1
|
Riesinger C, Blank PM, Scholtes C, Gschwind RM, Scheer M. Enhancing the Reactivity of an Aromatic cyclo-P 5 Ligand via Electrophilic Activation. Chemistry 2024; 30:e202402675. [PMID: 39344789 DOI: 10.1002/chem.202402675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/01/2024]
Abstract
Electrophilic activation of the aromatic cyclo-P5 ligand in [Cp*Fe(η5-P5)] is demonstrated to drastically enhance its reactivity towards weak nucleophiles. Unprecedented functionalized, contracted as well as complexly aggregated polyphosphorus compounds are accessed utilizing [Cp*Fe(η5-P5Me)][OTf] (A), highlighting the great potential of this underexplored mode of reactivity. Addition of carbenes to A affords novel 1,2- or 1,1-difunctionalized cyclo-P5 complexes [Cp*Fe(η4-P5(1-L)(2-Me)][OTf] (L=IDipp (1), EtCAAC (2), IiPr (3 b)) and [Cp*Fe(η4-P5(1-IiPr)(1-Me)][OTf] (3 a). For the first time, the much smaller IMe4 leads to the contraction of the cyclo-P5 ligand and formation of [Cp*Fe(η4-P4(1-IMe)(4-Me)] (4). DFT calculations shed light on the delicate mechanism of this type of reaction, which is reinforced by the experimental identification of key intermediates. Even the comparably weak nucleophile IDippCH2 reacts with A to form [Cp*Fe(η4-P5(1-IDippCH2)(1/2-Me)][OTf] (6 a/b), highlighting its explicitly more reactive nature. Moreover, exposure of A to IDippEH (E=N, P) leads to a unique aggregation reaction affording [{Cp*Fe}2{μ2,η4:3:1-P10Me2(IDippN)}][OTf] (8) and [{Cp*Fe}2{μ2,η4:1:1:1-P11Me2(IDipp)}][OTf] (9), respectively.
Collapse
Affiliation(s)
- Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| | - Philip M Blank
- Laboratory of Organic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, Zürich, 8093, Switzerland
| | - Christian Scholtes
- Institute of Organic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Regensburg, 93040, Germany
| |
Collapse
|
2
|
Hauer S, Balázs G, Gliese F, Meurer F, Horsley Downie TM, Hennig C, Weigand JJ, Wolf R. Functionalization of Tetraphosphido Ligands by Heterocumulenes. Inorg Chem 2024; 63:20141-20152. [PMID: 38819111 PMCID: PMC11523228 DOI: 10.1021/acs.inorgchem.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Although numerous polyphosphido complexes have been accessed through the transition-metal-mediated activation and functionalization of white phosphorus (P4), the selective functionalization of the resulting polyphosphorus ligands in these compounds remains underdeveloped. In this study, we explore the reactions between cyclotetraphosphido cobalt complexes and heterocumulenes, leading to functionalized P4 ligands. Specifically, the reaction of carbon disulfide (CS2) with [K(18c-6)][(Ar*BIAN)Co(η4-P4)] ([K(18c-6)]1, 18c-6 = [18]crown-6) affords the adduct [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4CS2)] ([K(18c-6)]3), in which CS2 is attached to a single phosphorus atom (Ar* = 2,6-dibenzhydryl-4-isopropylphenyl, BIAN = 1,2-bis(arylimino)acenaphthene diimine). In contrast, the insertion of bis(trimethylsilyl)sulfur diimide S(NSiMe3)2 into a P-P bond of [K(18c-6)]1 yields [K(18c-6)][(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)2)] (K(18c-6)]4). This salt further reacts with Me3SiCl to form [(Ar*BIAN)Co(η3:η1-P4SN2(SiMe3)3] (5), featuring a rare azatetraphosphole ligand. Moreover, treatment of the previously reported complex [(Ar*BIAN)Co(η3:η1-P4C(O)tBu)] (2) with isothiocyanates results in P-C bond insertion, yielding [(Ar*BIAN)Co(η3:η1-P4C(S)N(R)C(O)tBu)] (6a,b; R = Cy, Ph).
Collapse
Affiliation(s)
- Sebastian Hauer
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Gábor Balázs
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Fabian Gliese
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Florian Meurer
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| | | | - Christoph Hennig
- European
Synchrotron Radiation Facility, Rossendorf Beamline (BM20-CRG), 38043 Grenoble, France
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden, Germany
| | - Jan J. Weigand
- Faculty
of Chemistry and Food Chemistry, Technische
Universität Dresden, 01062 Dresden, Germany
| | - Robert Wolf
- Institute
of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
3
|
Yoshino ND, Wang LP. Two P, Ten P, White P, Red P: Mechanistic Exploration of the Oligomerization of Red Phosphorus from Diphosphorus with the Ab Initio Nanoreactor. Inorg Chem 2024; 63:19074-19086. [PMID: 39352782 PMCID: PMC11483771 DOI: 10.1021/acs.inorgchem.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024]
Abstract
Phosphorus is critical to humans on many fronts, yet we do not have a mechanistic understanding of some of its most basic transformations and reactions─namely the oligomerization of white phosphorus to red. With heat or under ultraviolet (UV) exposure, it has been experimentally demonstrated that white phosphorus dissociates into diphosphorus units which readily form red phosphorus. However, the mechanism of this process is unknown. The ab initio nanoreactor approach was used to explore the potential energy surface of phosphorus clusters. Density functional theory and metadynamics simulations were used to characterize potential reaction pathways. A mechanism for oligomerization is proposed to take place via diphosphorus additions at π-bonds and weak σ-bonds through three membered ring intermediates. Downhill paths through P6 and P8 clusters eventually result in P10 clusters that can oligomerize into red phosphorus chains. The initial, rate limiting step for this process has an energy barrier of 24.2 kcal/mol.
