1
|
Jahan MN, Alam MA, Rahman MM, Hoque SM, Ahmad H. Mesoporous Fe 3O 4/SiO 2/poly(2-carboxyethyl acrylate) composite polymer particles for pH-responsive loading and targeted release of bioactive molecules. RSC Adv 2024; 14:23560-23573. [PMID: 39071478 PMCID: PMC11276395 DOI: 10.1039/d4ra03160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
pH-responsive polymer microspheres undergoing reversible changes in their surface properties have been proved useful for drug delivery to targeted sites. This paper is aimed at preparing pH-responsive polymer-modified magnetic mesoporous SiO2 particles. First, mesoporous magnetic (Fe3O4) core-particles are prepared using a one-pot solvothermal method. Then, magnetic Fe3O4 particles are covered with a C[double bond, length as m-dash]C functional mesoporous SiO2 layer before seeded emulsion polymerization of 2-carboxyethyl acrylate (2-CEA). The composite polymer particles are named Fe3O4/SiO2/P(2-CEA). The average diameters of the Fe3O4 core and Fe3O4/SiO2/P(2-CEA) composite polymer particles are 414 and 595 nm, respectively. The mesoporous (pore diameter = 3.41 nm) structure of Fe3O4/SiO2/P(2-CEA) composite polymer particles is confirmed from Brunauer-Emmett-Teller (BET) surface analysis. The synthesized Fe3O4/SiO2/P(2-CEA) composite polymer exhibited pH-dependent changes in volume and surface charge density due to deprotonation of the carboxyl group under alkaline pH conditions. The change in the surface properties of Fe3O4/SiO2/P(2-CEA) composite polymer particles following pH change is confirmed from the pH-dependent sorption of cationic methylene blue (MB) and anionic methyl orange (MO) dye molecules. The opening of the pH-responsive P(2-CEA) gate valve at pH 10.0 allowed the release of loaded vancomycin up to 99% after 165 min and p-acetamido phenol (p-AP) up to 46% after 225 min. Comparatively, the amount of release is lower at pH 8.0 but still suitable for drug delivery applications. These results suggested that the mesoporous Fe3O4/SiO2 composite seed acted as a microcapsule, while P(2-CEA) functioned as a gate valve across the porous channel. The prepared composite polymer can therefore be useful for treating intestine/colon cancer, where the pH is comparatively alkaline.
Collapse
Affiliation(s)
- Most Nusrat Jahan
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Ashraful Alam
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| | - Md Mahabur Rahman
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
- Department of Chemistry, Pabna University of Science and Technology 6600 Pabna Bangladesh
| | - S Manjura Hoque
- Materials Science Division, Bangladesh Atomic Energy Commission Dhaka Bangladesh
| | - Hasan Ahmad
- Department of Chemistry, Research Laboratory of Polymer Colloids and Nanomaterials, Rajshahi University Rajshahi 6205 Bangladesh
| |
Collapse
|
2
|
Khademi R, Kharaziha M. Antibacterial and Osteogenic Doxycycline Imprinted Bioglass Microspheres to Combat Bone Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31966-31982. [PMID: 38829697 DOI: 10.1021/acsami.4c03501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Currently, postoperative infection is a significant challenge in bone and dental surgical procedures, demanding the exploration of innovative approaches due to the prevalence of antibiotic-resistant bacteria. This study aims to develop a strategy for controlled and smart antibiotic release while accelerating osteogenesis to expedite bone healing. In this regard, temperature-responsive doxycycline (DOX) imprinted bioglass microspheres (BGMs) were synthesized. Following the formation of chitosan-modified BGMs, poly N-isopropylacrylamide (pNIPAm) was used for surface imprinting of DOX. The temperature-responsive molecularly imprinted polymers (MIPs) exhibited pH and temperature dual-responsive adsorption and controlled-release properties for DOX. The temperature-responsive MIP was optimized by investigating the molar ratio of N,N'-methylene bis(acrylamide) (MBA, the cross-linker) to NIPAm. Our results demonstrated that the MIPs showed superior adsorption capacity (96.85 mg/g at 35 °C, pH = 7) than nonimprinted polymers (NIPs) and manifested a favorable selectivity toward DOX. The adsorption behavior of DOX on the MIPs fit well with the Langmuir model and the pseudo-second-order kinetic model. Drug release studies demonstrated a controlled release of DOX due to imprinted cavities, which were fitted with the Korsmeyer-Peppas kinetic model. DOX-imprinted BGMs also revealed comparable antibacterial effects against Staphylococcus aureus and Escherichia coli to the DOX (control). In addition, MIPs promoted viability and osteogenic differentiation of MG63 osteoblast-like cells. Overall, the findings demonstrate the significant potential of DOX-imprinted BGMs for use in bone defects. Nonetheless, further in vitro investigations and subsequent in vivo experiments are warranted to advance this research.
