvents by selected fluorescent sensing channels. By means of PCA (principal component analysis) and HCA (hierarchical cluster analysis), all of them can successfully detect and discriminate17 common solvents, especially the H2O and D2O. Moreover, the H2Qj4/Tb0.91Eu0.09 also shows the wide linear responses of H2O content in D2O, discrimination of two-component solvent mixtures, hygroscopicity evaluation of D2O and information encryption which will advance the progress of multimodal luminescent materials and multianalyte chemosensors.
Collapse
Affiliation(s)
- Shengdi Tai
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Chengjian Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shuaibo Shi
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shaolong Han
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Jinyu Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Shishen Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China
| | - Kun Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, PR China.
| |
Collapse
|
13
|
Li X, Wang Y, Zhang Z, Cai S, An Z, Huang W. Recent Advances in Room-Temperature Phosphorescence Metal-Organic Hybrids: Structures, Properties, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308290. [PMID: 37884272 DOI: 10.1002/adma.202308290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Metal-organic hybrid (MOH) materials with room-temperature phosphorescence (RTP) have drawn attention in recent years due to their superior RTP properties of high phosphorescence efficiency and ultralong emission lifetime. Great achievement has been realized in developing MOH materials with high-performance RTP, but a systematic study on MOH materials with RTP feature is lacking. This review highlights recent advances in metal-organic hybrid RTP materials. The molecular packing, the photophysical properties, and their applications of metal-organic hybrid RTP materials are discussed in detail. Metal-organic hybrid RTP materials can be divided into six parts: coordination polymers, metal-organic frameworks (MOFs), metal-halide hybrids, organic ionic crystals, organic ionic polymers, and organic-inorganic hybrid perovskites. These RTP materials have been successfully applied in time-resolved data encryption, fingerprint recognition, information logic gates, X-ray imaging, and photomemory. This review not only provides the basic principles of designing RTP metal-organic hybrids, but also propounds the future research prospects of RTP metal-organic hybrids. This review offers many effective strategies for developing metal-organic hybrids with excellent RTP properties, thus satisfying practical applications.
Collapse
Affiliation(s)
- Xian Li
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Yuefei Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zaiyong Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Suzhi Cai
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, Nanjing, 211816, China
- Frontiers Science Center for Flexible Electronics, Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
14
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Chen X, Li M, Ge L, Liu S, Lv W, Yu Y, Tang Y, Han C, Li M, Tao Y, Xu L, Chen R. Ultralong Red Room-Temperature Phosphorescence of 2D Organic-Inorganic Metal Halide Perovskites for Afterglow Red LEDs and X-ray Scintillation Applications. Inorg Chem 2023; 62:16538-16546. [PMID: 37737143 DOI: 10.1021/acs.inorgchem.3c02380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Organic-inorganic metal hybrid perovskites (OIHPs) have emerged as a promising class of materials for next-generation optoelectronic applications. However, the realization of red and near-infrared (NIR) room-temperature phosphorescence (RTP) in these materials remains limited. In this study, a very strong red RTP emission centered at 610 nm is achieved by doping Mn2+ ions into Cd-based 2D OIHPs. Notably, the optimized B-EACC:Mn2+ exhibited a high quantum yield of 44.11%, an ultralong lifetime of up to 378 ms, and excellent stability against high temperatures and various solvents, surpassing most reported counterparts of 2D OIHPs. Moreover, the B-EACC:Mn2+ can be used as a red emitter for coating an ultraviolet light-emitting diode chip, exhibiting an observable afterglow to the naked eye for approximately 4 s. In addition, the B-EACC:Mn2+ demonstrates interesting characteristics under X-ray excitation, exhibiting X-ray response at radiation doses in the range of 34.75-278 μGy s-1. This work suggests the infinite possibility of doping guest ions to realize red RTP in 2D OIHPs, promoting the development of long-persistent phosphorescent emitters for multifunctional light-emitting applications.
Collapse
Affiliation(s)
- Xiangyu Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Min Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lei Ge
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Siyu Liu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Wenzhen Lv
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yihang Yu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Ying Tang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Chaofei Han
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Mingguang Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Ye Tao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Ligang Xu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Runfeng Chen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
16
|
Boeije Y, Van Gompel WTM, Zhang Y, Ghosh P, Zelewski SJ, Maufort A, Roose B, Ooi ZY, Chowdhury R, Devroey I, Lenaers S, Tew A, Dai L, Dey K, Salway H, Friend RH, Sirringhaus H, Lutsen L, Vanderzande D, Rao A, Stranks SD. Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules. J Am Chem Soc 2023; 145:21330-21343. [PMID: 37738152 PMCID: PMC10557141 DOI: 10.1021/jacs.3c05974] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 09/24/2023]
Abstract
The family of hybrid organic-inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-Ci molecules, where Ci indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-Ci)2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic-inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-Ci molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10-100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic-organic electronic properties through the wide range of functionalities available in the world of organics.
Collapse
Affiliation(s)
- Yorrick Boeije
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| | - Wouter T. M. Van Gompel
- Institute
for Materials Research (IMO-IMOMEC), Hybrid Materials Design (HyMaD), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Youcheng Zhang
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
- Cambridge
Graphene Centre, Department of Engineering, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Pratyush Ghosh
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| | - Szymon J. Zelewski
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
- Department
of Semiconductor Materials Engineering, Faculty of Fundamental Problems
of Technology, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Arthur Maufort
- Institute
for Materials Research (IMO-IMOMEC), Hybrid Materials Design (HyMaD), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Bart Roose
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Zher Ying Ooi
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Rituparno Chowdhury
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| | - Ilan Devroey
- Institute
for Materials Research (IMO-IMOMEC), Hybrid Materials Design (HyMaD), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Stijn Lenaers
- Institute
for Materials Research (IMO-IMOMEC), Hybrid Materials Design (HyMaD), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Alasdair Tew
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| | - Linjie Dai
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| | - Krishanu Dey
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| | - Hayden Salway
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Richard H. Friend
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| | - Henning Sirringhaus
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| | - Laurence Lutsen
- Institute
for Materials Research (IMO-IMOMEC), Hybrid Materials Design (HyMaD), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Dirk Vanderzande
- Institute
for Materials Research (IMO-IMOMEC), Hybrid Materials Design (HyMaD), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Akshay Rao
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| | - Samuel D. Stranks
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
- Department
of Physics, Cavendish Laboratory, University
of Cambridge, JJ Thomson
Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
17
|
Chen X, Ge L, Tang Y, Han C, Yu Y, Liu S, Li M, Zhang P, Xu L, Yin J, Lv W, Chen R. Achieving Ultralong Room-Temperature Phosphorescence in Two-Dimensional Metal Halide Perovskites by Alkyl Chain Engineering. J Phys Chem Lett 2023; 14:8638-8647. [PMID: 37728759 DOI: 10.1021/acs.jpclett.3c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Two-dimensional (2D) metal halide perovskites with highly efficient ultralong room-temperature phosphorescence (URTP) are rare due to their uncertain structures and complicated intermolecular interactions. Herein, by varying the alkyl length of organic units, we synthesized two single-component 2D metal hybrid perovskites, i.e., B-MACC and B-EACC, with obvious URTP emission. In particular, B-EACC exhibits a green-yellow URTP emission with an ultralong lifetime (579 ms) and a high efficiency (14.86%). It is found that the molecular packing of B-EA+ cations because of the presence one more carbon in the alkyl chain affords strong hydrogen bonding and π-π stacking interactions, which immobilizes and reduces the triplet exciton quenching. Moreover, B-MACC and B-EACC with space-time dual-resolved characteristics can be utilized for dynamic information encryption and optical logic gate applications. This study is the first to disclose the relation between the characteristics of molecular packing and the resultant URTP of 2D metal hybrid perovskites, significantly advancing the development of next-generation URTP materials for versatile applications.