Collapse
Affiliation(s)
- Nathan D. Yoshino
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
4
|
Landaeta VR, Horsley Downie TM, Wolf R. Low-Valent Transition Metalate Anions in Synthesis, Small Molecule Activation, and Catalysis. Chem Rev 2024; 124:1323-1463. [PMID: 38354371 PMCID: PMC10906008 DOI: 10.1021/acs.chemrev.3c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
This review surveys the synthesis and reactivity of low-oxidation state metalate anions of the d-block elements, with an emphasis on contributions reported between 2006 and 2022. Although the field has a long and rich history, the chemistry of transition metalate anions has been greatly enhanced in the last 15 years by the application of advanced concepts in complex synthesis and ligand design. In recent years, the potential of highly reactive metalate complexes in the fields of small molecule activation and homogeneous catalysis has become increasingly evident. Consequently, exciting applications in small molecule activation have been developed, including in catalytic transformations. This article intends to guide the reader through the fascinating world of low-valent transition metalates. The first part of the review describes the synthesis and reactivity of d-block metalates stabilized by an assortment of ligand frameworks, including carbonyls, isocyanides, alkenes and polyarenes, phosphines and phosphorus heterocycles, amides, and redox-active nitrogen-based ligands. Thereby, the reader will be familiarized with the impact of different ligand types on the physical and chemical properties of metalates. In addition, ion-pairing interactions and metal-metal bonding may have a dramatic influence on metalate structures and reactivities. The complex ramifications of these effects are examined in a separate section. The second part of the review is devoted to the reactivity of the metalates toward small inorganic molecules such as H2, N2, CO, CO2, P4 and related species. It is shown that the use of highly electron-rich and reactive metalates in small molecule activation translates into impressive catalytic properties in the hydrogenation of organic molecules and the reduction of N2, CO, and CO2. The results discussed in this review illustrate that the potential of transition metalate anions is increasingly being tapped for challenging catalytic processes with relevance to organic synthesis and energy conversion. Therefore, it is hoped that this review will serve as a useful resource to inspire further developments in this dynamic research field.
Collapse
Affiliation(s)
| | | | - Robert Wolf
- University of Regensburg, Institute
of Inorganic Chemistry, 93040 Regensburg, Germany
| |
Collapse
|
5
|
Hauer S, Horsley Downie TM, Balázs G, Schwedtmann K, Weigand JJ, Wolf R. Cobalt-Mediated [3+1] Fragmentation of White Phosphorus: Access to Acylcyanophosphanides. Angew Chem Int Ed Engl 2024; 63:e202317170. [PMID: 38059391 DOI: 10.1002/anie.202317170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Despite the accessibility of numerous transition metal polyphosphido complexes through transition-metal-mediated activation of white phosphorus, the targeted functionalization of Pn ligands to obtain functional monophosphorus species remains challenging. In this study, we introduce a new [3+1] fragmentation procedure for cyclo-P4 ligands, leading to the discovery of acylcyanophosphanides and -phosphines. Treatment of the complex [K(18c-6)][(Ar*BIAN)Co(η4 -P4 )] ([K(18c-6)]3, 18c-6=[18]crown-6, Ar*=2,6-dibenzhydryl-4-isopropylphenyl, BIAN=1,2-bis(arylimino)acenaphthene diimine) with acyl chlorides results in the formation of acylated tetraphosphido complexes [(Ar*BIAN)Co(η4 -P4 C(O)R)] (R=tBu, Cy, 1-Ad, Ph; 4 a-d). Subsequent reactions of 4 a-d with cyanide salts yield acylated cyanophosphanides [RC(O)PCN]- (9 a-d- ) and the cyclo-P3 cobaltate anion [(Ar*BIAN)Co(η3 -P3 )(CN)]- (8- ). Further reactions of 4 a-d with trimethylsilyl cyanide (Me3 SiCN) and isocyanides provide insight into a plausible mechanism of this [3+1] fragmentation reaction, as these reagents partially displace the P4 C(O)R ligand from the cobalt center. Several potential intermediates of the [3+1] fragmentation were characterized. Additionally, the introduction of a second acyl substituent was achieved by treating [K(18c-6)]9b with CyC(O)Cl, resulting in the first bis(acyl)monocyanophosphine (CyC(O))2 PCN (10).
