1
|
Douglas GJ, Richards E, Sproules S. A self-assembled metallo-macrocycle two-qubit spin system. Chem Commun (Camb) 2025; 61:685-688. [PMID: 39660367 DOI: 10.1039/d4cc03859b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A self-assembled, charge-neutral dicopper(II) metallo-macrocycle with a near degenerate singlet-triplet ground state is a prototype molecular two-qubit system. The weakly-coupled spin centres delivered a long phase memory time of 5.4 μs, and each spin can be selectively switched using an applied potential providing a convenient means to modulate the quantum levels.
Collapse
Affiliation(s)
- Gordon J Douglas
- WestCHEM School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Emma Richards
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Stephen Sproules
- WestCHEM School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
2
|
Youssef K, Vacher A, Khrueawatthanawet T, Roisnel T, Barrière F, Lorcy D. Electrostatic vs. electronic interactions within oxidized multinuclear Pt(bipyridine)(dithiolene) complexes. Dalton Trans 2024; 53:19388-19402. [PMID: 39523805 DOI: 10.1039/d4dt02514h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Bi- and trimetallic platinum(bipyridine)(dithiolene) complexes involving different organic linkers between the redox active platinum(dithiolene) moieties have been synthesized and studied by electrochemistry and spectroelectrochemistry. Cyclic voltammetry experiments carried out on these multinuclear complexes in dichloromethane using [NBu4][PF6] as the supporting salt show only one oxidation process involving the metallacycles. Nevertheless, spectro-electrochemical studies, carried out under the same conditions, show a different evolution of the spectra during oxidation depending on the position of the metallacycles on the phenyl ring. For instance, only the 1,3-disubtituted (Pt21,3-P) and 1,3,5-trisubstituted (Pt31,3,5-P) complexes show the growth of an absorption band in the NIR region upon oxidation while it was not observed for the other complexes. In contrast, electrochemical studies carried out using the poorly coordinating supporting electrolyte, [Na][B(C6H4(CF3)2)4], indicate sequential oxidation of the redox centers with ΔE values varying according to the nature of the bridge and the distance between metal centers. For all the investigated multinuclear complexes, spectro-electrochemical experiments performed in the presence of [Na][B(C6H4(CF3)2)4] show an absorption band in the NIR region consistent with appreciable electrostatic effects and charge delocalization in the mixed valent intermediates.
Collapse
Affiliation(s)
- Khalil Youssef
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Antoine Vacher
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | | | - Thierry Roisnel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Frédéric Barrière
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Dominique Lorcy
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
3
|
Cui MH, Lu YM, Wang J, Ouyang Z, Wang Z, Shao C, Song Y. Room-Temperature Quantum Coherence of Reversible Photo-Generated Radical and its Film. Chemistry 2024; 30:e202402660. [PMID: 39210539 DOI: 10.1002/chem.202402660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Electron spin qubits are becoming an important research direction in the field of quantum computing and information storage. However, the quantum decoherence has seriously hindered the development of this field. So far, few qubits exhibit long phase memory time (Tm), and even fewer qubits that can reach room temperature. Some reports show that the coherence times of radicals are generally long, so radicals may be the preferred spin carriers for qubits. Here, we demonstrate the qubit properties of a photogenerated radical (1 a) based on 2,4,6-Tri(4-pyridyl)-1,3,5-triazine (tpt, 1). More importantly, the photogenerated radical is a spin self-diluting complex, which the dilution is generally used in the investigation of qubits to reduce the interference of environment on qubits in order to overcome the decoherence of qubits. It is surprised that radical tpt has a stable Tm=1.1 μs above 20 K, even keep it to room temperature. In addition, the tpt-film prepared by the vacuum evaporation is significantly increase the T1 and Tm at low temperature.