Collapse
Affiliation(s)
- Xiangyu Chen
- Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Lei Ge
- Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Ying Tang
- Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Chaofei Han
- Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Yihang Yu
- Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Siyu Liu
- Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Mingguang Li
- Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Peng Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Ligang Xu
- Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong, P. R. China
| | - Wenzhen Lv
- Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| | - Runfeng Chen
- Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, People's Republic of China
| |
Collapse
|
18
|
Sun J, Wang K, Ma K, Park JY, Lin ZY, Savoie BM, Dou L. Emerging Two-Dimensional Organic Semiconductor-Incorporated Perovskites─A Fascinating Family of Hybrid Electronic Materials. J Am Chem Soc 2023; 145:20694-20715. [PMID: 37706467 DOI: 10.1021/jacs.3c02143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Halide perovskites have attracted a great amount of attention owing to their unique materials chemistry, excellent electronic properties, and low-cost manufacturing. Two-dimensional (2D) halide perovskites, originating from three-dimensional (3D) perovskite structures, are structurally more diverse and therefore create functional possibilities beyond 3D perovskites. The much less restrictive size constraints on the organic component of these hybrid materials particularly provide an exciting platform for designing unprecedented materials and functionalities at the molecular level. In this Perspective, we discuss the concept and recent development of a sub-class of 2D perovskites, namely, organic semiconductor-incorporated perovskites (OSiPs). OSiPs combine the electronic functionality of organic semiconductors with the soft and dynamic halide perovskite lattice, offering opportunities for tailoring the energy landscape, lattice and carrier dynamics, and electron/ion transport properties for various fundamental studies, as well as device applications. Specifically, we summarize recent advances in the design, synthesis, and structural analysis of OSiPs with various organic conjugated moieties as well as the application of OSiPs in photovoltaics, light-emitting devices, and transistors. Lastly, challenges and further opportunities for OSiPs in molecular design, integration of novel functionality, film quality, and stability issues are addressed.
Collapse
Affiliation(s)
- Jiaonan Sun
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zih-Yu Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
19
|
Liu Y, Yan S, Wang T, He Q, Zhu X, Wang C, Liu D, Wang T, Xu X, Yu X. Achieving Color-Tunable Long Persistent Luminescence in Cs 2 CdCl 4 Ruddlesden-Popper Phase Perovskites. Angew Chem Int Ed Engl 2023; 62:e202308420. [PMID: 37469306 DOI: 10.1002/anie.202308420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Two-dimensional (2D)-halide perovskites have been enriched over recent years to offer remarkable features from diverse chemical structures and environmental stability endowed with exciting functionalities in photoelectric detectors and phosphorescence systems. However, the low conversion efficiency of singlet to triplet in 2D hybrid halide perovskites reduces phosphorescence lifetimes. In this study, the long persistent luminescence of 2D all-inorganic perovskites with a self-assembled 2D interlayer galleries structure is investigated. The results show that the decay time of the long persistent luminescence increases from 450 s to 600 s, and the luminescence color changes from cyan to orange, and the thermal stability of photoluminescence enhances dramatically after replacing Cd2+ by appropriate Mn2+ ions in 2D Cs2 CdCl4 Ruddlesden-Popper phase perovskites. Furthermore, diversified anti-counterfeiting modes are fabricated to highlight the promising applications of Cs2 CdCl4 perovskite systems with tunable persistent luminescence in advanced anti-counterfeiting. Therefore, our studies provide a novel model for realizing tunable long persistent luminescence of perovskite with 2D self-assembled layered structure for advanced anti-counterfeiting.
Collapse
Affiliation(s)
- Ya Liu
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu, 610106, P. R. China
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Shuangpeng Yan
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Tianchi Wang
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Qingshan He
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu, 610106, P. R. China
| | - Xiaodie Zhu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Chao Wang
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Daiyuan Liu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Ting Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610106, P. R. China
| | - Xuhui Xu
- Faculty of Materials Science and Engineering, Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology, Kunming, 650093, P. R. China
| | - Xue Yu
- School of Mechanical Engineering, Institute for Advanced Materials Deformation and Damage from Multi-Scale, Chengdu University, Chengdu, 610106, P. R. China
| |
Collapse
|
20
|
Partanen I, Al-Saedy O, Eskelinen T, Karttunen AJ, Saarinen JJ, Mrózek O, Steffen A, Belyaev A, Chou PT, Koshevoy IO. Fast and Tunable Phosphorescence from Organic Ionic Crystals. Angew Chem Int Ed Engl 2023; 62:e202305108. [PMID: 37227225 DOI: 10.1002/anie.202305108] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Crystalline diphosphonium iodides [MeR2 P-spacer-R2 Me]I with phenylene (1, 2), naphthalene (3, 4), biphenyl (5) and anthracene (6) as aromatic spacers, are photoemissive under ambient conditions. The emission colors (λem values from 550 to 880 nm) and intensities (Φem reaching 0.75) are defined by the composition and substitution geometry of the central conjugated chromophore motif, and the anion-π interactions. Time-resolved and variable-temperature luminescence studies suggest phosphorescence for all the titled compounds, which demonstrate observed lifetimes of 0.46-92.23 μs at 297 K. Radiative rate constants kr as high as 2.8×105 s-1 deduced for salts 1-3 were assigned to strong spin-orbit coupling enhanced by an external heavy atom effect arising from the anion-π charge-transfer character of the triplet excited state. These rates of anomalously fast metal-free phosphorescence are comparable to those of transition metal complexes and organic luminophores that utilize triplet excitons via a thermally activated delayed fluorescence mechanism, making such ionic luminophores a new paradigm for the design of photofunctional and responsive molecular materials.