Collapse
Affiliation(s)
- Sebastian Hauer
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | | | - Gábor Balázs
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Kai Schwedtmann
- TU Dresden, Faculty of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Jan J Weigand
- TU Dresden, Faculty of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| |
Collapse
|
6
|
Hoidn CM, Trabitsch K, Schwedtmann K, Taube C, Weigand JJ, Wolf R. Formation of a Hexaphosphido Cobalt Complex through P-P Condensation. Chemistry 2023; 29:e202301930. [PMID: 37489883 DOI: 10.1002/chem.202301930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
The reaction between diphosphorus derivatives [(Cl ImDipp )P2 (Dipp)]OTf (1[OTf]) and [(Cl ImDipp )P2 (Dipp)Cl] (1[Cl]) with the cyclotetraphosphido cobalt complex [K(18c-6)][(PHDI)Co(η4 -cyclo-P4 )] (2) leads to the formation of complex [(PHDI)Co{η4 -cyclo-P6 (Dipp)(Cl ImDipp )}] (3), which features an unusual hexaphosphido ligand [Cl ImDipp =4,5-dichloro-1,3-bis(2,6-diisopropylphenyl)imidazol-2-yl, Dipp=2,6-diisopropylphenyl, 18c-6=18-crown-6, PHDI=bis(2,6-diisopropylphenyl)phenanthrene-9,10-diimine]. Complex 3 was obtained as a crystalline material with a moderate yield at low temperature. Upon exposure to ambient temperature, compound 3 slowly transforms into two other compounds, [K(18c-6)][(PHDI)Co(η4 -P7 Dipp)] (4) and [(PHDI)Co{cyclo-P5 (Cl ImDipp )}] (5). The novel complexes 3-5 were characterized using multinuclear NMR spectroscopy and single-crystal X-ray diffraction. To shed light on the formation of these compounds, a proposed mechanism based on 31 P NMR monitoring studies is presented.
Collapse
Affiliation(s)
- Christian M Hoidn
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Karolina Trabitsch
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Kai Schwedtmann
- TU Dresden, Department of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Clemens Taube
- TU Dresden, Department of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Jan J Weigand
- TU Dresden, Department of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| |
Collapse
|
7
|
Riesinger C, Erhard A, Scheer M. Ring expansion vs. addition - reactivity of a cyclo-P 4 complex towards pnictogenium cations. Chem Commun (Camb) 2023; 59:10117-10120. [PMID: 37530455 DOI: 10.1039/d3cc03369d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A systematic study on the reactivity of the cyclo-P4 complexes [CpRTa(CO)2(η4-P4)] towards pnictogenium cations results in the formation of functionalised interpnictogen cations. Phosphenium ions insert into one of the P-P bonds to give ring-expanded cyclo-P5R2 products. In contrast, an arsenium-functionalised P4AsCy2 ligand displays an interesting borderline case between ring expansion and coordination, while stibenium cations afford addition products. Tuning of the steric and electronic properties of the stibenium ion shows a drastic influence on the reaction outcome.
Collapse
Affiliation(s)
- Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93053, Germany.
| | - Alexander Erhard
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93053, Germany.
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93053, Germany.
| |
Collapse
|
8
|
Haimerl M, Piesch M, Yadav R, Roesky PW, Scheer M. Reactivity of E 4 (E 4 =P 4 , As 4 , AsP 3 ) towards Low-Valent Al(I) and Ga(I) Compounds. Chemistry 2023; 29:e202202529. [PMID: 36173973 PMCID: PMC10100333 DOI: 10.1002/chem.202202529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/14/2023]
Abstract
The reactivity of yellow arsenic and the interpnictogen compound AsP3 towards low-valent group 13 compounds was investigated. The reactions of [LAl] (1, L=[{N(C6 H3 i Pr2 -2,6)C(Me)}2 CH]- ) with As4 and AsP3 lead to [(LAl)2 (μ,η1:1:1:1 -E4 )] (E4 =As4 (3 b), AsP3 (3 c)) by insertion of two fragments [LAl] into two of the six E-E edges of the E4 tetrahedra. Furthermore, the reaction of [LGa] (2) with E4 afforded [LGa(η1:1 -E4 )] (E4 =As4 (4 b), AsP3 (4 c)). In these compounds, only one E-E bond of the E4 tetrahedra was cleaved. These compounds represent the first examples of the conversion of yellow arsenic and AsP3 , respectively, with group 13 compounds. Furthermore, the reactivity of the gallium complexes towards unsaturated transition metal units or polypnictogen (En ) ligand complexes was investigated. This leads to the heterobimetallic compounds [(LGa)(μ,η2:1:1 -P4 )(LNi)] (5 a), [(Cp'''Co)(μ,η4:1:1 -E4 )(LGa)] (E=P (6 a), As (6 b), Cp'''=η5 -C5 H2 t Bu3 ) and [(Cp'''Ni)(η3:1:1 -E3 )(LGa)] (E=P (7 a), As (7 b)), which combine two different ligand systems in one complex (nacnac and Cp) as well as two different types of metals (main group and transition metals). The products were characterized by crystallographic and spectroscopic methods.
