1
|
Wilson N, Palmer WM, Slimp MK, Simmons EM, Joannou MV, Albaneze-Walker J, Ganley JM, Frantz DE. Ni-Catalyzed Cyanation of (Hetero)Aryl Electrophiles Using the Nontoxic Cyanating Reagent K 4[Fe(CN) 6]. ACS Catal 2025; 15:6459-6465. [PMID: 40270882 PMCID: PMC12012830 DOI: 10.1021/acscatal.5c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
A Ni-catalyzed cyanation of aryl halides using potassium ferrocyanide (K4[Fe(CN)6]) as a nontoxic cyanide source has been developed. Key features of this method include the use of biphasic aqueous conditions to overcome the innate insolubility of K4[Fe(CN)6] in organic solvents and the use of a bench-stable Ni(II) precatalyst combined with a commercially available JosiPhos ligand that enhances the practicality and scalability of this cyanation reaction. The inclusion of the acidic additive tetrabutylammonium hydrogen sulfate was found to improve the reaction rate and conversion. The initial scope of this Ni-catalyzed cyanation reaction was successfully demonstrated on a range of (hetero)aryl bromides, chlorides, and sulfamates using catalyst loadings as low as 2.5 mol %. This base-metal-catalyzed methodology was further translated to the decagram synthesis of a pharmaceutical intermediate, usurping the prior Pd-catalyzed process that employed a hazardous cyanide source and solvent pair (Zn(CN)2, DMAc).
Collapse
Affiliation(s)
- Nicolas
A. Wilson
- The
Max and Minnie Tomerlin Voelcker Laboratory for Organic Chemistry,
Department of Chemistry, The University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - William M. Palmer
- The
Max and Minnie Tomerlin Voelcker Laboratory for Organic Chemistry,
Department of Chemistry, The University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Meredith K. Slimp
- The
Max and Minnie Tomerlin Voelcker Laboratory for Organic Chemistry,
Department of Chemistry, The University
of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Eric M. Simmons
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, NJ 08903, United States
| | - Matthew V. Joannou
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, NJ 08903, United States
| | | | - Jacob M. Ganley
- Chemical
Process Development, Bristol Myers Squibb, New Brunswick, NJ 08903, United States
| | - Doug E. Frantz
- Department
of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Missouri, St. Louis 63110, United States
| |
Collapse
|
2
|
Porte V, Kollmus P, Serrano E, Santagostino M. High-throughput Experimentation Enables the Development of a Nickel-catalyzed Cyanation Platform for (Hetero)aryl Halides. Chemistry 2025; 31:e202403795. [PMID: 39807602 DOI: 10.1002/chem.202403795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/16/2024] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
A novel screening platform for the nickel-catalyzed cyanation of (hetero)aryl halides relying on the use of air-stable Ni(COD)DQ at low loading is reported. Through high-throughput experimentation (HTE), various ligand and solvent combinations are systematically explored, allowing the fast identification of suitable conditions. This standardized workflow serves as an excellent starting point for selecting other competent nickel precatalysts and for further optimization of reluctant substrates. The transformation exhibits broad functional group tolerance and can be readily scaled up to gram-scale.
Collapse
Affiliation(s)
- Vincent Porte
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| | - Philipp Kollmus
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| | - Eloisa Serrano
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| | - Marco Santagostino
- Chemical Development Germany, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, 88397, Germany
| |
Collapse
|
3
|
Wu YJ, Ma C, Bilal M, Liang YF. Nickel-Catalyzed Reductive Cyanation of Aryl Halides and Epoxides with Cyanogen Bromide. Molecules 2024; 29:6016. [PMID: 39770100 PMCID: PMC11678332 DOI: 10.3390/molecules29246016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Nitriles are valuable compounds because they have widespread applications in organic chemistry. This report details the nickel-catalyzed reductive cyanation of aryl halides and epoxides with cyanogen bromide for the synthesis of nitriles. This robust protocol underscores the practicality of using a commercially available and cost-effective cyanation reagent. A variety of aryl halides and epoxides featuring diverse functional groups, such as -TMS, -Bpin, -OH, -NH2, -CN, and -CHO, were successfully converted into nitriles in moderate-to-good yields. Moreover, the syntheses at gram-scale and application in late-stage cyanation of natural products and drugs reinforces its potentiality.
Collapse
Affiliation(s)
| | | | | | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China; (Y.-J.W.); (C.M.); (M.B.)
| |
Collapse
|
4
|
Qiu X, Qu G, Cui B, Cao C, Shi Y. Palladium Catalyzed Cyanation of Diaryl Sulfoxides. J Org Chem 2024; 89:17729-17737. [PMID: 39511133 DOI: 10.1021/acs.joc.4c02506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Aryl nitriles are highly versatile and useful compounds. A palladium-catalyzed cyanation of diaryl sulfoxides using bench-stable Zn(CN)2 as the cyanating reagent has been developed. The reaction proceeded well using Pd(OAc)2 as the catalyst with the inexpensive ligand PCy3 in the presence of t-BuONa. The method has a broad scope of substrates and is scalable. The regioselective cyanation of unsymmetrical diaryl sulfoxides was observed at the side of electron-deficient and more steric hindered aryl groups.
