1
|
Mapile AN, Scatena LF. Bulking up: the impact of polymer sterics on emulsion stability. SOFT MATTER 2024; 20:7471-7483. [PMID: 39258873 DOI: 10.1039/d4sm00772g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Encapsulation of hydrophobic active ingredients is critical for targeted drug delivery as water-insoluble drugs dominate the pharmaceutical marketplace. We previously demonstrated hexadecane-in-water emulsions stabilized with a pH-tunable polymer, poly(acrylic acid) (PAA), via a steric layer preventing particle aggregation. Using vibrational sum frequency scattering spectroscopy (VSFSS), here we probe the influence of steric hindrance on emulsion colloidal stability by tailoring the molecular weight of PAA and by adding an additional methyl group to the polymer backbone via poly(methacrylic acid) (PMAA) at pH 2, 4, and 6. At low polymer molecular weight (2 and 10 kDa), PAA adsorption is entropy driven and akin to surfactant-mediated stabilization. With 450 kDa PAA, the longer polymer chain emphasizes enthalpically favored polymer-oil interactions to initially coat the surface, and forms layers at increasing molecular weight (1000 and 4000 kDa). PMAA exhibits better oil-solubility than PAA at low concentrations but cannot accommodate the steric hindrance at higher concentrations leading to disorder. Finally, we connect our molecular-level understanding of PAA ordering with temperature-dependent dynamic light scattering experiments and observe that emulsions coated with PAA at pH 2 and 4 maintain colloidal stability from 0-90 °C, making PAA a promising polymer for hydrophobic drug delivery.
Collapse
Affiliation(s)
- Ashley N Mapile
- University of Oregon Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403, USA.
| | - Lawrence F Scatena
- University of Oregon Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
2
|
Drayer WF, Simmons DS. Sequence Effects on the Glass Transition of a Model Copolymer System. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- William F. Drayer
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| | - David S. Simmons
- Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
3
|
Ishihara M, Watanabe T, Sasaki T. Adsorption Kinetics of Polystyrene and Poly(9-anthracenyl methyl methacrylate) onto SiO 2 Surface Measured by Chip Nano-Calorimetry. Polymers (Basel) 2022; 14:605. [PMID: 35160594 PMCID: PMC8839510 DOI: 10.3390/polym14030605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
The alternating current (AC) chip nano-calorimetry is a powerful tool to investigate the physical properties of polymer thin films. In this paper, we report on the adsorption kinetics of polymers in which an AC chip nano-calorimetry was used for the first time. This technique allows for the real-time measurement of the adsorption kinetics of polymer chains onto the SiO2 surface. We used polystyrene (PS) and poly(9-anthracenyl methyl methacrylate) (PAMMA), which have different chemical natures and side group sizes. It was confirmed that the observed adsorption kinetics for PS were consistent with previously reported results obtained by dielectric spectroscopy. For PAMMA, we found characteristic adsorption kinetics, which shows a clear kink at the crossover between the early and later stages, while PS exhibits a lesser tendency of showing the kink as demonstrated by previously reported results.
Collapse
Affiliation(s)
| | | | - Takashi Sasaki
- Department of Materials Science and Engineering, University of Fukui, Fukui 9108507, Japan; (M.I.); (T.W.)