Collapse
Affiliation(s)
- Maria Haimerl
- Institute for Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Martin Piesch
- Institute for Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Ravi Yadav
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Peter W Roesky
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Manfred Scheer
- Institute for Inorganic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
9
|
Yang C, Jiang X, Chen Q, Leng X, Xiao J, Ye S, Deng L. Signet-Ring-Shaped Octaphosphorus–Cobalt Complexes: Synthesis, Structure, and Functionalization Reactions with Carbene Analogs. J Am Chem Soc 2022; 144:20785-20796. [DOI: 10.1021/jacs.2c08647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Chengbo Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xuebin Jiang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Xiao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Dalian 116023, China
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
10
|
Kuchkaev AM, Kuchkaev AM, Khayarov KR, Zueva EM, Dobrynin AB, Islamov DR, Yakhvarov DG. PNP Ligands in Cobalt‐Mediated Activation and Functionalization of White Phosphorus. Angew Chem Int Ed Engl 2022; 61:e202210973. [DOI: 10.1002/anie.202210973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Airat M. Kuchkaev
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS Arbuzov Street 8 Kazan 420088 Russian Federation
- Alexander Butlerov Institute of Chemistry Kazan Federal University Kremlyovskaya Street 18 Kazan 420008 Russian Federation
| | - Aidar M. Kuchkaev
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS Arbuzov Street 8 Kazan 420088 Russian Federation
- Alexander Butlerov Institute of Chemistry Kazan Federal University Kremlyovskaya Street 18 Kazan 420008 Russian Federation
| | - Khasan R. Khayarov
- Institute of Physics Kazan Federal University Kremlyovskaya Street 18 Kazan 420008 Russian Federation
| | - Ekaterina M. Zueva
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS Arbuzov Street 8 Kazan 420088 Russian Federation
- Department of Inorganic Chemistry Kazan National Research Technological University Karl Marx Street 68 Kazan 420015 Russian Federation
| | - Alexey B. Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS Arbuzov Street 8 Kazan 420088 Russian Federation
| | - Daut R. Islamov
- Laboratory for Structural Studies of Biomacromolecules FRC Kazan Scientific Center of RAS Lobachevskogo Street 2/31 Kazan 420111 Russian Federation
| | - Dmitry G. Yakhvarov
- Arbuzov Institute of Organic and Physical Chemistry FRC Kazan Scientific Center of RAS Arbuzov Street 8 Kazan 420088 Russian Federation
- Alexander Butlerov Institute of Chemistry Kazan Federal University Kremlyovskaya Street 18 Kazan 420008 Russian Federation
| |
Collapse
|
11
|
Nadurata VL, Hay MA, Janetzki JT, Gransbury GK, Boskovic C. Rich redox-activity and solvatochromism in a family of heteroleptic cobalt complexes. Dalton Trans 2021; 50:16631-16646. [PMID: 34752591 DOI: 10.1039/d1dt03327a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of redox-active metals with redox-active ligands can lead to interesting charge transfer behaviours, including valence tautomerism and solvatochromism. With the aim of investigating a relatively underexplored redox-active metal/redox-active ligand combination, complexes [CoII(acac)2(X-BIAN)] (acac- = acetylacetonate; X-BIAN = bis(4-X-phenyl)iminoacenaphthene; 1: X = -CF3, 2: X = -Cl, 3: X = -H, 4: X = -Me) and [CoIII(acac)2(Me-BIAN)]+ (5+) have been synthesised and characterised. At all temperatures investigated, and in both the solid and solution state, complexes 1-4 exist in a CoII-BIAN0 charge distribution, while 5+ adopts a CoIII-BIAN0 charge distribution. In the case of 1-4, the potential CoIII-BIAN˙- valence tautomer is inaccesible; the energy ordering between the ground CoII-BIAN0 state and the excited CoIII-BIAN˙- state must be reversed in order for an entropically driven interconversion to be possible. The energy gap between the states can be monitored via metal-to-ligand charge transfer bands in the visible region. We demonstrate tuning of this energy gap by varying the electronic properties of the BIAN ligand, as well as by controlling the molecular environment through solvent choice. Solvatochromic analysis, in combination with crystallographic evidence, allows elucidation of the specific solvent-solute interactions that govern the molecular behaviour of 1-4, affording insights that can inform potential future applications in sensing and switching.
Collapse
Affiliation(s)
- Vincent L Nadurata
- School of Chemistry, University of Melbourne, Melbourne, 3010 Victoria, Australia.
| | - Moya A Hay
- School of Chemistry, University of Melbourne, Melbourne, 3010 Victoria, Australia.
| | - Jett T Janetzki
- School of Chemistry, University of Melbourne, Melbourne, 3010 Victoria, Australia.
| | - Gemma K Gransbury
- School of Chemistry, University of Melbourne, Melbourne, 3010 Victoria, Australia.
| | - Colette Boskovic
- School of Chemistry, University of Melbourne, Melbourne, 3010 Victoria, Australia.