Collapse
Affiliation(s)
- Iida Partanen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - Omar Al-Saedy
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - Toni Eskelinen
- Department of Chemistry and Materials Science, Aalto University, 00076, Aalto, Finland
| | - Antti J Karttunen
- Department of Chemistry and Materials Science, Aalto University, 00076, Aalto, Finland
| | - Jarkko J Saarinen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - Ondrej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andrey Belyaev
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
- Department of Chemistry/Nanoscience Center, University of Jyväskylä, Survontie 9C, 40014, Jyväskylä, Finland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617 (ROC)
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| |
Collapse
|
21
|
Li Z, Cao M, Rao Z, Zhao X, Gong X. Tunable Afterglow and Self-Trapped Exciton Emissions in Zr (IV)-Based Organic-Inorganic Metal Halide Hybrids by Metal-Ion Doping. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302357. [PMID: 37127849 DOI: 10.1002/smll.202302357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Low-dimensional hybrid metal halide (LDHMH) materials have attracted considerable attention owing to their intriguing optical properties. To the best of the knowledge, this is the first study to successfully demonstrate both self-trap exciton (STE) and afterglow emissions in Zr-based LDHMH materials. The obtained pure (Ph3 S)2 ZrCl6 crystals showed near-ultraviolet phosphorescence and a green afterglow owing to the organic cation Ph3 S+ , while the Bi-doped and Sb-doped crystals exhibited both STE and afterglow emissions. However, the Te-doped crystals showed only a broad yellow STE emission owing to the [TeCl6 ]2- octahedron. In addition, all the crystals showed good stability. Notably, Sb-doped crystals produced white light, which can be adjusted between cold white and warm white using different excitations. Finally, this strategy for both STE and afterglow emissions can be applied to other LDHMH materials for optical applications.
Collapse
Affiliation(s)
- Zhilin Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Mengyan Cao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Zhihui Rao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
22
|
Chen J, Lu Y, Chen J. Generation of Long-Lived Excitons in Room-Temperature Phosphorescence 2D Organic and Inorganic Hybrid Perovskites for Ultrafast and Low Power-Consumption Nonvolatile Photomemory. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301028. [PMID: 37075740 PMCID: PMC10323654 DOI: 10.1002/advs.202301028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Room-temperature phosphorescence (RTP) two-dimensional (2D) organic-inorganic hybrid perovskites (OIHPs) that possess superior stability and efficient triplet energy transfer between inorganic parts and organic cations have been seen as promising materials in optoelectronic devices. However, the development of RTP 2D OIHP-based photomemory has not been explored yet. In this work, the spatially addressable RTP 2D OIHPs-based nonvolatile flash photomemory is first investigated to explore the function of triplet excitons in elevating the performance of photomemory. Thanks to the triplet excitons generated in RTP 2D OIHP, extremely low photo-programming time of 0.7 ms, multilevel behavior of minimum 7 bits (128 levels), remarkable photoresponsivity of 19.10 AW-1 and significantly low power consumption of 6.79 × 10-8 J per bit can be achieved. The current study provides a new prospective in understanding triplet excitons function in nonvolatile photomemory.
Collapse
Affiliation(s)
- Jian‐Cheng Chen
- Department of Chemical EngineeringNational Chung Cheng UniversityChiayi62102Taiwan
| | - Yu‐Dao Lu
- Department of PhotonicsNational Cheng Kung UniversityTainan70101Taiwan
| | - Jung‐Yao Chen
- Department of Chemical EngineeringNational Chung Cheng UniversityChiayi62102Taiwan
- Department of PhotonicsNational Cheng Kung UniversityTainan70101Taiwan
- Academy of Innovative Semiconductor and Sustainable ManufacturingNational Cheng Kung University70101TainanTaiwan
| |
Collapse
|
23
|
Wang S, Feng S, Li R, Jin J, Wu J, Zheng W, Xia Z, Chen X, Ling Q, Lin Z. Multiexciton Generation from a 2D Organic-Inorganic Hybrid Perovskite with Nearly 200% Quantum Yield of Red Phosphorescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211992. [PMID: 36807946 DOI: 10.1002/adma.202211992] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 12/21/2022] [Indexed: 05/05/2023]
Abstract
2D organic-inorganic hybrid perovskites (OIHPs) show obvious advantages in the field of optoelectronics due to their high luminescent stability and good solution processability. However, the thermal quenching and self-absorption of excitons caused by the strong interaction between the inorganic metal ions lead to a low luminescence efficiency of 2D perovskites. Herein, a 2D Cd-based OIHP phenylammonium cadmium chloride (PACC) with a weak red phosphorescence (ΦP < 6%) at 620 nm and a blue afterglow is reported. Interestingly, the Mn-doped PACC exhibits very strong red emission with nearly 200% quantum yield and 15 ms lifetime, thus resulting in a red afterglow. The experimental data prove that the doping of Mn2+ not only induces the multiexciton generation (MEG) process of the perovskite, avoiding the energy loss of inorganic excitons, but also promotes the Dexter energy transfer from organic triplet excitons to inorganic excitons, thus realizing the superefficient red-light emission of Cd2+ . This work suggests that guest metal ions can induce host metal ions to realize MEG in 2D bulk OIHPs, which provides a new idea for the development of optoelectronic materials and devices with ultrahigh energy utilization.
Collapse
Affiliation(s)
- Shuaiqi Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shangwei Feng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jiance Jin
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Junyan Wu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Zhiguo Xia
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong, 510641, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Qidan Ling
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhenghuan Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
24
|
Affiliation(s)
- Bo Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
25
|
Shao W, Yang S, Wang K, Dou L. Light-Emitting Organic Semiconductor-Incorporated Perovskites: Fundamental Properties and Device Applications. J Phys Chem Lett 2023; 14:2034-2046. [PMID: 36795485 DOI: 10.1021/acs.jpclett.2c03882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recently, organic semiconductor-incorporated perovskites (OSiPs) have emerged as a new subclass of next-generation organic-inorganic hybrid materials. OSiPs combine the advantages of organic semiconductors, such as large design windows and tunable optoelectronic functionalities, with the excellent charge-transport properties of the inorganic metal-halide counterparts. OSiPs provide a new materials platform for the exploitation of charge and lattice dynamics at the organic-inorganic interfaces for various applications. This Perspective reviews recent achievements in OSiPs highlighting the benefits from organic semiconductor incorporation and elucidates the fundamental light-emitting mechanism, energy transfer, as well as band alignment structures at the organic-inorganic interface. Insights on the emission tunability lead toward a discussion of the potential of OSiPs in light-emitting applications, such as perovskite light-emitting diodes or lasing systems.