Collapse
Affiliation(s)
- Reihaneh Khademi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
3
|
Huang L, Jiang G. Photothermal controlled-release microcapsule pesticide delivery systems constructed with sodium lignosulfonate and transition metal ions: construction, efficacy and on-demand pesticide delivery. PEST MANAGEMENT SCIENCE 2024; 80:2827-2838. [PMID: 38329149 DOI: 10.1002/ps.7991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Widespread application of controlled-release pesticide delivery systems is a feasible and effective method to improve the utilization efficiency of pesticides. However, owing to the high cost and complicated preparation technologies of controlled-release pesticide delivery systems, their applications in agricultural production have been seriously hindered. RESULTS This study aimed to construct inexpensive photothermally controlled-release pesticide delivery systems using chitosan (CS) and sodium lignosulfonate (LS) as the wall materials, and a coordination assembly strategy of LS with transition metal ions to encapsulate a model pesticide, avermectin (AVM). The resulting complex or nanoparticle photothermal layers in these systems effectively achieved photothermal conversions, and replaced the use of common photothermal agents. In the prepared pesticide-delivery systems, two systems had remarkable photothermal conversion performance and photothermal stabilities with a photothermal conversion efficiency (η) of 24.03% and 28.82%, respectively, under 808 nm, 2 W near-infrared irradiation. The slow-release and ultraviolet-shielding performance of these two systems were markedly enhanced compared with other formulations. The insecticidal activities of these two systems against Plutella xylostella under irradiation with light-emitting diode (LED)-simulated sunlight were also enhanced by 5.20- and 5.06-fold, respectively, compared with that without irradiation of LED-simulated sunlight. CONCLUSION Because of their convenient preparations, inexpensive and renewable raw materials, and excellent photothermally controlled-release performance, these on-demand pesticide delivery systems might have significant potential in improving the utilization efficiency of pesticides in modern agriculture. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingling Huang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
| | - Guangqi Jiang
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, P. R. China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
4
|
Liu C, Wei L, Qin W, Gu Y, Jia X. Fluorinated polyether-coated Fe 3O 4-functionalized oxidized carbon nanotubes as a recyclable demulsifier for crude oil emulsion treatment. RSC Adv 2024; 14:2862-2872. [PMID: 38239444 PMCID: PMC10792616 DOI: 10.1039/d3ra06796c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/27/2023] [Indexed: 01/22/2024] Open
Abstract
Based on the excellent adsorption properties of carbon materials, a new magnetic nanodemulsifier was prepared in this study. First, carbon nanotubes were oxidized using a solvothermal method. Then, Fe3O4 was combined with oxidized carbon nanotubes using a one-pot method, and then grafted onto fluorine-containing polyether to prepare a magnetic composite demulsifier (Fe3O4@C-F) with good demulsification properties. The surface morphology of the composite demulsifier was analyzed using scanning electron microscopy (SEM). The structure of the composite demulsifier was characterized using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectrometry (XPS). The stability of the composite demulsifier was characterized using thermogravimetric analysis (TGA). Results showed that the oxidized carbon nanotubes and fluorinated polyether were successfully attached to Fe3O4. The experimental objective was to obtain a self-made crude oil emulsion. The demulsification test and recovery performance test were then performed, and the main factors affecting the demulsification performance of the demulsifier were investigated. Results showed that when the dosage was 800 mg L-1, the temperature was 65 °C, the demulsification time was 90 min, and the pH value was 6. The demulsification effect of the Fe3O4@C-F magnetic composite demulsifier was the best, whereby the demulsification rate could reach 91.68%, and the oil-water interface was clear. Fe3O4@C-F had a magnetic response and could be recycled from the two-phase system six times under the action of an external magnetic field. Fe3O4@C-F is an efficient and environmentally friendly demulsifier that has important application value for enriching demulsification technology systems.