| |
Collapse
|
12
|
Riesinger C, Balázs G, Seidl M, Scheer M. Substituted aromatic pentaphosphole ligands - a journey across the p-block. Chem Sci 2021; 12:13037-13044. [PMID: 34745534 PMCID: PMC8513863 DOI: 10.1039/d1sc04296c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
The functionalization of pentaphosphaferrocene [Cp*Fe(η5-P5)] (1) with cationic group 13-17 electrophiles is shown to be a general synthetic strategy towards P-E bond formation of unprecedented diversity. The products of these reactions are dinuclear [{Cp*Fe}2{μ,η5:5-(P5)2EX2}][TEF] (EX2 = BBr2 (2), GaI2 (3), [TEF]- = [Al{OC(CF3)3}4]-) or mononuclear [Cp*Fe(η5-P5E)][X] (E = CH2Ph (4), CHPh2 (5), SiHPh2 (6), AsCy2 (7), SePh (9), TeMes (10), Cl (11), Br (12), I (13)) complexes of hetero-bis-pentaphosphole ((cyclo-P5)2R) or hetero-pentaphosphole ligands (cyclo-P5R), the aromatic all-phosphorus analogs of prototypical cyclopentadienes. Further, modifying the steric and electronic properties of the electrophile has a drastic impact on its reactivity and leads to the formation of [Cp*Fe(μ,η5:2-P5)SbICp'''][TEF] (8) which possesses a triple-decker-like structure. X-ray crystallographic characterization reveals the slightly twisted conformation of the cyclo-P5R ligands in these compounds and multinuclear NMR spectroscopy confirms their integrity in solution. DFT calculations shed light on the bonding situation of these compounds and confirm the aromatic character of the pentaphosphole ligands on a journey across the p-block.
Collapse
Affiliation(s)
- Christoph Riesinger
- Institute of Inorganic Chemistry, University of Regensburg 93040 Regensburg Germany
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg 93040 Regensburg Germany
| | - Michael Seidl
- Institute of Inorganic Chemistry, University of Regensburg 93040 Regensburg Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg 93040 Regensburg Germany
| |
Collapse
|
13
|
Giusti L, Landaeta VR, Vanni M, Kelly JA, Wolf R, Caporali M. Coordination chemistry of elemental phosphorus. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Piesch M, Reichl S, Seidl M, Balázs G, Scheer M. Synthese und mehrfache Folgereaktivität von anionischen
cyclo
‐E
3
‐Ligandkomplexen (E=P, As). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Martin Piesch
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Stephan Reichl
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Michael Seidl
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Gábor Balázs
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Manfred Scheer
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| |
Collapse
|
15
|
Piesch M, Reichl S, Seidl M, Balázs G, Scheer M. Synthesis and Multiple Subsequent Reactivity of Anionic cyclo-E 3 Ligand Complexes (E=P, As). Angew Chem Int Ed Engl 2021; 60:15101-15108. [PMID: 33961722 PMCID: PMC8251822 DOI: 10.1002/anie.202103683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 12/14/2022]
Abstract
A synthetic pathway for the synthesis of novel anionic sandwich complexes with a cyclo-E3 (E=P, As) ligand as an end deck was developed giving [Cp'''Co(η3 -E3 )]- (Cp'''=1,2,4-tri-tert-butylcyclopentadienyl, E=P ([5]), As ([6])) in good yields suitable for further reactivity studies. In the reaction with the chlorophosphanes R2 PCl (R=Ph, Cy, t Bu), neutral complexes with a disubstituted cyclo-E3 P (E=P, As) ligand in [Cp'''Co(η3 -E3 PR2 )] (E=P (7 a-c), As (9 a-c)) were obtained. These compounds can be partially or completely converted into complexes with a cyclo-E3 (E=P, As) ligand with an exocyclic {PR2 } unit in [Cp'''Co(η2 :η1 -E3 PR2 )] (E=P (8 a-c), As (10 a-c)). Additionally, the insertion of the chlorosilylene [LSiCl] (L=(t BuN)2 CPh) into the cyclo-E3 ligand of [5] and [6] was achieved and the novel heteroatomic complexes [Cp'''Co(η3 -E3 SiL)] (E=P (11), As (12)) could be isolated. The reaction pathway was elucidated by DFT calculations.
Collapse
Affiliation(s)
- Martin Piesch
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Stephan Reichl
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Michael Seidl
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Gábor Balázs
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| | - Manfred Scheer
- Institut für Anorganische ChemieUniversität Regensburg93040RegensburgGermany
| |
Collapse
|
16
|
Hoidn CM, Scott DJ, Wolf R. Transition-Metal-Mediated Functionalization of White Phosphorus. Chemistry 2021; 27:1886-1902. [PMID: 33135828 PMCID: PMC7894350 DOI: 10.1002/chem.202001854] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Recently there has been great interest in the reactivity of transition-metal (TM) centers towards white phosphorus (P4 ). This has ultimately been motivated by a desire to find TM-mediated alternatives to the current industrial routes used to transform P4 into myriad useful P-containing products, which are typically indirect, wasteful, and highly hazardous. Such a TM-mediated process can be divided into two steps: activation of P4 to generate a polyphosphorus complex TM-Pn , and subsequent functionalization of this complex to release the desired phosphorus-containing product. The former step has by now become well established, allowing the isolation of many different TM-Pn products. In contrast, productive functionalization of these complexes has proven extremely challenging and has been achieved only in a relative handful of cases. In this review we provide a comprehensive summary of successful TM-Pn functionalization reactions, where TM-Pn must be accessible by reaction of a TM precursor with P4 . We hope that this will provide a useful resource for continuing efforts that are working towards this highly challenging goal of modern synthetic chemistry.