Collapse
Affiliation(s)
- Ming-Hui Cui
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Ming Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jia Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhongwen Ouyang
- Department Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxing Wang
- Department Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chongyun Shao
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Schäfter D, Wischnat J, Tesi L, De Sousa JA, Little E, McGuire J, Mas-Torrent M, Rovira C, Veciana J, Tuna F, Crivillers N, van Slageren J. Molecular One- and Two-Qubit Systems with Very Long Coherence Times. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302114. [PMID: 37289574 DOI: 10.1002/adma.202302114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Indexed: 06/10/2023]
Abstract
General-purpose quantum computation and quantum simulation require multi-qubit architectures with precisely defined, robust interqubit interactions, coupled with local addressability. This is an unsolved challenge, primarily due to scalability issues. These issues often derive from poor control over interqubit interactions. Molecular systems are promising materials for the realization of large-scale quantum architectures, due to their high degree of positionability and the possibility to precisely tailor interqubit interactions. The simplest quantum architecture is the two-qubit system, with which quantum gate operations can be implemented. To be viable, a two-qubit system must possess long coherence times, the interqubit interaction must be well defined and the two qubits must also be addressable individually within the same quantum manipulation sequence. Here results are presented on the investigation of the spin dynamics of chlorinated triphenylmethyl organic radicals, in particular the perchlorotriphenylmethyl (PTM) radical, a mono-functionalized PTM, and a biradical PTM dimer. Extraordinarily long ensemble coherence times up to 148 µs are found at all temperatures below 100 K. Two-qubit and, importantly, individual qubit addressability in the biradical system are demonstrated. These results underline the potential of molecular materials for the development of quantum architectures.
Collapse
Affiliation(s)
- Dennis Schäfter
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Jonathan Wischnat
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Lorenzo Tesi
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - J Alejandro De Sousa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
- Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Mérida, 5101, Venezuela
| | - Edmund Little
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jake McGuire
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
5
|
Benner F, La Droitte L, Cador O, Le Guennic B, Demir S. Magnetic hysteresis and large coercivity in bisbenzimidazole radical-bridged dilanthanide complexes. Chem Sci 2023; 14:5577-5592. [PMID: 37265712 PMCID: PMC10231311 DOI: 10.1039/d3sc01562a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/10/2023] [Indexed: 06/03/2023] Open
Abstract
A judicious combination of radical ligands innate to diffuse spin orbitals with paramagnetic metal ions elicits strong magnetic exchange coupling which leads to properties important for future technologies. This metal-radical approach aids in effective magnetic communication of especially lanthanide ions as their 4f orbitals are contracted and not readily accessible. Notably, a high spin density on the donor atoms of the radical is required for strong coupling. Such molecules are extremely rare owing to high reactivity rendering their isolation challenging. Herein, we present two unprecedented series of bisbenzimidazole-based dilanthanide complexes [(Cp*2Ln)2(μ-Bbim)] (1-Ln = Gd, Tb, Dy, Bbim = 2,2'-bisbenzimidazole) and [K(crypt-222)][(Cp*2Ln)2(μ-Bbim˙)] -(2-Ln = Gd, Tb, Dy), where the latter contains the first Bbim3-˙ radical matched with any paramagnetic metal ion. The magnetic exchange constant for 2-Gd of J = -1.96(2) cm-1 suggests strong antiferromagnetic Gd-radical coupling, whereas the lanthanides in 1-Gd are essentially uncoupled. Ab initio calculations on 2-Tb and 2-Dy uncovered coupling strengths of -4.8 and -1.8 cm-1. 1-Dy features open hysteresis loops with a coercive field of Hc of 0.11 T where the single-molecule magnetism can be attributed to the single-ion effect due to lack of coupling. Excitingly, pairing the effective magnetic coupling with the strong magnetic anisotropy of Dy results in magnetic hysteresis with a blocking temperature TB of 5.5 K and coercive field HC of 0.54 T, ranking 2-Dy as the second best dinuclear single-molecule magnet containing an organic radical bridge. A Bbim4- species is formed electrochemically hinting at the accessibility of Bbim-based redox-active materials.