Collapse
Affiliation(s)
- Xianchao Qiu
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Guangcai Qu
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Benqiang Cui
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Changsheng Cao
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| | - Yanhui Shi
- School of Chemistry and Material Science and Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
5
|
Jahanshahi R, Moghadam HH, Sobhani S, Sansano JM. ZnCo 2O 4@g-C 3N 4@Cu as a new and highly efficient heterogeneous photocatalyst for visible light-induced cyanation and Mizoroki-Heck cross-coupling reactions. RSC Adv 2024; 14:26424-26436. [PMID: 39175692 PMCID: PMC11339774 DOI: 10.1039/d4ra04827j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
Conducting C-C cross-coupling reactions under convenient and mild conditions remains extremely challenging in traditional organic synthesis. In this study, ZnCo2O4@g-C3N4@Cu exhibited extraordinary photocatalytic performance as a new visible light harvesting heterogeneous copper-based photocatalyst in cyanation and Mizoroki-Heck visible-light-driven cross-coupling reactions at room temperature and in air. Surprisingly, by this method, the cyanation and Mizoroki-Heck cross-coupling reactions of various iodo-, bromo- and also the challenging chloroarenes with respectively K4[Fe(CN)6]·3H2O and olefins produced promising results in a sustainable and mild media. The significant photocatalytic performance of ZnCo2O4@g-C3N4@Cu arises from the synergistic optical properties of ZnCo2O4, g-C3N4, and Cu. These components can enhance the charge carrier generation and considerably reduce the recombination rate of photogenerated electron-hole pairs. No need to use heat or additives, applying an economical and benign light source, utilizing an environmentally compatible solvent, facile and low-cost photocatalytic approach, aerial conditions, high stability and convenient recyclability of the photocatalyst are the remarkable highlights of this methodology. Moreover, this platform exhibited the ability to be performed on a large scale, which is considered an important issue in industrial and pharmaceutical use. It is worth noting that this is the first time that a heterogeneous copper-based photocatalyst has been employed in visible light-promoted cyanation reactions of aryl halides.
Collapse
Affiliation(s)
- Roya Jahanshahi
- Department of Chemistry, College of Sciences, University of Birjand Birjand Iran
| | | | - Sara Sobhani
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
- Department of Chemistry, College of Sciences, University of Birjand Birjand Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Instituto de Síntesis Orgánica (ISO), Universidad de Alicante Apdo. 99 03080-Alicante Spain
| |
Collapse
|
6
|
Iizumi K, Tanaka H, Muto K, Yamaguchi J. Palladium-Catalyzed Denitrative Synthesis of Aryl Nitriles from Nitroarenes and Organocyanides. Org Lett 2024; 26:3977-3981. [PMID: 38683691 DOI: 10.1021/acs.orglett.4c01118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A denitrative cyanation of nitroarenes using organocyanides and a palladium catalyst was developed. The key for this reaction was the utilization of an aminoacetonitrile as a cyano source to avoid the generation of stoichiometric metal- and halogen-containing chemical waste. A wide range of nitroarenes, including heteroarenes and pharmaceutical molecules, can be converted into aryl nitriles.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
7
|
Yan Y, Wang P, Wang Y, Dong J, Li G, Wang C, Xue D. Light-Triggered, Ni-Catalyzed Cyanation of Aryl Triflates with 1,4-Dicyanobenzene as the CN Source. Org Lett 2024; 26:1370-1375. [PMID: 38358108 DOI: 10.1021/acs.orglett.3c04294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A light-triggered, Ni-catalyzed cyanation of aryl triflates was herein reported, which provides a benign photochemical synthesis of aryl nitriles using 1,4-dicyanobenzene as the CN source instead of HCN or a metallic CN source. This mild method uses a readily available bisphosphine ligand and a soluble organosilicon reagent as the reductant and is carried out under purple light without an external photocatalyst. This cyanation was effective for aryl triflates derived from phenols and bisphenols as well as lignin-derived phenolic compounds, demonstrating its potential utility for the synthesis of aryl nitriles from biomass.
Collapse
Affiliation(s)
- Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Pengpeng Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuying Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
8
|
Zhong LJ, Fan JH, Chen P, Huang PF, Xiong BQ, Tang KW, Liu Y. Recent advances in ring-opening of cyclobutanone oximes for capturing SO 2, CO or O 2via a radical process. Org Biomol Chem 2023; 22:10-24. [PMID: 38018531 DOI: 10.1039/d3ob01762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Cyclobutanone oximes and their derivatives are pivotal core structural motifs in organic chemistry. Iminyl-radical-triggered C-C bond cleavage of cyclobutanone oximes delivers an efficient strategy to produce stable distal cyano-substituted alkyl radicals, which can capture SO2, CO or O2 to form cyanoalkylsulfonyl radicals, cyanoalkylcarbonyl radicals or cyanoalkoxyl radicals under mild conditions. In the past several years, cyanoalkylsulfonylation/cyanoalkylcarbonyaltion/cyanoalkoxylation has attracted a lot of interest. In this updated report, the strategies for trapping SO2, CO or O2via iminyl-radical-triggered ring-opening of cyclobutanone oximes are summarized.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
9
|
Ma D, Zhang Q. Ligand-Promoted Rosenmund–von Braun Reaction. Synlett 2023. [DOI: 10.1055/s-0042-1751414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
AbstractTwo picolinamide ligands were found to have significant accelerating effect to classical Rosenmund–von Braun reaction, making the coupling of (hetero)aryl bromides with CuCN occur at 100–120 °C with good to excellent yields in most cases. A large number of functional groups and heterocycles were tolerated under these conditions, thereby providing a convenient and reliable approach for diverse synthesis of aryl nitriles.