Collapse
Affiliation(s)
- Christian M. Hoidn
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| | - Daniel J. Scott
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| | - Robert Wolf
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| |
Collapse
|
17
|
Müller J, Balázs G, Scheer M. From a P 4 butterfly scaffold to cyclo- and catena-P 4 units. Chem Commun (Camb) 2021; 57:2257-2260. [PMID: 33529292 DOI: 10.1039/d0cc08328c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The reactivity of [{Cp'''Fe(CO)2}2(μ,η1 : 1-P4)] (1) towards half-sandwich complexes of Ru(ii), Rh(iii), and Ir(iii) is studied. The coordination of these Lewis acids leads to a rearrangement of the P4 butterfly unit to form complexes with either an aromatic cyclo-P4R2 unit (R = Cp'''Fe(CO)2) or a catena-tetraphosphaene entity.
Collapse
Affiliation(s)
- Julian Müller
- Institut für Anorganische Chemie, Universität Regensburg, Regensburg 93040, Germany.
| | - Gábor Balázs
- Institut für Anorganische Chemie, Universität Regensburg, Regensburg 93040, Germany.
| | - Manfred Scheer
- Institut für Anorganische Chemie, Universität Regensburg, Regensburg 93040, Germany.
| |
Collapse
|
18
|
Riesinger C, Balázs G, Bodensteiner M, Scheer M. Stabilization of Pentaphospholes as η 5 -Coordinating Ligands. Angew Chem Int Ed Engl 2020; 59:23879-23884. [PMID: 32956573 PMCID: PMC7814675 DOI: 10.1002/anie.202011571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 12/15/2022]
Abstract
Electrophilic functionalisation of [Cp*Fe(η5 -P5 )] (1) yields the first transition-metal complexes of pentaphospholes (cyclo-P5 R). Silylation of 1 with [(Et3 Si)2 (μ-H)][B(C6 F5 )4 ] leads to the ionic species [Cp*Fe(η5 -P5 SiEt3 )][B(C6 F5 )4 ] (2), whose subsequent reaction with H2 O yields the parent compound [Cp*Fe(η5 -P5 H)][B(C6 F5 )4 ] (3). The synthesis of a carbon-substituted derivative [Cp*Fe(η5 -P5 Me)][X] ([X]- =[FB(C6 F5 )3 ]- (4 a), [B(C6 F5 )4 ]- (4 b)) is achieved by methylation of 1 employing [Me3 O][BF4 ] and B(C6 F5 )3 or a combination of MeOTf and [Li(OEt2 )2 ][B(C6 F5 )4 ]. The structural characterisation of these compounds reveals a slight envelope structure for the cyclo-P5 R ligand. Detailed NMR-spectroscopic studies suggest a highly dynamic behaviour and thus a distinct lability for 2 and 3 in solution. DFT calculations shed light on the electronic structure and bonding situation of this unprecedented class of compounds.
Collapse
Affiliation(s)
- Christoph Riesinger
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | | | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
19
|
Riesinger C, Balázs G, Bodensteiner M, Scheer M. Stabilisierung von Pentaphospholen als η
5
‐koordinierende Liganden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christoph Riesinger
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Gábor Balázs
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Michael Bodensteiner
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| | - Manfred Scheer
- Institut für Anorganische Chemie Universität Regensburg 93040 Regensburg Deutschland
| |
Collapse
|
20
|
Riesinger C, Dütsch L, Balázs G, Bodensteiner M, Scheer M. Cationic Functionalisation by Phosphenium Ion Insertion. Chemistry 2020; 26:17165-17170. [PMID: 32996637 PMCID: PMC7839539 DOI: 10.1002/chem.202003291] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Indexed: 12/12/2022]
Abstract
The reaction of [Cp'''Ni(η3 -P3 )] (1) with in situ generated phosphenium ions [RR'P]+ yields the unprecedented polyphosphorus cations of the type [Cp'''Ni(η3 -P4 R2 )][X] (R=Ph (2 a), Mes (2 b), Cy (2 c), 2,2'-biphen (2 d), Me (2 e); [X]- =[OTf]- , [SbF6 ]- , [GaCl4 ]- , [BArF ]- , [TEF]- ) and [Cp'''Ni(η3 -P4 RCl)][TEF] (R=Ph (2 f), tBu (2 g)). In the reaction of 1 with [Br2 P]+ , an analogous compound is observed only as an intermediate and the final product is an unexpected dinuclear complex [{Cp'''Ni}2 (μ,η3 :η1 :η1 -P4 Br3 )][TEF] (3 a). A similar product [{Cp'''Ni}2 (μ,η3 :η1 :η1 -P4 (2,2'-biphen)Cl)][GaCl4 ] (3 b) is obtained, when 2 d[GaCl4 ] is kept in solution for prolonged times. Although the central structural motif of 2 a-g consists of a "butterfly-like" folded P4 ring attached to a {Cp'''Ni} fragment, the structures of 3 a and 3 b exhibit a unique asymmetrically substituted and distorted P4 chain stabilised by two {Cp'''Ni} fragments. Additional DFT calculations shed light on the reaction pathway for the formation of 2 a-2 g and the bonding situation in 3 a.