Collapse
Affiliation(s)
- Chao Liu
- College of Petroleum Engineering, Northeast Petroleum University Daqing 163318 China
| | - Lixin Wei
- College of Petroleum Engineering, Northeast Petroleum University Daqing 163318 China
| | - Weining Qin
- College of Petroleum Engineering, Northeast Petroleum University Daqing 163318 China
| | - Yuxin Gu
- College of Petroleum Engineering, Northeast Petroleum University Daqing 163318 China
| | - Xinlei Jia
- College of Petroleum Engineering, Northeast Petroleum University Daqing 163318 China
- Department of Chemical Engineering and Safety, Binzhou University Binzhou 256603 China
| |
Collapse
|
5
|
Mahamud MA, Galib ASMM, Islam MM, Mahiuddin M, Rahman MA, Rahman MM, Islam MS, Ahmad H, Alam MA. Capturing Acidic CO 2 Using Surface-Active Difunctional Core-Shell Composite Polymer Particles via an Aqueous Medium. ACS OMEGA 2023; 8:44523-44536. [PMID: 38046345 PMCID: PMC10688213 DOI: 10.1021/acsomega.3c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 12/05/2023]
Abstract
Multifunctional surface-active polymeric composites are attractive materials for the adsorption of various small molecules. Herein, dual-functionalized micron-sized surface-active composite polymer particles were prepared by a three-step process for CO2 adsorption. First, polystyrene (PS) seed particles were prepared via the dispersion polymerization of styrene. PS/P(MMA-AAm-EGDMA) composite polymer particles were then synthesized by aqueous seeded copolymerization of methyl methacrylate (MMA) and acrylamide (AAm) in the presence of an ethylene glycol dimethacrylate (EGDMA) cross-linker. Finally, the amide moieties of PS/P(MMA-AAm-EGDMA) composite particles were converted into an amine-functionalized composite by using the Hofmann degradation reaction. The presence of primary amine groups on the surface of aminated composite particles was confirmed by some conventional chemical routes, such as diazotization and Schiff's base formation reactions. The formation and functionality of the PS seed, PS/P(MMA-AAm-EGDMA), and aminated PS/P(MMA-AAm-EGDMA) composite polymer particles were confirmed by Fourier transform infrared (FTIR) spectra analyses. Scanning electron microscopy (SEM) analysis revealed spherical shape, size, and surface morphologies of the PS seed, reference composite, and aminated composites. The elemental surface compositions, surface porosity, pore volume, pore diameter, and surface area of both composite particles were evaluated by energy-dispersive X-ray (EDX) mapping, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) analyses. Dynamic light scattering (DLS) and ζ-potential measurements confirmed the pH-dependent surface properties of the functionalized particles. The amount of the adsorbed anionic emulsifier, sodium dodecyl sulfate (SDS), on the surface of aminated PS/P(MMA-AAm-EGDMA) is higher at pH 4 than that at pH 10. A vice versa result was found in the case of cationic surfactant, hexadecyltrimethylammonium bromide (HTABr), adsorption. Synthesized aminated composite particles were used as an adsorbent for CO2 adsorption via bubbling CO2 in an aqueous medium. The changes in dispersion pH were monitored continuously during the adsorption of CO2 under various conditions. The amount of CO2 adsorption by aminated composite particles was found to be 209 mg/g, which is almost double that of reference composite particles.