Collapse
Affiliation(s)
- Wenhao Shao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Seokjoo Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
26
|
Li Z, Liao L, Wang X, Mu Y, Huo Y, Su ZM, Liang FS. Boosting the Phosphorescence Efficiency in Doped Organic Crystals: Critical Role of Hydrogen Bonding. J Phys Chem Lett 2023; 14:2187-2192. [PMID: 36861336 DOI: 10.1021/acs.jpclett.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Host-guest doping systems with phthalimides (BI) and N-methylphthalimide (NMeBI) as the host and 1,8-naphthalimide (NI) and 4-bromo-1,8-naphthalimide (4BrNI) as the guest have been developed. The 0.2% NI/BI (molar ratio) with a strong C=O···H-N hydrogen bond exhibited a phosphorescence quantum efficiency (29.2%) higher than that of NI/NMeBI with a weak C=O···H-C hydrogen bond (10.1%). A similar trend was observed in the 4BrNI guest system. A remarkable phosphorescent efficiency of 42.1% was achieved in a 0.5% 4BrNI/BI composite, which represents the highest value in NI-based phosphors. This research indicates stronger hydrogen bonding may have a greater contribution in boosting the phosphorescence efficiency.
Collapse
Affiliation(s)
- Zijuan Li
- Institute of Organic Luminescent Materials (IOLM), College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Liyun Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiangming Wang
- Institute of Organic Luminescent Materials (IOLM), College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Yingxiao Mu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhong-Min Su
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Fu-Shun Liang
- Institute of Organic Luminescent Materials (IOLM), College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
27
|
Lee M, Chung H, Hong SV, Woo HY, Chae JY, Yoon TY, Diroll BT, Paik T. Dynamically tunable multicolor emissions from zero-dimensional Cs 3LnCl 6 (Ln: europium and terbium) nanocrystals with wide color gamut. NANOSCALE 2023; 15:1513-1521. [PMID: 36472217 DOI: 10.1039/d2nr04771c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study demonstrates dynamically tunable multicolor emissions from a single component, zero-dimensional (0-D) cesium europium chloride (Cs3EuCl6) and cesium terbium chloride (Cs3TbCl6) nanocrystals (NCs). Highly uniform colloidal Cs3EuCl6 and Cs3TbCl6 NCs are synthesized via the heating-up method. Excitation-wavelength-dependent multicolor emissions from Cs3EuCl6 and Cs3TbCl6 NCs are observed. Under excitation of 330-400 nm, both NCs exhibit blue photoluminescence (PL). Under wavelengths shorter than 330 nm, characteristic red and green emissions are observed from Cs3EuCl6 and Cs3TbCl6, respectively, owing to the atomic emissions from the f-orbitals in trivalent europium (Eu3+) and terbium (Tb3+) ions. Cs3EuCl6 and Cs3TbCl6 NCs exhibit broadband excitation spectra and enhanced absorption properties. Particularly, Cs3EuCl6 NCs exhibit a very narrow full-width at half-maximum in both blue and red PL and no overlap between the two spectra. The photophysical properties of these NCs are further investigated to understand the multicolor PL origins by time-resolved and temperature-dependent PL measurements. Finally, the potential applications of Cs3EuCl6 and Cs3TbCl6 NCs as anti-counterfeiting inks for high-level security are demonstrated. Given their broadband excitation with enhanced absorption properties and dynamically tunable colors with a wide color gamut, Cs3EuCl6 and Cs3TbCl6 NCs have great potential as novel multicolor NC emitters for many emerging applications.
Collapse
Affiliation(s)
- Minji Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Hyesun Chung
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Seong Vin Hong
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Ho Young Woo
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Ji-Yeon Chae
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Yeol Yoon
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| | - Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois, USA
| | - Taejong Paik
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Temerova D, Chou TC, Kisel KS, Eskelinen T, Kinnunen N, Jänis J, Karttunen AJ, Chou PT, Koshevoy IO. Hybrid Inorganic–Organic Complexes of Zn, Cd, and Pb with a Cationic Phenanthro-diimine Ligand. Inorg Chem 2022; 61:19220-19231. [DOI: 10.1021/acs.inorgchem.2c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Diana Temerova
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Tai-Che Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kristina S. Kisel
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Toni Eskelinen
- Department of Chemistry and Materials Science, Aalto University, Aalto 00076, Finland
| | - Niko Kinnunen
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Janne Jänis
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Antti J. Karttunen
- Department of Chemistry and Materials Science, Aalto University, Aalto 00076, Finland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Igor O. Koshevoy
- Department of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| |
Collapse
|
29
|
Miao H, Pan X, Li M, Zhaxi W, Wu J, Huang Z, Liu L, Ma X, Jiang S, Huang W, Zhang Q, Wu D. A Copper Iodide Cluster-Based Coordination Polymer as an Unconventional Zero-Thermal-Quenching Phosphor. Inorg Chem 2022; 61:18779-18788. [DOI: 10.1021/acs.inorgchem.2c03322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huixian Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xiancheng Pan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Wenjiang Zhaxi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Jing Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zetao Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Luying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xiao Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Shenlong Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| |
Collapse
|
30
|
Dong Y, Han Y, Chen R, Lin Y, Cui BB. Recent progress of triplet state emission in organic-inorganic hybrid metal halides. JOURNAL OF LUMINESCENCE 2022; 249:119013. [DOI: 10.1016/j.jlumin.2022.119013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
31
|
Zhaxi W, Li M, Wu J, Liu L, Huang Z, Miao H, Ma X, Jiang S, Zhang Q, Huang W, Wu D. A Red-Emitting Cu(I)–Halide Cluster Phosphor with Near-Unity Photoluminescence Efficiency for High-Power wLED Applications. Molecules 2022; 27:molecules27144441. [PMID: 35889315 PMCID: PMC9318059 DOI: 10.3390/molecules27144441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 01/27/2023] Open
Abstract
Solid-state lighting technology, where light-emitting diodes (LEDs) are used for energy conversion from electricity to light, is considered a next-generation lighting technology. One of the significant challenges in the field is the synthesis of high-efficiency phosphors for designing phosphor-converted white LEDs under high flux operating currents. Here, we reported the synthesis, structure, and photophysical properties of a tetranuclear Cu(I)–halide cluster phosphor, [bppmCu2I2]2 (bppm = bisdiphenylphosphinemethane), for the fabrication of high-performance white LEDs. The PL investigations demonstrated that the red emission exhibits a near-unity photoluminescence quantum yield at room temperature and unusual spectral broadening with increasing temperature in the crystalline state. Considering the excellent photophysical properties, the crystalline sample of [bppmCu2I2]2 was successfully applied for the fabrication of phosphor-converted white LEDs. The prototype white LED device exhibited a continuous rise in brightness in the range of a high bias current (100–1000 mA) with CRI as high as 84 and CCT of 5828 K, implying great potential for high-quality white LEDs.
Collapse
Affiliation(s)
- Wenjiang Zhaxi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Jing Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Luying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Zetao Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Huixian Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Xiao Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
| | - Shenlong Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China; (S.J.); (Q.Z.)
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China; (S.J.); (Q.Z.)
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
- Correspondence: (W.H.); (D.W.)