Collapse
Affiliation(s)
- Christoph Riesinger
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Luis Dütsch
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Gábor Balázs
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | | | - Manfred Scheer
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
21
|
Yadav R, Simler T, Reichl S, Goswami B, Schoo C, Köppe R, Scheer M, Roesky PW. Highly Selective Substitution and Insertion Reactions of Silylenes in a Metal-Coordinated Polyphosphide. J Am Chem Soc 2019; 142:1190-1195. [DOI: 10.1021/jacs.9b12151] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ravi Yadav
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Thomas Simler
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Stephan Reichl
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Bhupendra Goswami
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Christoph Schoo
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Ralf Köppe
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Peter W. Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| |
Collapse
|
22
|
Hoidn CM, Maier TM, Trabitsch K, Weigand JJ, Wolf R. [3+2] Fragmentation of a Pentaphosphido Ligand by Cyanide. Angew Chem Int Ed Engl 2019; 58:18931-18936. [PMID: 31573718 PMCID: PMC6972699 DOI: 10.1002/anie.201908744] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Indexed: 11/30/2022]
Abstract
The activation of white phosphorus (P4 ) by transition-metal complexes has been studied for several decades, but the functionalization and release of the resulting (organo)phosphorus ligands has rarely been achieved. Herein we describe the formation of rare diphosphan-1-ide anions from a P5 ligand by treatment with cyanide. Cobalt diorganopentaphosphido complexes have been synthesized by a stepwise reaction sequence involving a low-valent diimine cobalt complex, white phosphorus, and diorganochlorophosphanes. The reactions of the complexes with tetraalkylammonium or potassium cyanide afford a cyclotriphosphido cobaltate anion 5 and 1-cyanodiphosphan-1-ide anions [R2 PPCN]- (6-R). The molecular structure of a related product 7 suggests a novel reaction mechanism, where coordination of the cyanide anion to the cobalt center induces a ligand rearrangement. This is followed by nucleophilic attack of a second cyanide anion at a phosphorus atom and release of the P2 fragment.
Collapse
Affiliation(s)
- Christian M. Hoidn
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| | - Thomas M. Maier
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| | - Karolina Trabitsch
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| | - Jan J. Weigand
- TU DresdenFaculty of Chemistry and Food Chemistry01062DresdenGermany
| | - Robert Wolf
- University of RegensburgInstitute of Inorganic Chemistry93040RegensburgGermany
| |
Collapse
|
23
|
Adhikari AK, Ziegler CGP, Schwedtmann K, Taube C, Weigand JJ, Wolf R. Functionalization of Pentaphosphorus Cations by Complexation. Angew Chem Int Ed Engl 2019; 58:18584-18590. [PMID: 31559678 PMCID: PMC6916545 DOI: 10.1002/anie.201908998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/24/2019] [Indexed: 12/27/2022]
Abstract
The chemistry of polyphosphorus cations has rapidly developed in recent years, but their coordination behavior has remained mostly unexplored. Herein, we describe the reactivity of [P5 R2 ]+ cations with cyclopentadienyl metal complexes. The reaction of [CpAr Fe(μ-Br)]2 (CpAr =C5 (C6 H4 -4-Et)5 ) with [P5 R2 ][GaCl4 ] (R=iPr and 2,4,6-Me3 C6 H2 (Mes)) afforded bicyclo[1.1.0]pentaphosphanes (1-R, R=iPr and Mes), showing an unsymmetric "butterfly" structure. The same products 1-R were formed from K[CpAr ] and [P5 R2 ][GaCl4 ]. The cationic complexes [CpAr Co(η4 -P5 R2 )][GaCl4 ] (2-R[GaCl4 ], R=iPr and Cy) and [(CpAr Ni)2 (η3:3 -P5 R2 )][GaCl4 ] (3-R[GaCl4 ]) were obtained from [P5 R2 ][GaCl4 ] and [CpAr M(μ-Br)]2 (M=Co and Ni) as well as by using low-valent "CpAr MI " sources. Anion metathesis of 2-R[GaCl4 ] and 3-R[GaCl4 ] was achieved with Na[BArF24 ]. The P5 framework of the resulting salts 2-R[BArF24 ] can be further functionalized with nucleophiles. Thus reactions with [Et4 N]X (X=CN and Cl) give unprecedented cyano- and chloro-functionalized complexes, while organo-functionalization was achieved with CyMgCl.
Collapse
Affiliation(s)
- Anup K. Adhikari
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | | | - Kai Schwedtmann
- Faculty of Chemistry and Food ChemistryTU Dresden01062DresdenGermany
| | - Clemens Taube
- Faculty of Chemistry and Food ChemistryTU Dresden01062DresdenGermany
| | - Jan. J. Weigand
- Faculty of Chemistry and Food ChemistryTU Dresden01062DresdenGermany
| | - Robert Wolf
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
24
|
Adhikari AK, Ziegler CGP, Schwedtmann K, Taube C, Weigand JJ, Wolf R. Functionalization of Pentaphosphorus Cations by Complexation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Anup K. Adhikari
- Institute of Inorganic ChemistryUniversity of Regensburg 93040 Regensburg Germany
| | | | - Kai Schwedtmann
- Faculty of Chemistry and Food ChemistryTU Dresden 01062 Dresden Germany
| | - Clemens Taube
- Faculty of Chemistry and Food ChemistryTU Dresden 01062 Dresden Germany
| | - Jan. J. Weigand
- Faculty of Chemistry and Food ChemistryTU Dresden 01062 Dresden Germany
| | - Robert Wolf
- Institute of Inorganic ChemistryUniversity of Regensburg 93040 Regensburg Germany
| |
Collapse
|
25
|
Maier TM, Coburger P, van Leest NP, Hey-Hawkins E, Wolf R. Direct synthesis of an anionic 13-vertex closo-cobaltacarborane cluster. Dalton Trans 2019; 48:15772-15777. [PMID: 31612881 DOI: 10.1039/c9dt03111a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reaction of 1,2-bis(diphenylphosphino)-ortho-carborane (L) with [K(thf){(MesBIAN)Co(η4-cod)}] (1, MesBIAN = bis(mesityliminoace-naphthene)diimine, cod = 1,5-cyclooctadiene) affords an anionic 13-vertex closo-cobaltacarborane cluster (2) in one step. The mechanism of this transformation has been studied by experimental and quantum chemical techniques, which suggest that a series of outer-sphere electron transfer and isomerisation processes occurs. This work shows that low-valent metalate anions are promising reagents for the synthesis of anionic metallacarborane clusters.