Collapse
Affiliation(s)
- M. Asheq Mahamud
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - A. S. M. Maruf Galib
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md. Muhyminul Islam
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | | | - Md. Abdur Rahman
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md. Mahbubor Rahman
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md. Shahidul Islam
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Hasan Ahmad
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| | - Md. Ashraful Alam
- Research
Laboratory of Polymer Colloids and Nanomaterials, Department of Chemistry,
Faculty of Science, Rajshahi University, Rajshahi 6205, Bangladesh
| |
Collapse
|
6
|
Chen H, Qiu X, Xia T, Li Q, Wen Z, Huang B, Li Y. Mesoporous Materials Make Hydrogels More Powerful in Biomedicine. Gels 2023; 9:gels9030207. [PMID: 36975656 PMCID: PMC10048667 DOI: 10.3390/gels9030207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/12/2023] Open
Abstract
Scientists have been attempting to improve the properties of mesoporous materials and expand their application since the 1990s, and the combination with hydrogels, macromolecular biological materials, is one of the research focuses currently. Uniform mesoporous structure, high specific surface area, good biocompatibility, and biodegradability make the combined use of mesoporous materials more suitable for the sustained release of loaded drugs than single hydrogels. As a joint result, they can achieve tumor targeting, tumor environment stimulation responsiveness, and multiple therapeutic platforms such as photothermal therapy and photodynamic therapy. Due to the photothermal conversion ability, mesoporous materials can significantly improve the antibacterial ability of hydrogels and offer a novel photocatalytic antibacterial mode. In bone repair systems, mesoporous materials remarkably strengthen the mineralization and mechanical properties of hydrogels, aside from being used as drug carriers to load and release various bioactivators to promote osteogenesis. In hemostasis, mesoporous materials greatly elevate the water absorption rate of hydrogels, enhance the mechanical strength of the blood clot, and dramatically shorten the bleeding time. As for wound healing and tissue regeneration, incorporating mesoporous materials can be promising for enhancing vessel formation and cell proliferation of hydrogels. In this paper, we introduce the classification and preparation methods of mesoporous material-loaded composite hydrogels and highlight the applications of composite hydrogels in drug delivery, tumor therapy, antibacterial treatment, osteogenesis, hemostasis, and wound healing. We also summarize the latest research progress and point out future research directions. After searching, no research reporting these contents was found.
Collapse
Affiliation(s)
- Huangqin Chen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Qiu
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Tian Xia
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Qing Li
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhehan Wen
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Bin Huang
- Department of Stomatology, School of Stomatology and Ophthalmology, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (B.H.); (Y.L.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China
- Correspondence: (B.H.); (Y.L.)
| |
Collapse
|
7
|
Facile one-step synthesis of poly(styrene-glycidyl methacrylate)-Fe3O4 nanocomposite particles and application potency in glucose biosensors. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
8
|
Mao B, Liu C, Cui X, Li Y, Duan Q. Thermo-Responsive ZnPc-g-TiO2-g-PNIPAM Photocatalysts Sensitized with Phthalocyanines for Water Purification under Visible Light. Molecules 2022; 27:molecules27103330. [PMID: 35630806 PMCID: PMC9143362 DOI: 10.3390/molecules27103330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
A novel thermo-responsive 2,9(10),16(17),23(24)-tetrakis[(3-carboxyacrylamide) phthalocyaninato] zinc (ZnPc)-g-TiO2-g-poly(N-isopropylacrylamide) (PNIPAM) photocatalyst modified with phthalocyanines was prepared. The photocatalyst exhibited thermo-responsive properties due to the introduction of PNIPAM, which performed recovery for reuse above the lower critical solution temperature (LCST, about 26 °C). ZnPc-g-TiO2-g-PNIPAM effectively expanded the light response range to the visible light region and inhibited the recombination of electron–hole pairs, which enhanced the performance of the photocatalyst. As expected, ZnPc-g-TiO2-g-PNIPAM (0.3 g/L) exhibited excellent photocatalytic performance for the removal of Rhodamine B (RhB, 1.0 × 10−5 mol/L) and methylene blue (MB, 1.0 × 10−5 mol/L) under visible light, which reached 97.2% and 88.6% at 20 °C within 40 min, respectively. Furthermore, the influence of temperature upon photocatalytic performance was also investigated. When the temperature increased from 20 °C to 45 °C, the removal of RhB decreased by approximately 53.8%. The stability of the photocatalyst demonstrated that the photocatalytic activity was still above 80% for the removal of RhB after 3 cycles. Above all, this work provided an intelligent thermally responsive photocatalyst based on phthalocyanine for water purification under visible light.
Collapse
Affiliation(s)
- Bingxin Mao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; (B.M.); (C.L.); (Y.L.)
| | - Cong Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; (B.M.); (C.L.); (Y.L.)
| | - Xu Cui
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; (B.M.); (C.L.); (Y.L.)
- Correspondence: (X.C.); (Q.D.); Tel./Fax: +86-431-8558-3015 (Q.D.)
| | - Yanhui Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; (B.M.); (C.L.); (Y.L.)
| | - Qian Duan
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, China; (B.M.); (C.L.); (Y.L.)
- Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, China
- Correspondence: (X.C.); (Q.D.); Tel./Fax: +86-431-8558-3015 (Q.D.)
| |
Collapse
|
9
|
Han JS, An GS. Preparation of Dual-Layered Core-Shell Fe 3O 4@SiO 2 Nanoparticles and Their Properties of Plasmid DNA Purification. NANOMATERIALS 2021; 11:nano11123422. [PMID: 34947771 PMCID: PMC8706465 DOI: 10.3390/nano11123422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022]
Abstract
The rapid purification of biomaterials such as DNA, RNA, and antibodies has attracted extensive attention, and research interest has increased further with the COVID-19 pandemic. In particular, core–shell-structured superparamagnetic nanoparticles have been continuously studied for their application as biopurification materials. It has been reported that Fe3O4@SiO2 nanoparticles are one of the most promising candidates for separating nucleic acids via a simple and rapid process. This study proposed a fabrication method for dual-layered Fe3O4@SiO2 nanoparticles, in which the density of the SiO2 shell was controlled using an intermediate surfactant during the SiO2 coating. After the fabrication of dual-layered Fe3O4@SiO2 nanoparticles, structural, morphological, and magnetic analyses were conducted. The results showed that the Fe3O4 nanoparticles were surrounded by a dense layer 15.6~27.9 nm thick and a porous layer 24.2~44.4 nm thick, and had superparamagnetic properties with high saturated magnetization at room temperature (86.9 emu/g). Then, the optimal conditions for the biopurification material were suggested based on analysis of the selective separation of plasmid DNA.
Collapse
Affiliation(s)
- Jin Soon Han
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Gye Seok An
- Department of Advanced Material Engineering, Kyonggi University, Suwon 16227, Korea
- Correspondence: ; Tel.: +82-31-249-9763
| |
Collapse
|
10
|
Synthesis, characterization, and in-vitro evaluation of piperine-loaded silica/hydroxyapatite mesoporous nanoparticles. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Smart gating porous particles as new carriers for drug delivery. Adv Drug Deliv Rev 2021; 174:425-446. [PMID: 33930490 DOI: 10.1016/j.addr.2021.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The design of smart drug delivery carriers has recently attracted great attention in the biomedical field. Smart carriers can specifically respond to physical and chemical changes in their environment, such as temperature, photoirradiation, ultrasound, magnetic field, pH, redox species, and biomolecules. This review summarizes recent advances in the integration of porous particles and stimuli-responsive gatekeepers for effective drug delivery. Their unique structural properties play an important role in facilitating the diffusion of drug molecules and cell attachment. Various techniques for fabricating porous materials, with their major advantages and limitations, are summarized. Smart gatekeepers provide advanced functions such as "open-close" switching by functionalized stimuli-responsive polymers on a particle's pores. These controlled delivery systems enable drugs to be targeted at specific rates, time programs, and sites of the human body. The gate structures, gating mechanisms, and controlled release mechanisms of each trigger are detailed. Current ongoing research and future trends in targeted drug delivery, tissue engineering, and regenerative medicine applications are highlighted.