Collapse
Affiliation(s)
- Florian Benner
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| | - Léo La Droitte
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Boris Le Guennic
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226 F-35000 Rennes France
| | - Selvan Demir
- Department of Chemistry, Michigan State University 578 South Shaw Lane East Lansing Michigan 48824 USA
| |
Collapse
|
6
|
Kumar S, Selvachandran M, Wu C, Pascal RA, Zhang X, Grusenmeyer T, Schmehl RH, Sproules S, Mague JT, Donahue JP. Heterotrimetallic Assemblies with 1,2,4,5-Tetrakis(diphenylphosphino)benzene Bridges: Constructs for Controlling the Separation and Spatial Orientation of Redox-Active Metallodithiolene Groups. Inorg Chem 2022; 61:17804-17818. [DOI: 10.1021/acs.inorgchem.2c03112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Satyendra Kumar
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Malathy Selvachandran
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Che Wu
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Robert A. Pascal
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Xiaodong Zhang
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Tod Grusenmeyer
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Russell H. Schmehl
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Joel T. Mague
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - James P. Donahue
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| |
Collapse
|
7
|
Wang J, Ruan H, Hu Z, Wang W, Zhao Y, Wang X. Indeno[2,1-a]fluorene-11,12-dione radical anions:synthesis,characterization and property. Chemistry 2021; 28:e202103897. [PMID: 34928531 DOI: 10.1002/chem.202103897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Indexed: 11/08/2022]
Abstract
The one-electron reduction reactions of indeno[2,1-a]fluorene-11,12-dione ( IF ) with various alkali metals bring about the radical anion salts. The different structures and properties are characterized by single crystal X-ray diffraction, electron paramagnetic resonance (EPR) spectroscopy, superconducting quantum interference device (SQUID) measurements and physical property measurement system (PPMS). IF •- K + (18-c-6) is regarded as a one-dimensional magnetic chain through C-H-C interaction. Theoretical calculations and magnetic results prove that [ IF •- K + (15-c-5)] 2 is a dimer with an open-shell ground state. IF •- Na + (15-c-5) and IF •- K + (cryptand) are monoradical anion salts. IF 2 •- Li + possesses unique π-stack structure with an interplanar separation less than 3.46 Å, making it a semiconductor ( δ RT = 1.9 Χ 10 -4 S•cm -1 ). This work gives a wealth of insights into multifunctional radical anions, and makes the design and development of different functional radicals attractive.
Collapse
Affiliation(s)
- Jie Wang
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Huapeng Ruan
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Zhaobo Hu
- JiangXi University of Science and Technology, Faculty of Materials metallurgy and Chemistry, CHINA
| | - Wenqing Wang
- Anhui Normal University, college of chemistry and material science, CHINA
| | - Yue Zhao
- Nanjing University, School of Chemistry and Chemical Engineering, CHINA
| | - Xinping Wang
- Nanjing University, Chemistry, Xianlin Ave 163, 210023, Nanjing, CHINA
| |
Collapse
|
8
|
Kumar S, Selvachandran M, Arumugam K, Shaw MC, Wu C, Maurer M, Zhang X, Sproules S, Mague JT, Donahue JP. Open-Ended Metallodithiolene Complexes with the 1,2,4,5-Tetrakis(diphenylphosphino)benzene Ligand: Modular Building Elements for the Synthesis of Multimetal Complexes. Inorg Chem 2021; 60:13177-13192. [PMID: 34370468 PMCID: PMC8424627 DOI: 10.1021/acs.inorgchem.1c01573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Open-ended, singly
metalated dithiolene complexes with 1,2,4,5-tetrakis(diphenylphosphino)benzene
(tpbz) are prepared either by ligand transfer to [Cl2M(tpbz)]
from (R2C2S2)SnR′2 (R = CN, R′ = Me; R = Me, R′ = nBu) or by a direct reaction between tpbz and [M(S2C2R2)2] (M = Ni, Pd, Pt; R = Ph, p-anisyl) in a 1:1 ratio. The formation of dimetallic [(R2C2S2)M(tpbz)M(S2C2R2)] attends these syntheses in modest amounts, but the
open-ended compounds are readily separated by silica chromatography.