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China; (W.Z.); (M.L.); (J.W.); (L.L.); (Z.H.); (H.M.); (X.M.)
- Correspondence: (W.H.); (D.W.)
| |
Collapse
|
32
|
Lin H, Zhang Z, Zhang H, Lin KT, Wen X, Liang Y, Fu Y, Lau AKT, Ma T, Qiu CW, Jia B. Engineering van der Waals Materials for Advanced Metaphotonics. Chem Rev 2022; 122:15204-15355. [PMID: 35749269 DOI: 10.1021/acs.chemrev.2c00048] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The outstanding chemical and physical properties of 2D materials, together with their atomically thin nature, make them ideal candidates for metaphotonic device integration and construction, which requires deep subwavelength light-matter interaction to achieve optical functionalities beyond conventional optical phenomena observed in naturally available materials. In addition to their intrinsic properties, the possibility to further manipulate the properties of 2D materials via chemical or physical engineering dramatically enhances their capability, evoking new science on light-matter interaction, leading to leaped performance of existing functional devices and giving birth to new metaphotonic devices that were unattainable previously. Comprehensive understanding of the intrinsic properties of 2D materials, approaches and capabilities for chemical and physical engineering methods, the resulting property modifications and novel functionalities, and applications of metaphotonic devices are provided in this review. Through reviewing the detailed progress in each aspect and the state-of-the-art achievement, insightful analyses of the outstanding challenges and future directions are elucidated in this cross-disciplinary comprehensive review with the aim to provide an overall development picture in the field of 2D material metaphotonics and promote rapid progress in this fast emerging and prosperous field.
Collapse
Affiliation(s)
- Han Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Zhenfang Zhang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Huihui Zhang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoming Wen
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yao Liang
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Yang Fu
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Alan Kin Tak Lau
- Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia.,The Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Centre for Translational Atomaterials, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, P.O. Box 218, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
33
|
Shao W, Kim J. Metal-Free Organic Phosphors toward Fast and Efficient Room-Temperature Phosphorescence. Acc Chem Res 2022; 55:1573-1585. [PMID: 35613040 DOI: 10.1021/acs.accounts.2c00146] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ConspectusMetal-free purely organic phosphors (POPs) are promising materials for display technologies, solid-state lighting, and sensors platforms because of their advantageous properties such as large design windows, easy processability, and economic material cost. Unlike inorganic semiconductors, creating the conditions for triplet excitons to produce light in organic materials is a demanding task because of the presence of electron spin configurations that undergo spin-forbidden transitions, which is usually facilitated by spin-orbit coupling (SOC). In the absence of heavy metals, however, the SOC efficiency in POPs remains low, and consequently, external nonradiative photophysical processes will also severely affect triplet excitons. Addressing these challenges requires the development of rational molecular design principles to accurately account for how all conceivable structural, electronic, chemical, compositional factors affect materials performance.This Account summarizes important molecular design and matrix engineering strategies to tackle the two key challenges for POPs─boosting SOC efficiencies and suppressing nonradiative decays. We start by reviewing the fundamental understanding of internal and external factors affecting the emission efficiencies of POPs, including the theory behind SOC and the origin of nonradiative decays. Subsequently, we discuss the design of contemporary POP systems on the basis of research insights from our group and others, where SOC is mostly promoted by heavy atom effects and the El-Sayed rule. On one hand, nonmetal heavy atoms including Br, I, or Se provide the heavy atom effects to boost SOC. On the other hand, the El-Sayed rule addresses the necessity of orbital angular momentum change in SOC and the general utilization of carbonyl, heterocyclic rings, and other moieties with rich nonbonding electrons. Because of the slow-decaying nature of triplet excitons, engineering the matrices of POPs is critical to effectively suppress collisional quenching as the major nonradiative decay route, thus achieving POPs with decent room temperature quantum efficiency. For that purpose, crystalline or rigid amorphous matrices have been implemented along with specific intermolecular forces between POPs and their environment.Despite the great efforts made in the past decade, the intrinsic SOC efficiencies of POPs remain low, and their emission lifetimes are pinned in the millisecond to second regime. While this is beneficial for POPs with ultralong emission, designing high-SOC POPs with simultaneous fast decay and high quantum efficiencies is particularly advantageous for display systems. Following the design of contemporary POPs, we will discuss molecular design descriptors that could potentially break the current limit to boost internal SOC in purely organic materials. Our recently developed concept of "heavy atom oriented orbital angular momentum manipulation" will be discussed, accompanied by a rich and expanded library of fast and efficient POP molecules, which serves as a stepping stone into the future of this field. We will conclude this Account by discussing the noteworthy application of POPs in organic light-emitting diodes (OLEDs), solid-state lighting, and sensors, as well as the remaining challenges in the design of fast and efficient POPs.
Collapse
|
34
|
Luo Z, Liu Y, Liu Y, Li C, Li Y, Li Q, Wei Y, Zhang L, Xu B, Chang X, Quan Z. Integrated Afterglow and Self-Trapped Exciton Emissions in Hybrid Metal Halides for Anti-Counterfeiting Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200607. [PMID: 35233840 DOI: 10.1002/adma.202200607] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
0D hybrid metal halides (0D HMHs) are considered to be promising luminescent emitters. 0D HMHs commonly exhibit self-trapped exciton (STE) emissions originating from the inorganic metal halide anion units. Exploring and utilizing the emission features of the organic cation units in 0D HMHs is highly desired to enrich their optical properties as multifunctional luminescent materials. Here, tunable emissions from organic and inorganic units are successfully achieved in triphenylsulfonium (Ph3 S+ )-based 0D HMHs. Notably, integrated afterglow and STE emissions with adjustable intensities are obtained in (Ph3 S)2 Sn1- x Tex Cl6 (x = 0-1) via the delicate combination of [SnCl6 ]2- and [TeCl6 ]2- . Moreover, such a strategy can be readily extended to develop other HMH materials with intriguing optical properties. As a demonstration, 0D (Ph3 S)2 Zn1- x Mnx Cl4 (x = 0-1) are constructed to achieve integrated afterglow and Mn2+ d-d emissions with high efficiency. Consequently, these novel 0D HMHs with colorful afterglow and STE emissions are applied in multiple anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yejing Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Chen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yawen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Qian Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi Wei
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Liming Zhang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Bin Xu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiaoyong Chang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
35
|
Feng S, Ma Y, Wang S, Gao S, Huang Q, Zhen H, Yan D, Ling Q, Lin Z. Light/Force-Sensitive 0D Lead-Free Perovskites: From Highly Efficient Blue Afterglow to White Phosphorescence with Near-Unity Quantum Efficiency. Angew Chem Int Ed Engl 2022; 61:e202116511. [PMID: 35015323 DOI: 10.1002/anie.202116511] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Indexed: 11/12/2022]
Abstract
Herein, new types of zero-dimensional (0D) perovskites (PA6InCl9 and PA4InCl7) with blue room-temperature phosphorescence (RTP) were obtained from InCl3 and aniline hydrochloride. These are highly sensitive to external light and force stimuli. The RTP quantum yield of PA6InCl9 can be enhanced from 25.2 % to 42.8 % upon illumination. Under mechanical force, PA4InCl7 exhibits a phase transform to PA6InCl9, thus boosting ultralong RTP with a lifetime up to 1.2 s. Furthermore, white and orange pure RTP with a quantum yield close to 100 % can be realized when Sb3+ was introduced into PA6InCl9. The white pure phosphorescence with a color-rendering index (CRI) close to 90 consists of blue RTP of PA6InCl9 and orange RTP of Sb3+ . Thus, this work not only overcomes long-standing problems of low quantum yield and short lifetime of blue RTP, but also obtains high-efficiency white RTP. It provides a feasible method to realize near-unity quantum efficiency and has great application potential in the fields of optical devices and smart materials.