Collapse
|
12
|
Mesoporous amine functionalized SiO2 supported Cu nanocatalyst and a kinetic-mechanistic degradation study of azo dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Mizuno S, Asoh T, Takashima Y, Harada A, Uyama H. Molecule‐Responsive Polymer Monolith as a Smart Gate Driven by Host–Guest Interaction with Morphology Restoration. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202000392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shunsuke Mizuno
- Department of Applied Chemistry Graduate School of Engineering Osaka University Yamadaoka 2‐1 Suita Osaka 565‐0871 Japan
| | - Taka‐Aki Asoh
- Department of Applied Chemistry Graduate School of Engineering Osaka University Yamadaoka 2‐1 Suita Osaka 565‐0871 Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science Graduate School of Science Osaka University 1‐1 Machikaneyama‐cho Toyonaka Osaka 560‐0043 Japan
- Institute for Advanced Co‐Creation Studies Osaka University 1‐1 Machikaneyamacho Toyonaka Osaka 560‐0043 Japan
| | - Akira Harada
- The Institute of Scientific and Industrial Research Osaka University 8‐1 Mihogaoka Ibaraki Osaka 567‐0047 Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry Graduate School of Engineering Osaka University Yamadaoka 2‐1 Suita Osaka 565‐0871 Japan
| |
Collapse
|
14
|
Nayeem J, Al-Bari MAA, Mahiuddin M, Rahman MA, Mefford OT, Ahmad H, Rahman MM. Silica coating of iron oxide magnetic nanoparticles by reverse microemulsion method and their functionalization with cationic polymer P(NIPAm-co-AMPTMA) for antibacterial vancomycin immobilization. Colloids Surf A Physicochem Eng Asp 2021; 611:125857. [DOI: 10.1016/j.colsurfa.2020.125857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Wu L, Luo Z, Jiang H, Zhao Z, Geng W. Selective and rapid removal of Mo(VI) from water using functionalized Fe 3O 4-based Mo(VI) ion-imprinted polymer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:435-448. [PMID: 33504706 DOI: 10.2166/wst.2020.594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fe3O4 nanoparticles-based magnetic Mo(VI) surface ion-imprinted polymer (Mo(VI)-MIIP) was elaborated employing 4-vinyl pyridine as a functional monomer. The adsorbent preparation was confirmed by Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectrometry, X-ray diffraction, vibrating sample magnetometer, thermogravimetric analysis, and surface area analysis. Batch adsorption experiments showed that the maximum adsorption capacity of Mo(VI)-MIIP was 296.40 mg g-1 at pH 3, while that of the magnetic non-imprinted polymer (MNIP) was only 147.10 mg g-1. The adsorption isotherm model was well fitted by the Langmuir isotherm model. The adsorption experiments revealed that Mo(VI)-MIIP reached adsorption equilibrium within 30 min, and the kinetics data fitting showed that the pseudo-second-order kinetics model suitably described the adsorption process. Mo(VI)-MIIP exhibited an excellent adsorption selectivity to Mo(VI) in binary mixtures of Mo(VI)/Cr(VI), Mo(VI)/Cu(II), Mo(VI)/H2PO44-, Mo(VI)/Zn(II), and Mo(VI)/I-, with relative selectivity coefficients toward MNIP of 13.71, 30.27, 20.01, 23.53, and 15.89, respectively. After six consecutive adsorption-desorption cycles, the adsorption capacity of Mo(VI)-MIIP decreased by 9.5% (from 228.4 mg g-1 to 206.7 mg g-1 at initial Mo(VI) concentration of 250 mg L-1), demonstrating its reusability.
Collapse
Affiliation(s)
- Lang Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Zhengwei Luo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Hui Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Zijian Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| | - Wenhua Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 # Puzhu South Road, Nanjing 211816, China E-mail:
| |
Collapse
|
16
|
Zhong Q, Hu N, Mi L, Wang JP, Metwalli E, Bießmann L, Herold C, Yang J, Wu GP, Xu ZK, Cubitt R, Müller-Buschbaum P. Impact of Thermal History on the Kinetic Response of Thermoresponsive Poly(diethylene glycol monomethyl ether methacrylate)- block-poly(poly(ethylene glycol)methyl ether methacrylate) Thin Films Investigated by In Situ Neutron Reflectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6228-6237. [PMID: 32388986 DOI: 10.1021/acs.langmuir.0c00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The impact of thermal history on the kinetic response of thin thermoresponsive diblock copolymer poly(diethylene glycol monomethyl ether methacrylate)-block-poly(poly(ethylene glycol) methyl ether methacrylate), abbreviated as PMEO2MA-b-POEGMA300, films is investigated by in situ neutron reflectivity. The PMEO2MA and POEGMA300 blocks are both thermoresponsive polymers with a lower critical solution temperature. Their transition temperatures (TTs) are around 25 °C (TT1, PMEO2MA) and 60 °C (TT2, POEGMA300). Thus, by applying different temperature protocols (20 to 60 or 20 to 40 to 60 °C), the PMEO2MA-b-POEGMA300 thin films experience different thermal histories: the first protocol directly switches from a swollen to a collapsed state, whereas the second one switches first from a swollen to a semicollapsed and finally to a collapsed state. Although the applied thermal histories differ, the response and final state of the collapsed films are very close to each other. After the thermal stimulus, both films present a complicated response composed of an initial shrinkage, followed by a rearrangement. Interestingly, a subsequent reswelling of the collapsed film is only observed in the case of having applied a thermal stimulus of 20 to 40 °C. The normalized film thickness and the D2O amount of each layer in the PMEO2MA-b-POEGMA300 films are consistent at the end of the two different thermal stimuli. Hence, it can be concluded that the thermal history does not influence the final state of the PMEO2MA-b-POEGMA300 films upon heating. Based on this property, these thin films are especially suitable for the temperature switches on the nanoscale, which may experience different thermal histories.