Collapse
Affiliation(s)
- Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University
| | - Quan Zhang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University
| |
Collapse
|
10
|
Chen Z, Shen Z. Nickel-catalyzed asymmetric reductive arylcyanation of alkenes with acetonitrile as the cyano source. Org Chem Front 2023. [DOI: 10.1039/d2qo01727j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chiral 3-cyanomethyl oxindoles were synthesized in high enantioselectivities and yields. The employment of acetonitrile as a cyano source via Zn(OTf)2-assisted β-carbon elimination is distinct from the common cyanation reaction modes.
Collapse
Affiliation(s)
- Zhenbang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zengming Shen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
11
|
Zhang J, Lee YM, Seo MS, Nilajakar M, Fukuzumi S, Nam W. A Contrasting Effect of Acid in Electron Transfer, Oxygen Atom Transfer, and Hydrogen Atom Transfer Reactions of a Nickel(III) Complex. Inorg Chem 2022; 61:19735-19747. [PMID: 36445726 DOI: 10.1021/acs.inorgchem.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There have been many examples of the accelerating effects of acids in electron transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. Herein, we report a contrasting effect of acids in the ET, OAT, and HAT reactions of a nickel(III) complex, [NiIII(PaPy3*)]2+ (1) in acetone/CH3CN (v/v 19:1). 1 was synthesized by reacting [NiII(PaPy3*)]+ (2) with magic blue or iodosylbenzene in the absence or presence of triflic acid (HOTf), respectively. Sulfoxidation of thioanisole by 1 and H2O occurred in the presence of HOTf, and the reaction rate increased proportionally with increasing concentration of HOTf ([HOTf]). The rate of ET from diacetylferrocene to 1 also increased linearly with increasing [HOTf]. In contrast, HAT from 9,10-dihydroanthracene (DHA) to 1 slowed down with increasing [HOTf], exhibiting an inversely proportional relation to [HOTf]. The accelerating effect of HOTf in the ET and OAT reactions was ascribed to the binding of H+ to the PaPy3* ligand of 2; the one-electron reduction potential (Ered) of 1 was positively shifted with increasing [HOTf]. Such a positive shift in the Ered value resulted in accelerating the ET and OAT reactions that proceeded via the rate-determining ET step. On the other hand, the decelerating effect of HOTf on HAT from DHA to 1 resulted from the inhibition of proton transfer from DHA•+ to 2 due to the binding of H+ to the PaPy3* ligand of 2. The ET reactions of 1 in the absence and presence of HOTf were well analyzed in light of the Marcus theory of ET in comparison with the HAT reactions.
Collapse
Affiliation(s)
- Jisheng Zhang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Madhuri Nilajakar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
12
|
Singer RA, Monfette S, Bernhardson D, Tcyrulnikov S, Hubbell AK, Hansen EC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - David Bernhardson
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Aran K. Hubbell
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
13
|
Tsurugi H, Matsuno M, Kawakami T, Mashima K. Pyrazine Alkylation with Aldehydes and Haloalkanes Using N,N’‐Bis(trimethylsilyl)‐1,4‐dihydropyrazine Derivatives. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hayato Tsurugi
- Osaka University Department of Chemistry 1-3, Machikaneyama-cho 560-8531 Toyonaka JAPAN
| | | | | | - Kazushi Mashima
- Osaka University: Osaka Daigaku Pharmaceutical Sciences JAPAN
| |
Collapse
|
14
|
Charboneau DJ, Hazari N, Huang H, Uehling MR, Zultanski SL. Homogeneous Organic Electron Donors in Nickel-Catalyzed Reductive Transformations. J Org Chem 2022; 87:7589-7609. [PMID: 35671350 PMCID: PMC9335070 DOI: 10.1021/acs.joc.2c00462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many contemporary organic transformations, such as Ni-catalyzed cross-electrophile coupling (XEC), require a reductant. Typically, heterogeneous reductants, such as Zn0 or Mn0, are used as the electron source in these reactions. Although heterogeneous reductants are highly practical for preparative-scale batch reactions, they can lead to complications in performing reactions on process scale and are not easily compatible with modern applications, such as flow chemistry. In principle, homogeneous organic reductants can address some of the challenges associated with heterogeneous reductants and also provide greater control of the reductant strength, which can lead to new reactivity. Nevertheless, homogeneous organic reductants have rarely been used in XEC. In this Perspective, we summarize recent progress in the use of homogeneous organic electron donors in Ni-catalyzed XEC and related reactions, discuss potential synthetic and mechanistic benefits, describe the limitations that inhibit their implementation, and outline challenges that need to be solved in order for homogeneous organic reductants to be widely utilized in synthetic chemistry. Although our focus is on XEC, our discussion of the strengths and weaknesses of different methods for introducing electrons is general to other reductive transformations.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Haotian Huang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R Uehling
- Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L Zultanski
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
15
|
Cai Y, Yuan H, Gao Q, Wu L, Xue L, Feng N, Sun Y. Palladium (II) Complex Supported on Magnetic Nanoparticles Modified with Phenanthroline: A Highly Active Reusable Nanocatalyst for the Synthesis of Benzoxazoles, Benzothiazoles and Cyanation of Aryl Halides. Catal Letters 2022. [DOI: 10.1007/s10562-022-03990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Yan Y, Sun J, Li G, Yang L, Zhang W, Cao R, Wang C, Xiao J, Xue D. Photochemically Enabled, Ni-Catalyzed Cyanation of Aryl Halides. Org Lett 2022; 24:2271-2275. [PMID: 35316067 DOI: 10.1021/acs.orglett.2c00203] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A light-promoted Ni-catalyzed cyanation of aryl halides employing 1,4-dicyanobenzene as a cyanating agent is reported. A broad array of aryl bromides, chlorides, and druglike molecules could be converted into their corresponding nitriles (65 examples). Mechanistic studies suggest that upon irradiation, the oxidative addition product Ni(II)(dtbbpy)(p-C6H4CN)(CN) undergoes homolytic cleavage of the Ni-aryl bond to generate an aryl radical and a Ni(I)-CN species, the latter of which initiates subsequent cyanation reactions.