Collapse
Affiliation(s)
- Shangwei Feng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Yujuan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shuaiqi Wang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Shanshan Gao
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Qiuqin Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Hongyu Zhen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qidan Ling
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| | - Zhenghuan Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
36
|
Liu M, Wang J, Liang G, Luo X, Zhao G, He S, Wang L, Liang W, Li J, Wu K. Spin-enabled photochemistry using nanocrystal-molecule hybrids. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Feng S, Ma Y, Wang S, Gao S, Huang Q, Zhen H, Yan D, Ling Q, Lin Z. Light/force‐sensitive 0D lead‐free perovskites: from highly efficient blue afterglow to white phosphorescence with near‐unity quantum efficiency. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shangwei Feng
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Yujuan Ma
- Beijing Normal University College of Chemistry CHINA
| | - Shuaiqi Wang
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Shanshan Gao
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Qiuqin Huang
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Hongyu Zhen
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Dongpeng Yan
- Beijing Normal University College of Chemistry CHINA
| | - Qidan Ling
- Fujian Normal University College of Chemistry and Materials Science CHINA
| | - Zhenghuan Lin
- Fujian Normal University College of Chemsitry and Materials Science 8 Shangsan Road CHINA
| |
Collapse
|
38
|
Zhou B, Yan D. Color-tunable persistent luminescence in 1D zinc–organic halide microcrystals for single-component white light and temperature-gating optical waveguides. Chem Sci 2022; 13:7429-7436. [PMID: 35872833 PMCID: PMC9242015 DOI: 10.1039/d2sc01947g] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/15/2022] [Indexed: 01/17/2023] Open
Abstract
Information security of photonic communications has become an important societal issue and can be greatly improved when photonic signals are propagated through active waveguides with tunable wavelengths in different time and space domains. Moreover, the development of active waveguides that can work efficiently at extreme temperatures is highly desirable but remains a challenge. Herein, we report new types of low-dimensional Zn(ii)–organic halide microcrystals with fluorescence and room-temperature phosphorescence (RTP) dual emission for use as 1D color-tunable active waveguides. Benefiting from strong intermolecular interactions (i.e., hydrogen bonds and π–π interactions), these robust waveguide systems exhibit colorful photonic signals and structural stability at a wide range of extreme simulated temperatures (>300 K), that covers natural conditions on Earth, Mars, and the Moon. Both experimental and theoretical studies demonstrate that the molecular self-assembly can regulate the singlet and triplet excitons to allow thermally assisted spectral separation of fluorescence and RTP, in combination with the single-component standard white-light emission. Therefore, this work demonstrates the first use of metal–organic halide microcrystals as temperature-gating active waveguides with promising implications for high-security information communications and high-resolution micro/nanophotonics. 1D zinc–organic halide microcrystals exhibiting thermally assisted spectral separation of fluorescence and phosphorescence could be used as single-component standard white-light and temperature-gating active waveguides.![]()
Collapse
Affiliation(s)
- Bo Zhou
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
39
|
Zhang Y, Chen D, Jin KH, Zang SQ, Wang QL. Room-temperature phosphorescence of manganese-based metal halides. Dalton Trans 2021; 50:17275-17280. [PMID: 34787142 DOI: 10.1039/d1dt03206b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Room-temperature phosphorescent (RTP) materials can be used in anti-counterfeiting, organic light-emitting diodes and displays. However, designing RTP materials with a long luminescence lifetime and high solid-state emission efficiency is still a challenge. Due to the strong quantum confinement effect and the hydrogen bond network structure formed by polyamino sites, 0D RTP materials usually have a higher fluorescence quantum yield and longer phosphorescence lifetime. Here, we synthesized four manganese-based metal halides of different dimensions with a long lifetime and high luminous efficiency by changing organic cations: {[H2DAP]MnCl4}n (1, DAP = 1,3-propanediamine, 2D), {[(H2MELA)2MnCl5]Cl}n (2, MELA = melamine, 1D), [H2TAP]2MnCl6 (3, TAP = 2,4,6-triaminopyrimidine, 0D) and [H2MXD]2MnCl6 (4, MXD = m-xylylenediamine, 0D). [H2MXD]2MnCl6 (4) has a long lifetime (11 ms) and the maximum photoluminescence quantum yield (31.05%). Our work provides a new procedure for the development of RTP materials with high quantum yields.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China.
| | - Dian Chen
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China.
| | - Kai-Hang Jin
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Qing-Lun Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
40
|
Zhong Y, Huang YE, Deng T, Lin YT, Huang XY, Deng ZH, Du KZ. Multi-Dopant Engineering in Perovskite Cs 2SnCl 6: White Light Emitter and Spatially Luminescent Heterostructure. Inorg Chem 2021; 60:17357-17363. [PMID: 34704442 DOI: 10.1021/acs.inorgchem.1c02840] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bi3+/Te4+ co-doped Cs2SnCl6 with dual emission spectrum (i.e., 450 and 575 nm) was achieved by a modified solution method, which can overcome the phase separation in the previous method for Cs2SnCl6 crystal growth. The two emission peaks arising from the two dopants Bi3+ and Te4+ have distinct photoluminescence (PL) lifetimes. Thus, the control of dopant ratio or PL delay time will regulate the PL intensity ratio between 450 and 575 nm peaks leading to adjustable emission color. The energy transfer between the two emission centers, which is confirmed by the optical spectra and PL lifetime, has a critical distance around 7.8 nm with a maximum of 50% transfer efficiency. The Bi3+/Te4+ co-doped Cs2SnCl6 with superior stability in water and aqua regia was fabricated into a single-phase white light-emitting diode. In the meantime, various luminescent heterostructures were obtained by epitaxial Cs2SnCl6 crystal growth with different dopants, which can broaden the study of composition engineering in halide perovskites.