Collapse
Affiliation(s)
- Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Neng Hu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Lei Mi
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Ji-Ping Wang
- Shanghai University of Engineering Science, 333 Long Teng Road, 201620 Shanghai, China
| | - Ezzeldin Metwalli
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Lorenz Bießmann
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Christian Herold
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Jing Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhi-Kang Xu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Robert Cubitt
- Institut Laue-Langevin, 6 Rue Jules Horowitz, 38000 Grenoble, France
| | - Peter Müller-Buschbaum
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| |
Collapse
|
17
|
Baliś A, Wolski K, Zapotoczny S. Thermoresponsive Polymer Gating System on Mesoporous Shells of Silica Particles Serving as Smart Nanocontainers. Polymers (Basel) 2020; 12:E888. [PMID: 32290489 PMCID: PMC7240617 DOI: 10.3390/polym12040888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/12/2023] Open
Abstract
Spherical silica nanoparticles with solid cores and mesoporous shells (SCMS) were decorated with thermoresponsive polymer brushes that were shown to serve as macromolecular valves to control loading and unloading of a model dye within the mesopores. Thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) brushes were grafted from the surfaces of both solid core (SC) and SCMS particles of similar size using surface-initiated atom transfer radical polymerization. Both systems based on porous (SCMS-PNIPAM) and nonporous (SC-PNIPAM) particles were characterized using cryo-TEM, thermogravimetry and elemental analysis to determine the structure and composition of the decorated nanoparticles. The grafted PNIPAM brushes were found to be responsive to temperature changes enabling temperature-controlled gating of the pores. The processes of loading and unloading in the obtained systems were examined using a model fluorescent dye-rhodamine 6G. Polymer brushes in SCMS-PNIPAM systems were shown to serve as molecular valves enabling significant adsorption (loading) of the dye inside the pores with respect to the SC-PNIPAM (no pores) and SCMS (no valves) systems. The effective unloading of the fluorescent cargo molecules from the decorated nanoparticles was achieved in a water/methanol solution. The obtained SCMS-PNIPAM particles may be used as smart nanocontainers or nanoreactors offering also facile isolation from the suspension due to the presence of dense cores.
Collapse
Affiliation(s)
| | | | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; (A.B.); (K.W.)
| |
Collapse
|
18
|
Huang ZS, Shiu JW, Way TF, Rwei SP. A thermo-responsive random copolymer of poly(NIPAm-co-FMA) for smart textile applications. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
19
|
Hossain MK, Minami H, Hoque SM, Rahman MM, Sharafat MK, Begum MF, Islam ME, Ahmad H. Mesoporous electromagnetic composite particles: Electric current responsive release of biologically active molecules and antibacterial properties. Colloids Surf B Biointerfaces 2019; 181:85-93. [DOI: 10.1016/j.colsurfb.2019.05.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
|
20
|
Nieuwenhuis S, Zhong Q, Metwalli E, Bießmann L, Philipp M, Miasnikova A, Laschewsky A, Papadakis CM, Cubitt R, Wang J, Müller-Buschbaum P. Hydration and Dehydration Kinetics: Comparison between Poly( N-isopropyl methacrylamide) and Poly(methoxy diethylene glycol acrylate) Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7691-7702. [PMID: 31117727 DOI: 10.1021/acs.langmuir.9b00535] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thermoresponsive films of poly( N-isopropyl methacrylamide) (PNIPMAM) and poly(methoxy diethylene glycol acrylate) (PMDEGA) are compared with respect to their hydration and dehydration kinetics using in situ neutron reflectivity. Both as-prepared films present a homogeneous single-layer structure and have similar transition temperatures of the lower critical solution temperature type (TT, PNIPMAM 38 °C and PMDEGA 41 °C). After hydration in unsaturated D2O vapor at 23 °C, a D2O enrichment layer is observed in PNIPMAM films adjacent to the Si substrate. In contrast, two enrichment layers are present in PMDEGA films (close to the vapor interface and the Si substrate). PNIPMAM films exhibit a higher hydration capability, ascribed to having both donor (N-H) and acceptor (C═O) units for hydrogen bonds. While the swelling of the PMDEGA films is mainly caused by the increase of the enrichment layers, the thickness of the entire PNIPMAM films increases with time. The observed longer relaxation time for swelling of PNIPMAM films is attributed to the much higher glass transition temperature of PNIPMAM. When dehydrating both films by increasing the temperature above the TT, they react with a complex response consisting of three stages (shrinkage, rearrangement, and reswelling). PNIPMAM films respond faster than PMDEGA films. After dehydration, both films still contain a large amount of D2O, and no completely dry film state is reached for a temperature above their TTs.