Collapse
Affiliation(s)
- Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jinjin Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Liu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
17
|
Cao L, Wang P, Sun S, Yang F, Wu Y. Ru(III)-Catalyzed C4-H Bond Cyanoalkoxylation of 1-Naphthylamine Derivatives with Azobisisobutyronitrile. Org Chem Front 2022. [DOI: 10.1039/d2qo00572g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient protocol for ruthenium-catalyzed C4-H bond cyanoalkoxylation of 1-naphthylamine derivatives with AIBN was developed under an oxygen atmosphere. This reaction provides an efficient method for preparing cyano...
Collapse
|
18
|
Charboneau DJ, Huang H, Barth EL, Germe CC, Hazari N, Mercado BQ, Uehling MR, Zultanski SL. Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. J Am Chem Soc 2021; 143:21024-21036. [PMID: 34846142 DOI: 10.1021/jacs.1c10932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The syntheses of four new tunable homogeneous organic reductants based on a tetraaminoethylene scaffold are reported. The new reductants have enhanced air stability compared to current homogeneous reductants for metal-mediated reductive transformations, such as cross-electrophile coupling (XEC), and are solids at room temperature. In particular, the weakest reductant is indefinitely stable in air and has a reduction potential of -0.85 V versus ferrocene, which is significantly milder than conventional reductants used in XEC. All of the new reductants can facilitate C(sp2)-C(sp3) Ni-catalyzed XEC reactions and are compatible with complex substrates that are relevant to medicinal chemistry. The reductants span a range of nearly 0.5 V in reduction potential, which allows for control over the rate of electron transfer events in XEC. Specifically, we report a new strategy for controlled alkyl radical generation in Ni-catalyzed C(sp2)-C(sp3) XEC. The key to our approach is to tune the rate of alkyl radical generation from Katritzky salts, which liberate alkyl radicals upon single electron reduction, by varying the redox potentials of the reductant and Katritzky salt utilized in catalysis. Using our method, we perform XEC reactions between benzylic Katritzky salts and aryl halides. The method tolerates a variety of functional groups, some of which are particularly challenging for most XEC transformations. Overall, we expect that our new reductants will both replace conventional homogeneous reductants in current reductive transformations due to their stability and relatively facile synthesis and lead to the development of novel synthetic methods due to their tunability.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Haotian Huang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Emily L Barth
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Cameron C Germe
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R Uehling
- Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L Zultanski
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
19
|
Sahoo P, Majumdar M. Reductively disilylated N-heterocycles as versatile organosilicon reagents. Dalton Trans 2021; 51:1281-1296. [PMID: 34889336 DOI: 10.1039/d1dt03331j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The reductively disilylated N-heterocyclic systems 1,4-bis(trimethylsilyl)-1-aza-2,5-cyclohexadiene (1Si), 1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (2Si) and its methyl derivatives (3Si and 4Si), and 1,1'-bis(trimethylsilyl)-4,4'-bipyridinylidene (5Si) are proficient organosilicon reagents owing to their low first vertical ionization potentials and the heterophilicity of the polarized N-Si bonds. These have prompted their reactivity as two-electron reductants or reductive silylations. These reactions benefit from the concomitant rearomatization of the N-heterocycles and liberation of trimethylsilyl halides or (Me3Si)2O, which are mostly volatile or easily removable byproducts. In this perspective, we have discussed the utilization of these reductively disilylated N-heterocyclic systems as versatile reagents in the salt-free reduction of transition metals (A) and main-group halides (B), in organic transformations (C) and in materials syntheses (D).
Collapse
Affiliation(s)
- Padmini Sahoo
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, Maharashtra, India.
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune-411008, Maharashtra, India.
| |
Collapse
|
20
|
Thenarukandiyil R, Paenurk E, Wong A, Fridman N, Karton A, Carmieli R, Ménard G, Gershoni-Poranne R, de Ruiter G. Extensive Redox Non-Innocence in Iron Bipyridine-Diimine Complexes: a Combined Spectroscopic and Computational Study. Inorg Chem 2021; 60:18296-18306. [PMID: 34787414 PMCID: PMC8653161 DOI: 10.1021/acs.inorgchem.1c02925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Indexed: 11/28/2022]
Abstract
Metal-ligand cooperation is an important aspect in earth-abundant metal catalysis. Utilizing ligands as electron reservoirs to supplement the redox chemistry of the metal has resulted in many new exciting discoveries. Here, we demonstrate that iron bipyridine-diimine (BDI) complexes exhibit an extensive electron-transfer series that spans a total of five oxidation states, ranging from the trication [Fe(BDI)]3+ to the monoanion [Fe(BDI]-1. Structural characterization by X-ray crystallography revealed the multifaceted redox noninnocence of the BDI ligand, while spectroscopic (e.g., 57Fe Mössbauer and EPR spectroscopy) and computational studies were employed to elucidate the electronic structure of the isolated complexes, which are further discussed in this report.