Collapse
Affiliation(s)
- Yu Zhong
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People' Republic of China
| | - Yue-E Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People' Republic of China
| | - Tao Deng
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People' Republic of China
| | - Yi-Tong Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People' Republic of China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People' Republic of China
| | - Zhong-Hua Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People' Republic of China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, People' Republic of China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
41
|
Feng S, Huang Q, Yang S, Lin Z, Ling Q. A metal-free 2D layered organic ammonium halide framework realizing full-color persistent room-temperature phosphorescence. Chem Sci 2021; 12:14451-14458. [PMID: 34880996 PMCID: PMC8580049 DOI: 10.1039/d1sc04806f] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023] Open
Abstract
Organic–inorganic hybrid metal halides have attracted intensive attention because of their unique electronic structure and solution processability. They have a rigid micro/nano-structure and heavy atom effect, which has obvious advantages in promoting organic room temperature phosphorescence (RTP). However, the toxicity of heavy metals has limited their further development. Herein, two metal-free 2D layered ammonium halides, homopiperonylammonium bromide and chloride (HLB and HLC), are described for the first time. Their layered structure consists of rigid inorganic ammonium halide laminates and neatly stacked organic layers. The rigid laminates and external heavy atom effect of halogen atoms make HLB and HLC produce green RTP. When phosphor guests with different triplet energies are doped into HLB, HLC, or phenylethylamine salt hosts, effective full-color and even white ultra-long RTP with phosphorescence quantum yield up to 18.7% and lifetime up to 1.7 s is realized through energy transfer between the host and guest. Due to the simple solution synthesis, 10 g-level doped layered organic ammonium halides with the same phosphorescence properties can be easily obtained. The information ink based on these doped halides and non-toxic ethanol solvent can form various patterns on filter paper. The fluorescence and phosphorescence of these patterns are sensitive to the excitation wavelength and acid–base vapor. Consequently, they can be applied to multiple complex anti-counterfeiting and fluorescence/phosphorescence dual-mode chemical sensors. A kind of metal-free organic ammonium halides characterized by a unique 2D layered structure show colorful ultralong phosphorescence. Phosphorescent quantum yield (up to 19%) and lifetime (up to 1.7 s) can be tuned by doping with different phosphors.![]()
Collapse
Affiliation(s)
- Shangwei Feng
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Qiuqin Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Shuming Yang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Zhenghuan Lin
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Qidan Ling
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| |
Collapse
|
42
|
Zheng W, Li X, Liu N, Yan S, Wang X, Zhang X, Liu Y, Liang Y, Zhang Y, Liu H. Solution-Grown Chloride Perovskite Crystal of Red Afterglow. Angew Chem Int Ed Engl 2021; 60:24450-24455. [PMID: 34453771 DOI: 10.1002/anie.202110308] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 01/29/2023]
Abstract
We report the growth of a halide-based double perovskite, Cs2 Nax Ag1-x InCl6 :y%Mn, via a facile hydrothermal reaction at 180 °C. Through a co-doping strategy of both Na+ and Mn2+ , the as-prepared crystals exhibited a red afterglow featuring a high color purity (ca. 100 %) and a long duration time (>5400 s), three orders of magnitude longer than those solution-processed organic afterglow crystals. The energy transfer (ET) process between self-trapped excitons (STE) and activators was investigated through time-resolved spectroscopy, which suggested an ET efficiency up to 41 %. Importantly, the nominal concentration of dopants, especially in the case of Na+ , was found a useful tool to control both energy level and number distribution of traps. Cryogenic afterglow measurements suggested that the afterglow phenomenon was likely governed by thermal-activated exciton diffusion and electron tunneling process.
Collapse
Affiliation(s)
- Wei Zheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Xiuling Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Nianqiao Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.,School of Physics and Technology, University of Jinan, Jinan, 250022, Shandong, China
| | - Shao Yan
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Xiaojia Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Xiangzhou Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Yeqi Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Yanjie Liang
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Yuhai Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, Shandong, China.,State Key Laboratory of Crystal Materials, Shandong University, 27 Shandanan Road, Jinan, Shandong, 250100, China
| |
Collapse
|
43
|
Zheng W, Li X, Liu N, Yan S, Wang X, Zhang X, Liu Y, Liang Y, Zhang Y, Liu H. Solution‐Grown Chloride Perovskite Crystal of Red Afterglow. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Wei Zheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Xiuling Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Nianqiao Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
- School of Physics and Technology University of Jinan Jinan 250022 Shandong China
| | - Shao Yan
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials Ministry of Education Shandong University Jinan 250061 P. R. China
| | - Xiaojia Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Xiangzhou Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Yeqi Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Yanjie Liang
- Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials Ministry of Education Shandong University Jinan 250061 P. R. China
| | - Yuhai Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong Institute for Advanced Interdisciplinary Research (iAIR) University of Jinan Jinan 250022 Shandong China
- State Key Laboratory of Crystal Materials Shandong University 27 Shandanan Road Jinan Shandong 250100 China
| |
Collapse
|
44
|
Zhou Q, Xu M, Feng W, Li F. Quantum Yield Measurements of Photochemical Reaction-Based Afterglow Luminescence Materials. J Phys Chem Lett 2021; 12:9455-9462. [PMID: 34555905 DOI: 10.1021/acs.jpclett.1c02715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Afterglow materials have become one of the most promising luminescent materials due to their long luminescence lifetime. Photoluminescence quantum yield (PLQY), as one of the most fundamental and essential parameters of luminescent materials, can directly evaluate the luminescence properties of emissive compounds. Recently, a type of afterglow material based on a photochemical reaction has been developed. However, there is no suitable method to measure the PLQY of these afterglow materials due to their special luminescence principle. Herein, we present a method to measure the PLQY for these afterglow materials by collecting the luminescent dynamic curves of emission and excitation light at specific wavelength regions using a commercial spectrometer and an integrating sphere. We found that the emitted photons of this kind of afterglow material are in direct proportion to the excitation time, which means the PLQY is irrelevant to the excitation time.
Collapse
Affiliation(s)
- Qianwen Zhou
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Ming Xu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
45
|
Elshanawany MM, Ricciardulli AG, Saliba M, Wachtveitl J, Braun M. Mechanism of ultrafast energy transfer between the organic-inorganic layers in multiple-ring aromatic spacers for 2D perovskites. NANOSCALE 2021; 13:15668-15676. [PMID: 34523656 DOI: 10.1039/d1nr04290d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lead halide based perovskite semiconductors self-assemble with distinct organic cations in natural multi-quantum-well structures. The emerging electronic properties of these two-dimensional (2D) materials can be controlled by the combination of the halide content and choice of chromophore in the organic layer. Understanding the photophysics of the perovskite semiconductor materials is critical for the optimization of stable and efficient optoelectronic devices. We use femtosecond transient absorption spectroscopy (fs-TAS) to study the mechanism of energy transfer between the organic and inorganic layers in a series of three lead-based mixed-halide perovskites such as benzylammonium (BA), 1-naphthylmethylammonium (NMA), and 1-pyrenemethylammonium (PMA) cations in 2D-lead-based perovskite thin films under similar experimental conditions. After optical excitation of the 2D-confined exciton in the lead halide layer, ultrafast energy transfer is observed to organic singlet and triplet states of the incorporated chromophores. This is explained by an effective Dexter energy transfer, which operates via a correlated electron exchange between the donating 2D-confined exciton and the accepting chromophore under spin conservation.