As affirmed by X-ray crystallographic characterization of numerous
members of the set, the [(R2C2S2)M(tpbz)]
compounds show dithiolene ligands in their fully reduced ene-1,2-dithiolate
form conjoined with divalent Group 10 ions. Minor amounts of octahedral
[(Ph2C2S2)2PtIV(tpbz)], a presumed intermediate, are isolated from the preparation
of [(Ph2C2S2)PtII(tpbz)].
Heterodimetallic [(Ph2C2S2)Pt(tpbz)Ni(S2C2Me2)] is prepared from [(Ph2C2S2)PtII(tpbz)]; its cyclic voltammogram,
upon anodic scanning, shows two pairs of closely spaced, but resolved,
1e– oxidations corresponding first to [R2C2S22–] –
1e– → [R2C2S•S–] and then to [R2C2S•S–] – 1e– → [R2(C=S)2]. The open diphosphine
of [(R2C2S2)M(tpbz)] can be oxidized
to afford open-ended [(R2C2S2)M(tpbzE2)] (E = O, S). Synthesis of the octahedral [(dppbO2)3Ni][I3]2 [dppbO2 =
1,2-bis(diphenylphosphoryl)benzene] suggests that the steric profile
of [(R2C2S2)M(tpbzE2)]
is moderated enough that three could be accommodated as ligands around
a metal ion. Open-ended metallodithiolene complexes
with 1,2,4,5-tetrakis(diphenylphosphino)benzene
(tpbz) are prepared either by the reaction of [M(S2C2R2)2] with tpbz in a 1:1 ratio or by
transmetalation from [(R2C2S2)SnR′2] to [Cl2M(tpbz)]. 31P NMR spectroscopy
provides a clear diagnostic with the metalated (∼55 ppm) and
open-phosphine (−14 ppm) signals. These compounds may be metalated
at their open end to produce heterodimetallic compounds, or the open
phosphines may be oxidized with chalcogen donors to the corresponding
phosphine oxides or sulfides.
Collapse
Affiliation(s)
- Satyendra Kumar
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Malathy Selvachandran
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Kuppuswamy Arumugam
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Highway, Dayton, Ohio 45435-0001, United States
| | - Mohamed C Shaw
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Che Wu
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Michael Maurer
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Xiaodong Zhang
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Joel T Mague
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| | - James P Donahue
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118, United States
| |
Collapse
|
9
|
Curtis CJ, Astashkin AV, Conradie J, Ghosh A, Tomat E. Ligand-Centered Triplet Diradical Supported by a Binuclear Palladium(II) Dipyrrindione. Inorg Chem 2021; 60:12457-12466. [PMID: 34347474 PMCID: PMC8389801 DOI: 10.1021/acs.inorgchem.1c01691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Oligopyrroles
form
a versatile class of redox-active ligands and
electron reservoirs. Although the stabilization of radicals within
oligopyrrolic π systems is more common for macrocyclic ligands,
bidentate dipyrrindiones are emerging as compact platforms for one-electron
redox chemistry in transition-metal complexes. We report the synthesis
of a bis(aqua) palladium(II) dipyrrindione complex and its deprotonation-driven
dimerization to form a hydroxo-bridged binuclear complex in the presence
of water or triethylamine. Electrochemical, spectroelectrochemical,
and computational analyses of the binuclear complex indicate the accessibility
of two quasi-reversible ligand-centered reduction processes. The product
of a two-electron chemical reduction by cobaltocene was isolated and
characterized. In the solid state, this cobaltocenium salt features
a folded dianionic complex that maintains the hydroxo bridges between
the divalent palladium centers. X-band and Q-band EPR spectroscopic
experiments and DFT computational analysis allow assignment of the
dianionic species as a diradical with spin density almost entirely
located on the two dipyrrindione ligands. As established from the
EPR temperature dependence, the associated exchange coupling is weak
and antiferromagnetic (J ≈ −2.5 K),
which results in a predominantly triplet state at the temperatures
at which the measurements have been performed. The coordination and redox chemistry of the dipyrrindione
scaffold, which is found in several heme metabolites, is investigated
in heteroleptic palladium(II) complexes. The bis(aqua) complex undergoes
a deprotonation-driven dimerization to form a hydroxo-bridged binuclear
species. Crystallographic, electrochemical, and spectroscopic data,
as well as computational analysis, demonstrate that a two-electron
reduction of the binuclear complex leads to a diradical dianion with
spin density delocalized over the two dipyrrindione ligands.