Collapse
Affiliation(s)
- Ranjeesh Thenarukandiyil
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Eno Paenurk
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Anthony Wong
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Natalia Fridman
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Amir Karton
- School
of Molecular Science, The University of
Western Australia, 35 Stirling Highway, 6009 Perth, Australia
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 761000, Israel
| | - Gabriel Ménard
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Renana Gershoni-Poranne
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
- Laboratorium
für Organische Chemie, ETH Zurich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
21
|
Zhou N, Xia Z, Wu S, Kuang K, Xu Q, Zhang M. Visible-Light-Induced Multicomponent Cascade Cycloaddition of N-Propargyl Aromatic Amines, Cyclobutanone Oxime Esters, and K 2S 2O 5: Access to Cyanoalkylsulfonylated Quinolines. J Org Chem 2021; 86:15253-15262. [PMID: 34643392 DOI: 10.1021/acs.joc.1c01866] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A visible-light-induced cascade cyanoalkylsulfonylation/cyclization/aromatization of N-propargyl aromatic amines with K2S2O5 and cyclobutanone oxime esters for the construction of cyanoalkylsulfonylated quinolines is developed. This cascade transformation features mild reaction conditions, a broad substrate scope, and excellent functional group compatibility, providing a convenient route toward cyanoalkylsulfonylated quinolines via the formation of a C-C bond and two C-S bonds in one step.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Ziqin Xia
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Qiankun Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
22
|
Zhou N, Wu S, Kuang K, Wu M, Zhang M. Ni-Catalyzed radical cyclization of vinyl azides with cyclobutanone oxime esters to access cyanoalkyl containing quinoxalin-2(1 H)-ones. Org Biomol Chem 2021; 19:4697-4700. [PMID: 33982738 DOI: 10.1039/d1ob00610j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed cascade addition/cyclization of 2-azido-N-arylacrylamides and cyclobutanone oxime esters for the construction of 3-cyanoalkylated quinoxalin-2(1H)-ones is developed. This reaction proceeds under mild conditions with good functional group tolerance and broad substrate scope. A preliminary mechanistic experiment indicated that the cyanoalkyl radical might be involved in this transformation.
Collapse
Affiliation(s)
- Nengneng Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Sixin Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Kaimo Kuang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Meixia Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| | - Man Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
23
|
Moghaddam FM, Jarahiyan A, Heidarian Haris M, Pourjavadi A. An advancement in the synthesis of nano Pd@magnetic amine-Functionalized UiO-66-NH 2 catalyst for cyanation and O-arylation reactions. Sci Rep 2021; 11:11387. [PMID: 34059726 PMCID: PMC8167105 DOI: 10.1038/s41598-021-90478-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023] Open
Abstract
The magnetic MOF-based catalytic system has been reported here to be an efficient catalyst for synthesis of benzonitriles and diarylethers of aryl halides under optimal conditions. The MOF catalyst was built based on magnetic nanoparticles and UiO-66-NH2 which further modified with 2,4,6-trichloro-1,3,5-triazine and 5-phenyl tetrazole at the same time and the catalyst structure was confirmed by various techniques. This new modification has been applied to increase anchoring palladium into the support. Furthermore, the products' yields were obtained in good to excellent for all reactions under mild conditions which result from superior activity of the synthesized heterogeneous catalyst containing palladium. Also, the magnetic property of the MOF-based catalyst makes it easy to separate from reaction mediums and reuse in the next runs.
Collapse
Affiliation(s)
- Firouz Matloubi Moghaddam
- grid.412553.40000 0001 0740 9747Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| | - Atefeh Jarahiyan
- grid.412553.40000 0001 0740 9747Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| | - Mahdi Heidarian Haris
- grid.412553.40000 0001 0740 9747Laboratory of Organic Synthesis and Natural Products, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| | - Ali Pourjavadi
- grid.412553.40000 0001 0740 9747Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Azadi Street, P.O. Box 111559516, Tehran, Iran
| |
Collapse
|
24
|
Thenarukandiyil R, Satheesh V, Shimon LJW, de Ruiter G. Hydroboration of Nitriles, Esters, and Carbonates Catalyzed by Simple Earth-Abundant Metal Triflate Salts. Chem Asian J 2021; 16:999-1006. [PMID: 33728809 DOI: 10.1002/asia.202100003] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/10/2021] [Indexed: 11/11/2022]
Abstract
During the past decade earth-abundant metals have become increasingly important in homogeneous catalysis. One of the reactions in which earth-abundant metals have found important applications is the hydroboration of unsaturated C-C and C-X bonds (X=O or N). Within these set of transformations, the hydroboration of challenging substrates such as nitriles, carbonates and esters still remain difficult and often relies on elaborate ligand designs and highly reactive catalysts (e. g., metal alkyls/hydrides). Here we report an effective methodology for the hydroboration of challenging C≡N and C=O bonds that is simple and applicable to a wide set of substrates. The methodology is based on using a manganese(II) triflate salt that, in combination with commercially available potassium tert-butoxide and pinacolborane, catalyzes the hydroboration of nitriles, carbonates, and esters at room temperature and with near quantitative yields in less than three hours. Additional studies demonstrated that other earth-abundant metal triflate salts can facilitate this reaction as well, which is further discussed in this report.
Collapse
Affiliation(s)
- Ranjeesh Thenarukandiyil
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Vanaparthi Satheesh
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| |
Collapse
|
25
|
Liu SZ, Li J, Xue CG, Xu XT, Lei LS, Huo CY, Wang Z, Wang SH. Copper-promoted cyanation of aryl iodides with N,N-dimethyl aminomalononitrile. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Patel RI, Sharma S, Sharma A. Cyanation: a photochemical approach and applications in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00162k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises the photocatalytic cyanation strategies to construct C(sp2)–CN, C(sp3)–CN and X–CN (X = N, S) bonds.