Collapse
Affiliation(s)
- Mahmoud M Elshanawany
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany.
| | | | - Michael Saliba
- Institute of Photovoltaics (ipv), University of Stuttgart, Stuttgart, Germany
- Helmholtz Young Investigator Group FRONTRUNNER, Forschungszentrum Jülich, Jülich, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany.
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
46
|
Zhang Z, Han Q, Liu S, Wang Z, Hu M, Domnic SMW, Lau R, Xing B. Recomposition and storage of sunlight with intelligent phosphors for enhanced photosynthesis. Dalton Trans 2021; 50:11025-11029. [PMID: 34370806 DOI: 10.1039/d1dt02207e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This work presents a smart solar energy regulation strategy using photon tunable long persistent phosphors as solar energy harvesting antennas to enhance overall sunlight utilization by photosynthetic organisms in multiple modes.
Collapse
Affiliation(s)
- Zhijun Zhang
- Key Laboratory of Surface & Interface of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Pan X, Chen H, Lu L, Han S, Ma Y, Wang J, Guo W, Xu H, Luo J, Sun Z. Incorporating Guanidinium as Perovskitizer-Cation of Two-Dimensional Metal Halide for Crystal-Array Photodetectors. Chem Asian J 2021; 16:1925-1929. [PMID: 33974731 DOI: 10.1002/asia.202100425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2021] [Indexed: 11/07/2022]
Abstract
Two-dimensional (2D) hybrid perovskites are recently emerging as a potential family of semiconductors for versatile optoelectronic applications. Currently, the "perovskitizer" moieties are rigidly limited to small-size cations, while few 2D metal-halides containing guanidinium cations inside perovskite cages have been studied for photodetection. Herein, we present a new 2D hybrid perovskite, (i-BA)2 (G)Pb2 I7 (where G is guanidinium and i-BA is isobutylammonium), which adopts a bilayered framework of {GPb2 I7 }. Single-crystal structure analyses disclose that G cations act as the perovskitizer, confined in the flexible perovskite cages formed by the distorted PbI6 octahedra. Such inorganic sheets are crucial to the superior semiconducting properties and optical bandgap, as verified by the density functional theory calculation. Furthermore, its planar crystal-array photodetector shows fascinating photoelectric performance, including a quite low dark current (∼4.6×10-11 A), a large current switching ratio (∼1.0×103 ), and a notable photo-responsivity of ∼0.72 A W-1 , suggesting great potential of (i-BA)2 (G)Pb2 I7 for photodetection.
Collapse
Affiliation(s)
- Xiong Pan
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Huaixi Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Lei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shiguo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yu Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jiaqi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wuqian Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Haojie Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
48
|
Li Y, Sun N, Zhang C, Hao M. Base‐Promoted
Formylation and
N
‐Difluoromethylation
of Azaindoles with Ethyl Bromodifluoroacetate as a Carbon Source. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yang Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Ning Sun
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Cai‐Lin Zhang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| | - Meng Hao
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental and Chemical Engineering, Xi'an Polytechnic University Xi'an Shaanxi 710048 China
| |
Collapse
|
49
|
Lédée F, Audebert P, Trippé-Allard G, Galmiche L, Garrot D, Marrot J, Lauret JS, Deleporte E, Katan C, Even J, Quarti C. Tetrazine molecules as an efficient electronic diversion channel in 2D organic-inorganic perovskites. MATERIALS HORIZONS 2021; 8:1547-1560. [PMID: 34846463 DOI: 10.1039/d0mh01904f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Taking advantage of an innovative design concept for layered halide perovskites with active chromophores acting as organic spacers, we present here the synthesis of two novel two-dimensional (2D) hybrid organic-inorganic halide perovskites incorporating for the first time 100% of a photoactive tetrazine derivative as the organic component. Namely, the use of a heterocyclic ring containing a nitrogen proportion imparts a unique electronic structure to the organic component, with the lowest energy optical absorption in the blue region. The present compound, a tetrazine, presents several resonances between the organic and inorganic components, both in terms of single particle electronic levels and exciton states, providing the ideal playground to discuss charge and energy transfer mechanisms at the organic/inorganic interface. Photophysical studies along with hybrid time-dependent DFT simulations demonstrate partial energy transfer and rationalise the suppressed emission from the perovskite frame in terms of different energy-transfer diversion channels, potentially involving both singlet and triplet states of the organic spacer. Periodic DFT simulations also support the feasibility of electron transfer from the conduction band of the inorganic component to the LUMO of the spacer as a potential quenching mechanism, suggesting the coexistence and competition of charge and energy transfer mechanisms in these heterostructures. Our work proves the feasibility of inserting photoactive small rings in a 2D perovskite structure, meanwhile providing a robust frame to rationalize the electronic interactions between the semiconducting inorganic layer and organic chromophores, with the prospects of optimizing the organic moiety according to the envisaged application.
Collapse
Affiliation(s)
- Ferdinand Lédée
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupelec, LuMIn (Laboratoire Lumière, Matière et Interfaces), 91190 Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhou Q, Qiu X, Su X, Liu Q, Wen Y, Xu M, Li F. Light-Responsive Luminescent Materials for Information Encryption Against Burst Force Attack. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100377. [PMID: 33870628 DOI: 10.1002/smll.202100377] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Optical encryption with easy operation, multichannel and high security has been one of the most significant technologies for information security. Stimuli-responsive luminescent materials have emerged as an ideal candidate for optical encryption, owing to its smart responsive property and high security. Herein, a type of light-responsive multicolor luminescent materials for high-security information encryption, which are fabricated by combining sensitizer, consumption unit, and emitter is developed. Different types of sensitizers to achieve different stimulus light responses, and multicolor light-responsive luminescent can be obtained by varying the composition of perovskite nanocrystals emitter can be selected. Both stimulus light and emission color can be used as distinguishable encoding dimensions, which enable multiplexed encoding with high capacity and complexity. Importantly, the controllable consumption can be manipulated by varying the concentration of consumption unit, so the programmed information encoded in different channels can be selectively read and erased simultaneously by varying stimulus light. The method makes the encryption information highly resistive to brute force trial-and-error attacks, which achieves high security level of information protection.
Collapse
Affiliation(s)
- Qianwen Zhou
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xiaochen Qiu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xianlong Su
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Qian Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yue Wen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Ming Xu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Fuyou Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|