Collapse
Affiliation(s)
- Sophie Nieuwenhuis
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education , Zhejiang Sci-Tech University , 310018 Hangzhou , China
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education , Zhejiang Sci-Tech University , 310018 Hangzhou , China
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Ezzeldin Metwalli
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Lorenz Bießmann
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Martine Philipp
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Anna Miasnikova
- Universität Potsdam, Institut für Chemie , Karl-Liebknecht-Str. 24-25 , 14476 Potsdam-Golm , Germany
| | - André Laschewsky
- Universität Potsdam, Institut für Chemie , Karl-Liebknecht-Str. 24-25 , 14476 Potsdam-Golm , Germany
- Fraunhofer Institut für Angewandte Polymerforschung , Geiselbergstr. 69 , 14476 Potsdam-Golm , Germany
| | - Christine M Papadakis
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie , James-Franck-Str. 1 , 85748 Garching , Germany
| | - Robert Cubitt
- Institut Laue-Langevin , 6 rue Jules Horowitz , 38000 Grenoble , France
| | - Jiping Wang
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education , Zhejiang Sci-Tech University , 310018 Hangzhou , China
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien/Fachgebiet Physik Weicher Materie , James-Franck-Str. 1 , 85748 Garching , Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München , Lichtenbergstr. 1 , 85748 Garching , Germany
| |
Collapse
|
21
|
Investigation of magnetic silica with thermoresponsive chitosan coating for drug controlled release and magnetic hyperthermia application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 97:23-30. [PMID: 30678907 DOI: 10.1016/j.msec.2018.11.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 11/21/2022]
Abstract
In this study, a drug delivery system for chemo-hyperthermia applications is proposed and fabricated. The delivery system consists of magnetic-silica (MagSi) particles being encapsulated within a pH/thermo-responsive chitosan‑g‑N‑isopropylacrylamide (Chi-g-NIPAAm) polymer matrix. The as-prepared MagSi@Chi-g-NIPAAm particles exhibit superparamagnetic behavior with a saturation magnetization (Ms) of 20.14 emu/g. In addition, the MagSi@Chi-g-NIPAAm particles can act as a heat source when subject to an alternating magnetic field (AMF) and have a specific absorptions rate (SAR) of 8.36 Wg-1. The release of the drug DOX from the synthesized particles is sensitive to both the pH and temperature of its environment. We have compared the drug release when the solution is externally heated up and when it is heated up by the AMF (internal heating). For external heating (when the pH/temperature is 4.0/45 °C), 83.30 ± 2.92% of the DOX were released within the first 5 h. The release of the DOX by the particles in pH 7.4 (temperature of 37 °C) was much slower (around 25.87 ± 1.30% after 25 h). The release of the DOX was much higher (under an acidic condition pH = 4.0) around 57.13 ± 2.36% within 1 h in the presence of AMF heating. The in vitro cytotoxicity tests of the of DOX-loaded MagSi@Chi-g-NIPAAm particles towards HeLa cancer cells. In general, the toxicities of the drug DOX as part of a MagSi@Chi-g-NIPAAm particles were less than those of the standalone DOX until the concentration of DOX-loaded particles reached 250 μg/mL, after which the toxicity of DOX in both forms were the same.
Collapse
|
22
|
Polymer/silica hybrid hollow nanoparticles with channels and thermo-responsive gatekeepers for drug storage and release. Colloid Polym Sci 2018. [DOI: 10.1007/s00396-018-4397-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|