Collapse
Affiliation(s)
- Roshan I. Patel
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
27
|
Dorval C, Tricoire M, Begouin JM, Gandon V, Gosmini C. Cobalt-Catalyzed C(sp2)–CN Bond Activation: Cross-Electrophile Coupling for Biaryl Formation and Mechanistic Insight. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03903] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Céline Dorval
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| | - Maxime Tricoire
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| | - Jeanne-Marie Begouin
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| | - Vincent Gandon
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
- Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France
| | - Corinne Gosmini
- Laboratoire de Chimie Moléculaire, CNRS UMR 9168, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau Cedex, France
| |
Collapse
|
28
|
Affiliation(s)
- Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Katsura, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
29
|
Muhammad Siddique A, Neel Pulidindi I, Shen Z. RETRACTED: Metal-catalyzed cyanation of aromatic hydrocarbon with less toxic nitriles as a cyano source. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Reductive cyanation of organic chlorides using CO 2 and NH 3 via Triphos-Ni(I) species. Nat Commun 2020; 11:4096. [PMID: 32796845 PMCID: PMC7428002 DOI: 10.1038/s41467-020-17939-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022] Open
Abstract
Cyano-containing compounds constitute important pharmaceuticals, agrochemicals and organic materials. Traditional cyanation methods often rely on the use of toxic metal cyanides which have serious disposal, storage and transportation issues. Therefore, there is an increasing need to develop general and efficient catalytic methods for cyanide-free production of nitriles. Here we report the reductive cyanation of organic chlorides using CO2/NH3 as the electrophilic CN source. The use of tridentate phosphine ligand Triphos allows for the nickel-catalyzed cyanation of a broad array of aryl and aliphatic chlorides to produce the desired nitrile products in good yields, and with excellent functional group tolerance. Cheap and bench-stable urea was also shown as suitable CN source, suggesting promising application potential. Mechanistic studies imply that Triphos-Ni(I) species are responsible for the reductive C-C coupling approach involving isocyanate intermediates. This method expands the application potential of reductive cyanation in the synthesis of functionalized nitrile compounds under cyanide-free conditions, which is valuable for safe synthesis of (isotope-labeled) drugs. Nitriles are key intermediates in production of pharmaceuticals, agrochemicals and organic materials. Here, the authors report a nickel-catalyzed reductive cyanation of organic chlorides with CO2/NH3 and urea as cyanation reagents to afford a broad range of organic nitriles.
Collapse
|
31
|
Moghadam H, Sobhani S, Sansano JM. New Nanomagnetic Heterogeneous Cobalt Catalyst for the Synthesis of Aryl Nitriles and Biaryls. ACS OMEGA 2020; 5:18619-18627. [PMID: 32775864 PMCID: PMC7407554 DOI: 10.1021/acsomega.0c01002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/24/2020] [Indexed: 05/03/2023]
Abstract
Cobalt nanoparticles immobilized on magnetic chitosan (Fe3O4@CS-Co) have been prepared. They were identified using various techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, thermogravimetric analysis, vibrating sample magnetometry, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy analysis and applied efficiently as a cobalt catalyst in the cyanation and fluoride-/palladium-free Hiyama reactions of different types of aryl halides employing K4[Fe(CN)6]·3H2O and triethoxyphenylsilane, respectively. After each reaction, the catalyst was isolated and reused for the second run. The catalytic activity of the catalyst was not lost apparently even after five runs. No considerable changes in its chemical structure and morphology were observed. It is worth to note that in this paper, the cobalt catalyst has been used for the first time for the cyanation of aryl halides.
Collapse
Affiliation(s)
- Hadis
Hosseini Moghadam
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 9717434765, Iran
| | - Sara Sobhani
- Department
of Chemistry, College of Sciences, University
of Birjand, Birjand 9717434765, Iran
| | - José Miguel Sansano
- Departamento
de Química Orgánica, Facultad de Ciencias, Centro de
Innovación en Química Avanzada (ORFEO-CINQA) and Instituto
de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, Alicante 03080, Spain
| |
Collapse
|
32
|
Kanchana U, Mathew TV, Anilkumar G. Recent advances and prospects in the nickel- catalyzed cyanation. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121337] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Baran T, Sargin I. Green synthesis of a palladium nanocatalyst anchored on magnetic lignin-chitosan beads for synthesis of biaryls and aryl halide cyanation. Int J Biol Macromol 2020; 155:814-822. [DOI: 10.1016/j.ijbiomac.2020.04.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022]
|
34
|
Chen Z, Zhou Q, Wang Q, Chen P, Xiong B, Liang Y, Tang K, Liu Y. Iron‐Mediated Cyanoalkylsulfonylation/Arylation of Active Alkenes with Cycloketone Oxime Derivatives via Sulfur Dioxide Insertion. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000369] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zan Chen
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Quan Zhou
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Qiao‐Lin Wang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Pu Chen
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Bi‐Quan Xiong
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic FunctionalMolecules of Hunan ProvinceHunan Normal University Changsha Hunan 410081 People's Republic of China
| | - Ke‐Wen Tang
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical EngineeringHunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
- Key Laboratory of the Assembly and Application of Organic FunctionalMolecules of Hunan ProvinceHunan Normal University Changsha Hunan 410081 People's Republic of China
| |
Collapse
|
35
|
Bhawal BN, Reisenbauer JC, Ehinger C, Morandi B. Overcoming Selectivity Issues in Reversible Catalysis: A Transfer Hydrocyanation Exhibiting High Kinetic Control. J Am Chem Soc 2020; 142:10914-10920. [PMID: 32478515 DOI: 10.1021/jacs.0c03184] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reversible catalytic reactions operate under thermodynamic control, and thus, establishing a selective catalytic system poses a considerable challenge. Herein, we report a reversible transfer hydrocyanation protocol that exhibits high selectivity for the thermodynamically less favorable branched isomer. Selectivity is achieved by exploiting the lower barrier for C-CN oxidative addition and reductive elimination at benzylic positions in the absence of a cocatalytic Lewis acid. Through the design of a novel type of HCN donor, a practical, branched-selective, HCN-free transfer hydrocyanation was realized. The synthetically useful resolution of a mixture of branched and linear nitrile isomers was also demonstrated to underline the value of reversible and selective transfer reactions. In a broader context, this work demonstrates that high kinetic selectivity can be achieved in reversible transfer reactions, thus opening new horizons for their synthetic applications.