Collapse
Affiliation(s)
- Clayton J Curtis
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Blvd., Tucson, Arizona 85721, United States
| | - Andrei V Astashkin
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Blvd., Tucson, Arizona 85721, United States
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa.,Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 East University Blvd., Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Sproules S. Electronic structure study of divanadium complexes with rigid covalent coordination: potential molecular qubits with slow spin relaxation. Dalton Trans 2021; 50:4778-4782. [PMID: 33877176 DOI: 10.1039/d1dt00709b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electronic structures of homovalent [V2(μ-S2)2(R2dtc)4] (R = Et, iBu) and mixed-valent [V2(μ-S2)2(R2dtc)4]+ are reported here. The soft-donor, eight-coordinate ligand shell combined with the fully delocalised ground state provides a highly rigid and covalent environment that will nurture long spin relaxation times in vanadyl-based molecular qubits.
Collapse
Affiliation(s)
- Stephen Sproules
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
11
|
Poryvaev AS, Gjuzi E, Polyukhov DM, Hoffmann F, Fröba M, Fedin MV. Blatter-Radical-Grafted Mesoporous Silica as Prospective Nanoplatform for Spin Manipulation at Ambient Conditions. Angew Chem Int Ed Engl 2021; 60:8683-8688. [PMID: 33491265 PMCID: PMC8048659 DOI: 10.1002/anie.202015058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/11/2021] [Indexed: 12/21/2022]
Abstract
Quantum computing and quantum information processing (QC/QIP) crucially depend on the availability of suitable quantum bits (qubits) and methods of their manipulation. Most qubit candidates known to date are not applicable at ambient conditions. Herein, we propose radical-grafted mesoporous silica as a versatile and prospective nanoplatform for spin-based QC/QIP. Extremely stable Blatter-type organic radicals are used, whose electron spin decoherence time is profoundly long even at room temperature (up to Tm ≈2.3 μs), thus allowing efficient spin manipulation by microwave pulses. The mesoporous structure of such composites is nuclear-spin free and provides additional opportunities of embedding guest molecules into the channels. Robustness and tunability of these materials promotes them as highly promising nanoplatforms for future QC/QIP developments.