Collapse
Affiliation(s)
- Thomas M Maier
- University of Regensburg, Institute of Inorganic Chemistry, 93040 Regensburg, Germany.
| | - Peter Coburger
- University of Regensburg, Institute of Inorganic Chemistry, 93040 Regensburg, Germany. and Leipzig University, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Nicolaas P van Leest
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UvA) Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Evamarie Hey-Hawkins
- Leipzig University, Institute of Inorganic Chemistry, Johannisallee 29, 04103 Leipzig, Germany.
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040 Regensburg, Germany.
| |
Collapse
|
26
|
Hoidn CM, Maier TM, Trabitsch K, Weigand JJ, Wolf R. [3+2]‐Fragmentierung von Pentaphosphidoliganden durch Cyanid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian M. Hoidn
- Universität Regensburg Institut für Anorganische Chemie 93040 Regensburg Deutschland
| | - Thomas M. Maier
- Universität Regensburg Institut für Anorganische Chemie 93040 Regensburg Deutschland
| | - Karolina Trabitsch
- Universität Regensburg Institut für Anorganische Chemie 93040 Regensburg Deutschland
| | - Jan J. Weigand
- TU Dresden Fakultät für Chemie und Lebensmittelchemie 01062 Dresden Deutschland
| | - Robert Wolf
- Universität Regensburg Institut für Anorganische Chemie 93040 Regensburg Deutschland
| |
Collapse
|
27
|
Sandl S, Maier TM, van Leest NP, Kröncke S, Chakraborty U, Demeshko S, Koszinowski K, de Bruin B, Meyer F, Bodensteiner M, Herrmann C, Wolf R, Jacobi von Wangelin A. Cobalt-Catalyzed Hydrogenations via Olefin Cobaltate and Hydride Intermediates. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01584] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Sandl
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Thomas M. Maier
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Nicolaas P. van Leest
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Susanne Kröncke
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Uttam Chakraborty
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Konrad Koszinowski
- Institute of Organic and Biomolecular Chemistry, Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany
| | - Bas de Bruin
- van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Franc Meyer
- Institute of Inorganic Chemistry, Universität Göttingen, Tammannstrasse 4, 37077 Göttingen, Germany
| | - Michael Bodensteiner
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Carmen Herrmann
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | | |
Collapse
|
28
|
Piesch M, Seidl M, Stubenhofer M, Scheer M. Ring Expansions of Nonpolar Polyphosphorus Rings. Chemistry 2019; 25:6311-6316. [PMID: 30882943 DOI: 10.1002/chem.201901149] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 11/08/2022]
Abstract
The reaction of the phosphinidene complex [Cp*P{W(CO)5 }2 ] (1 a) (Cp*=C5 Me5 ) with the anionic cyclo-Pn ligand complex [(η3 -P3 )Nb(ODipp)3 ]- (2, Dipp=2,6-diisopropylphenyl) resulted in the formation of [{W(CO)5 }2 {μ3 ,η3:1:1 -P4 Cp*}Nb(ODipp)3 ]- (3), which represents an unprecedented example of a ring expansion of a polyphosphorus-ligand complex initiated by a phosphinidene complex. Furthermore, the reaction of the pnictinidene complexes [Cp*E{W(CO)5 }2 ] (E=P: 1 a, As: 1 b) with the neutral complex [Cp'''Co(η4 -P4 )] (Cp'''=1,2,4-tBu3 C5 H2 ) led to a cyclo-P4 E ring (E=P, As) through the insertion of the pentel atom into the cyclo-P4 ligand. Starting from 1 a, the two isomers [Cp'''Co(μ3 ,η4:1:1 -P5 Cp*){W(CO)5 }2 ] (5 a,b), and from 1 b, the three isomers [Cp'''Co(μ3 ,η4:1:1 -AsP4 Cp*){W(CO)5 }2 ] (6 a-c) with unprecedented cyclo-P4 E ligands (E=P, As) were isolated. The complexes 6 a-c represent unique examples of ring expansions which lead to new mixed five-membered cyclo-P4 As ligands. The possible reaction pathways for the formation of 5 a,b and 6 a-c were investigated by a combination of temperature-dependent 31 P{1 H} NMR studies and DFT calculations.
Collapse
Affiliation(s)
- Martin Piesch
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Michael Seidl
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Markus Stubenhofer
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|