Collapse
Affiliation(s)
- Benjamin N Bhawal
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Julia C Reisenbauer
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
36
|
Affiliation(s)
- Lulu Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanan Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiangqiang Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Jianfei Bai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yuehui Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
37
|
Wierschen AL, Lowe J, Romano N, Lee SJ, Gagné MR. Silylpalladium Cations Enable the Cleavage of Nitrile C–CN Bonds. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andreas L. Wierschen
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Jared Lowe
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Neyen Romano
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Stephen J. Lee
- U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709, United States
| | - Michel R. Gagné
- Caudill Laboratories, Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
38
|
Ikeda H, Nishi K, Tsurugi H, Mashima K. Chromium-catalyzed cyclopropanation of alkenes with bromoform in the presence of 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-dihydropyrazine. Chem Sci 2020; 11:3604-3609. [PMID: 34094048 PMCID: PMC8152687 DOI: 10.1039/d0sc00964d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Chromium-catalyzed cyclopropanation of alkenes with bromoform was achieved to produce the corresponding bromocyclopropanes. In this catalytic cyclopropanation, an organosilicon reductant, 2,3,5,6-tetramethyl-1,4-bis(trimethylsilyl)-1,4-dihydropyrazine (1a), was indispensable for reducing CrCl3(thf)3 to CrCl2(thf)3, as well as for in situ generation of (bromomethylidene)chromium(iii) species from (dibromomethyl)chromium(iii) species. The (bromomethylidene)chromium(iii) species are proposed to react spontaneously with alkenes to give the corresponding bromocyclopropanes. This catalytic cyclopropanation was applied to various olefinic substrates, such as allyl ethers, allyl esters, terminal alkenes, and cyclic alkenes.
Collapse
Affiliation(s)
- Hideaki Ikeda
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Kohei Nishi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University Toyonaka Osaka 560-8531 Japan
| |
Collapse
|
39
|
Ahmad MS, Pulidindi IN, Li C. Recent advances in C–CN and C–H bond activation of green nitrile (MeCN) for organo-complexation, cyanation and cyanomethylation. NEW J CHEM 2020. [DOI: 10.1039/d0nj01996h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of green and inexpensive organic nitrile (MeCN) as a cyano and cyano-methyl source for organo-complexation, cyanation, and cyanomethylation is reviewed.
Collapse
Affiliation(s)
| | - Indra Neel Pulidindi
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| | - Chuanlong Li
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai
- China
| |
Collapse
|
40
|
Liu Y, Wang QL, Chen Z, Li H, Xiong BQ, Zhang PL, Tang KW. Visible-light photoredox-catalyzed dual C–C bond cleavage: synthesis of 2-cyanoalkylsulfonylated 3,4-dihydronaphthalenes through the insertion of sulfur dioxide. Chem Commun (Camb) 2020; 56:3011-3014. [DOI: 10.1039/c9cc10057a] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel visible-light photoredox-catalyzed dual C–C bond cleavage of methylenecyclopropanes and cycloketone oximes for accessing 2-cyanoalkylsulfonated 3,4-dihydronaphthalenes is established.
Collapse
Affiliation(s)
- Yu Liu
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Qiao-Lin Wang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Hua Li
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Pan-Liang Zhang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering
- Hunan Institute of Science and Technology
- Yueyang 414006
- China
| |
Collapse
|
41
|
Zhu PF, Si YX, Zhang SL. An aerobic and green C-H cyanation of terminal alkynes. Org Biomol Chem 2020; 18:9216-9220. [PMID: 33169757 DOI: 10.1039/d0ob01928c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study describes a benign C-H cyanation of terminal alkynes with α-cyanoesters serving as a nontoxic cyanide source. In situ generation of the key copper cyanide intermediate is proposed by a sequence of α-C-H oxidation and copper-mediated β-carbon elimination of α-cyanoesters, releasing the α-ketoester byproduct observed experimentally. The ensuing reaction of copper cyanide with terminal alkynes delivers preferentially cyanoalkynes and surpasses the possible Glaser type dimerization of terminal alkynes or the undesired accumulation of HCN under protic conditions. The presence of the co-oxidant K2S2O8 is crucial to this selectivity, probably by promoting oxidative transmetalation and the resulting formation of the Cu(iii)(acetylide)(CN) intermediate. All the reagents and salts used are commercially available, cheap and nontoxic, avoiding the use of highly toxic cyanide salts typically required in cyanation studies. The scope of this reaction is demonstrated with a set of alkynes and α-cyanoesters. The application of this method to late-stage functionalization of the terminal alkyne group in an estrone derivative is also feasible, showing its practical value for drug design.