Collapse
Affiliation(s)
- Artem S. Poryvaev
- International Tomography Center SB RASNovosibirsk630090Russia
- Novosibirsk State UniversityNovosibirsk630090Russia
| | - Eva Gjuzi
- Institute of Inorganic and Applied ChemistryUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | | | - Frank Hoffmann
- Institute of Inorganic and Applied ChemistryUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Michael Fröba
- Institute of Inorganic and Applied ChemistryUniversity of HamburgMartin-Luther-King-Platz 620146HamburgGermany
| | - Matvey V. Fedin
- International Tomography Center SB RASNovosibirsk630090Russia
- Novosibirsk State UniversityNovosibirsk630090Russia
| |
Collapse
|
12
|
Poryvaev AS, Gjuzi E, Polyukhov DM, Hoffmann F, Fröba M, Fedin MV. Blatter‐Radical‐Grafted Mesoporous Silica as Prospective Nanoplatform for Spin Manipulation at Ambient Conditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Artem S. Poryvaev
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| | - Eva Gjuzi
- Institute of Inorganic and Applied Chemistry University of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | | | - Frank Hoffmann
- Institute of Inorganic and Applied Chemistry University of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry University of Hamburg Martin-Luther-King-Platz 6 20146 Hamburg Germany
| | - Matvey V. Fedin
- International Tomography Center SB RAS Novosibirsk 630090 Russia
- Novosibirsk State University Novosibirsk 630090 Russia
| |
Collapse
|
13
|
Olshansky JH, Zhang J, Krzyaniak MD, Lorenzo ER, Wasielewski MR. Selectively Addressable Photogenerated Spin Qubit Pairs in DNA Hairpins. J Am Chem Soc 2020; 142:3346-3350. [PMID: 32009396 DOI: 10.1021/jacs.9b13398] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photoinduced electron transfer can produce radical pairs having two quantum entangled electron spins that can act as spin qubits in quantum information applications. Manipulation of these spin qubits requires selective addressing of each spin using microwave pulses. In this work, photogenerated spin qubit pairs are prepared within chromophore-modified DNA hairpins with varying spin qubit distances, and are probed using transient EPR spectroscopy. By performing pulse-EPR measurements on the shortest hairpin, selective addressing of each spin qubit comprising the pair is demonstrated. Furthermore, these spin qubit pairs have coherence times of more than 4 μs, which provides a comfortable time window for performing complex spin manipulations for quantum information applications. The applicability of these DNA-based photogenerated two-qubit systems is discussed in the context of quantum gate operations, specifically the controlled-NOT gate.
Collapse
Affiliation(s)
- Jacob H Olshansky
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston Illinois 60208-3113 , United States
| | - Jinyuan Zhang
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston Illinois 60208-3113 , United States
| | - Matthew D Krzyaniak
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston Illinois 60208-3113 , United States
| | - Emmaline R Lorenzo
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston Illinois 60208-3113 , United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston Illinois 60208-3113 , United States
| |
Collapse
|
14
|
Jackson CE, Lin CY, van Tol J, Zadrozny JM. Orientation dependence of phase memory relaxation in the V(IV) ion at high frequencies. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2019.137034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Vacher A, Le Gal Y, Roisnel T, Dorcet V, Devic T, Barrière F, Lorcy D. Electronic Communication within Flexible Bisdithiolene Ligands Bridging Molybdenum Centers. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antoine Vacher
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Yann Le Gal
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Thierry Roisnel
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Vincent Dorcet
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Thomas Devic
- Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3, France
| | - Frédéric Barrière
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| | - Dominique Lorcy
- Université de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
16
|
Fataftah MS, Krzyaniak MD, Vlaisavljevich B, Wasielewski MR, Zadrozny JM, Freedman DE. Metal-ligand covalency enables room temperature molecular qubit candidates. Chem Sci 2019; 10:6707-6714. [PMID: 31367325 PMCID: PMC6625489 DOI: 10.1039/c9sc00074g] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/27/2019] [Indexed: 12/29/2022] Open
Abstract
Metal–ligand covalency enables observation of coherent spin dynamics to room temperature in a series of vanadium(iv) and copper(ii) catechol complexes.
Harnessing synthetic chemistry to design electronic spin-based qubits, the smallest unit of a quantum information system, enables us to probe fundamental questions regarding spin relaxation dynamics. We sought to probe the influence of metal–ligand covalency on spin–lattice relaxation, which comprises the upper limit of coherence time. Specifically, we studied the impact of the first coordination sphere on spin–lattice relaxation through a series of four molecules featuring V–S, V–Se, Cu–S, and Cu–Se bonds, the Ph4P+ salts of the complexes [V(C6H4S2)3]2– (1), [Cu(C6H4S2)2]2– (2), [V(C6H4Se2)3]2– (3), and [Cu(C6H4Se2)2]2– (4). The combined results of pulse electron paramagnetic resonance spectroscopy and ac magnetic susceptibility studies demonstrate the influence of greater M–L covalency, and consequently spin-delocalization onto the ligand, on elongating spin–lattice relaxation times. Notably, we observe the longest spin–lattice relaxation times in 2, and spin echos that survive until room temperature in both copper complexes (2 and 4).