Collapse
Affiliation(s)
- Peng-Fei Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| | - Yi-Xin Si
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| | - Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|
42
|
Meng F, Fang Q, Yuan W, Xu N, Cao S, Chun J, Li J, Zhang H, Zhu Y. Access to cyano-substituted pyrazolines through copper-catalyzed cascade cyanation/cyclization of unactivated olefins. Org Chem Front 2020. [DOI: 10.1039/d0qo00282h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A mild copper-catalyzed cascade cyanation/cyclization of hydrazone-tethered unactivated olefins was developed for the efficient and practical synthesis of cyano-containing pyrazolines.
Collapse
Affiliation(s)
- Fei Meng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Qin Fang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Ning Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Jianlin Chun
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Jie Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing 210095
- China
| |
Collapse
|
43
|
Chen H, Sun S, Liu YA, Liao X. Nickel-Catalyzed Cyanation of Aryl Halides and Hydrocyanation of Alkynes via C–CN Bond Cleavage and Cyano Transfer. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04586] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hui Chen
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Shuhao Sun
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Yahu A. Liu
- Discovery Chemistry, Genomics Institute of the Novartis Research Foundation (GNF), San Diego, California 92121, United States
| | - Xuebin Liao
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
|
45
|
Mills LR, Graham JM, Patel P, Rousseaux SAL. Ni-Catalyzed Reductive Cyanation of Aryl Halides and Phenol Derivatives via Transnitrilation. J Am Chem Soc 2019; 141:19257-19262. [DOI: 10.1021/jacs.9b11208] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L. Reginald Mills
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Joshua M. Graham
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Purvish Patel
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Sophie A. L. Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
46
|
Kumar Verma P, Vishwakarma RA, Sawant SD. Reaction Medium as the Installing Reservoir for Key Functionalities in the Molecules. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Praveen Kumar Verma
- Medicinal Chemistry DivisionCSIR-Indian Institute of Integrative Medicine Canal Road Jammu- 180001 India
| | - Ram A. Vishwakarma
- Medicinal Chemistry DivisionCSIR-Indian Institute of Integrative Medicine Canal Road Jammu- 180001 India
| | - Sanghapal D. Sawant
- Medicinal Chemistry DivisionCSIR-Indian Institute of Integrative Medicine Canal Road Jammu- 180001 India
| |
Collapse
|
47
|
Tsurugi H, Mashima K. Salt-Free Reduction of Transition Metal Complexes by Bis(trimethylsilyl)cyclohexadiene, -dihydropyrazine, and -4,4'-bipyridinylidene Derivatives. Acc Chem Res 2019; 52:769-779. [PMID: 30794373 DOI: 10.1021/acs.accounts.8b00638] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemical reduction of transition metals provides the corresponding low-valent transition metal species as a key step for generating catalytically active species in metal-assisted organic transformations and is a fundamental unit reaction for preparing organometallic complexes. A variety of metal-based reductants, such as metal powders and organometallic reagents of alkali and alkaline-earth metals, have been developed to date to access low-valent metal species. During the reduction, however, reductant-derived metal salts are formed as reaction waste, some of which often interact with the reactive low-valent metal center, thereby disrupting the catalytic performance and hampering the isolation of organometallic complexes as a result of salt coordination to the coordinatively unsaturated vacant and active sites and the formation of thermally unstable ate complexes. In this Account, we emphasize the synthetic utility and versatility of organic reductants containing two trimethylsilyl groups, i.e., 1,4-bis(trimethylsilyl)cyclohexa-2,5-diene (1a) and its methyl derivative (1b), 1,4-bis(trimethylsilyl)dihydropyrazine (2a) and its dimethyl (2b) and tetramethyl (2c) derivatives, and 1,1'-bis(trimethylsilyl)-4,4'-bipyridinylidene (3), leading to the reduction of various kinds of metal compounds in a salt-free fashion by release of two electrons together with the coproduction of easily removable (hetero)aromatics and trimethylsilyl derivatives from these organic reductants 1-3. When homoleptic chlorides of group 5 and 6 metals are treated with 1a and 1b, in situ-generated highly reactive low-valent metal species react with redox-active molecules such as ethylene, α-diimines, and α-diketones to produce metallacyclopentane, (ene-diamido)metal, and (ene-diolato)metal complexes, respectively. The advantage of the salt-free protocol is further exemplified in the low-valent titanocene-catalyzed Reformatsky-type reaction when 2c is used as a reductant: the yield of the product using the organosilicon reductant is higher than that when manganese powder is used as the reductant for the catalytic Reformatsky-type reaction of ethyl 2-bromoisobutyrate and its derivatives with various aldehydes. Moreover, when halides, carboxylates, and acetylacetonate compounds of late transition metals and main-group elements are treated with the organosilicon reductant 2c, metal(0) particles are smoothly precipitated under mild conditions. Among them, metallic nickel(0) nanoparticles are applicable to reductive biaryl formation and reductive cross-coupling of aryl halides/aryl aldehydes. In addition, reduction of the heterogeneous catalysts on a solid supporting matrix was also achieved by this salt-free reduction method; volatile byproducts are easily removed from the catalyst surface without suppressing the catalytic performance. Thus, the salt-free reduction strategy is a very powerful synthetic method that can be extended to various metals throughout the periodic table.
Collapse
Affiliation(s)
- Hayato Tsurugi
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|