Collapse
Affiliation(s)
- Majed S Fataftah
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| | - Matthew D Krzyaniak
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ; .,The Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , IL 60208 , USA
| | - Bess Vlaisavljevich
- Department of Chemistry , University of South Dakota , Vermillion , South Dakota 57069 , USA
| | - Michael R Wasielewski
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ; .,The Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , IL 60208 , USA
| | - Joseph M Zadrozny
- Department of Chemistry , Colorado State University , Fort Collins , Colorado 80523 , USA .
| | - Danna E Freedman
- Department of Chemistry , Northwestern University , Evanston , IL 60208 , USA . ;
| |
Collapse
|
17
|
Low JZ, Kladnik G, Patera LL, Sokolov S, Lovat G, Kumarasamy E, Repp J, Campos LM, Cvetko D, Morgante A, Venkataraman L. The Environment-Dependent Behavior of the Blatter Radical at the Metal-Molecule Interface. NANO LETTERS 2019; 19:2543-2548. [PMID: 30884240 DOI: 10.1021/acs.nanolett.9b00275] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stable organic radicals have potential applications for building organic spintronic devices. To fulfill this potential, the interface between organic radicals and metal electrodes must be well characterized. Here, through a combined effort that includes synthesis, scanning tunneling microscopy, X-ray spectroscopy, and single-molecule conductance measurements, we comprehensively probe the electronic interaction between gold metal electrodes and a benchtop stable radical-the Blatter radical. We find that despite its open-shell character and having a half-filled orbital close to the Fermi level, the radical is stable on a gold substrate under ultrahigh vacuum. We observe a Kondo resonance arising from the radical and spectroscopic signatures of its half-filled orbitals. By contrast, in solution-based single-molecule conductance measurements, the radical character is lost through oxidation with charge transfer occurring from the molecule to metal. Our experiments show that the stability of radical states can be very sensitive to the environment around the molecule.
Collapse
Affiliation(s)
- Jonathan Z Low
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Gregor Kladnik
- Faculty of Mathematics and Physics , University of Ljubljana , Jadranska 19 , SI-1000 Ljubljana , Slovenia
- CNR-IOM Laboratorio Nazionale TASC , Basovizza, SS-14, km 163.5 , I-34012 Trieste , Italy
| | - Laerte L Patera
- Institute of Experimental and Applied Physics , University of Regensburg , 93053 Regensburg , Germany
| | - Sophia Sokolov
- Institute of Experimental and Applied Physics , University of Regensburg , 93053 Regensburg , Germany
| | - Giacomo Lovat
- Department of Applied Physics and Applied Mathematics , Columbia University , New York , New York 10027 , United States
| | - Elango Kumarasamy
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Jascha Repp
- Institute of Experimental and Applied Physics , University of Regensburg , 93053 Regensburg , Germany
| | - Luis M Campos
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
| | - Dean Cvetko
- Faculty of Mathematics and Physics , University of Ljubljana , Jadranska 19 , SI-1000 Ljubljana , Slovenia
- CNR-IOM Laboratorio Nazionale TASC , Basovizza, SS-14, km 163.5 , I-34012 Trieste , Italy
- J. Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Alberto Morgante
- CNR-IOM Laboratorio Nazionale TASC , Basovizza, SS-14, km 163.5 , I-34012 Trieste , Italy
- Department of Physics , University of Trieste , 34127 Trieste , Italy
| | - Latha Venkataraman
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
- Department of Applied Physics and Applied Mathematics , Columbia University , New York , New York 10027 , United States
| |
Collapse
|