| |
Collapse
|
4
|
Randazzo K, Bartkiewicz M, Graczykowski B, Cangialosi D, Fytas G, Zuo B, Priestley RD. Direct Visualization and Characterization of Interfacially Adsorbed Polymer atop Nanoparticles and within Nanocomposites. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Katelyn Randazzo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | | | - Bartlomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61-614, Poland
| | - Daniele Cangialosi
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizábal 5, San Sebastián 20018, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizábal 4, 20018, San Sebastián 20018, Spain
| | - George Fytas
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Biao Zuo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rodney D. Priestley
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
5
|
Zhao M, Baker J, Jiang Z, Zhu Z, Wu HM, Wu JL, Kang WH, Sue HJ. Preparation of Well-Exfoliated Poly(ethylene- co-vinyl acetate)/α-Zirconium Phosphate Nanocomposites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4550-4561. [PMID: 33826349 DOI: 10.1021/acs.langmuir.1c00146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(ethylene-co-vinyl acetate) (PEVAc) nanocomposites containing exfoliated α-zirconium phosphate (ZrP) have been prepared using a simple solution mixing method to improve their barrier and mechanical properties. ZrP was pre-exfoliated with a surfactant, followed by additional targeted surface functionalization and surfactant exchange to allow for hydrogen bonding of ZrP with the acetate functionality on PEVAc and to improve ZrP surface hydrophobicity. The solvent is found to play an important role in stabilizing ZrP exfoliation in the presence of PEVAc to retain full exfoliation and homogeneous dispersion upon the removal of the solvent. The PEVAc/ZrP nanocomposite exhibits greatly improved oxygen barrier, melt strength, and mechanical properties. The usefulness of the present study for the preparation of olefinic polymer nanocomposites is discussed.
Collapse
Affiliation(s)
- Mingzhen Zhao
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Joseph Baker
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Zhiyuan Jiang
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Zewen Zhu
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Hong-Mao Wu
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
- Polyolefin Department of Formosa Plastics Corporation, Mailiao, Yunlin County 63801, Taiwan
| | - Jen-Long Wu
- Polyolefin Department of Formosa Plastics Corporation, Mailiao, Yunlin County 63801, Taiwan
| | - Wen-Hao Kang
- Polyolefin Department of Formosa Plastics Corporation, Mailiao, Yunlin County 63801, Taiwan
| | - Hung-Jue Sue
- Department of Material Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Kim Y, Lee W, Jo S, Ahn H, Kim K, Kim JU, Ryu DY. Lamellar Orientation and Transition Behavior of PS-b-P2VP Copolymers Supported on Physically Adsorbed Layers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yeongsik Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Wooseop Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Seungyun Jo
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, 80 Jigok-ro, Nam-gu, Pohang 37673, Korea
| | - Kyungkon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea
| | - Jaeup U. Kim
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Korea
| | - Du Yeol Ryu
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
7
|
Hajduk B, Bednarski H, Trzebicka B. Temperature-Dependent Spectroscopic Ellipsometry of Thin Polymer Films. J Phys Chem B 2020; 124:3229-3251. [PMID: 32275433 PMCID: PMC7590969 DOI: 10.1021/acs.jpcb.9b11863] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/19/2020] [Indexed: 12/03/2022]
Abstract
Thin polymer films have found many important applications in organic electronics, such as active layers, protective layers, or antistatic layers. Among the various experimental methods suitable for studying the thermo-optical properties of thin polymer films, temperature-dependent spectroscopic ellipsometry plays a special role as a nondestructive and very sensitive optical technique. In this Review Article, issues related to the physical origin of the dependence of ellipsometric angles on temperature are surveyed. In addition, the Review Article discusses the use of temperature-dependent spectroscopic ellipsometry for studying phase transitions in thin polymer films. The benefits of studying thermal transitions using different cooling/heating speeds are also discussed. Furthermore, it is shown how the analysis and modeling of raw ellipsometric data can be used to determine the thermal properties of thin polymer films.
Collapse
Affiliation(s)
- Barbara Hajduk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Henryk Bednarski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland
| |
Collapse
|
8
|
Davis MJB, Randazzo K, Zuo B, Priestley RD. Revealing Interfacial Interactions in Random Copolymer Adsorbed Layers by Solvent Leaching. Macromol Rapid Commun 2020; 41:e1900582. [DOI: 10.1002/marc.201900582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/05/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Mary J. B. Davis
- Department of Chemical and Biological EngineeringPrinceton University Princeton NJ 08544 USA
| | - Katelyn Randazzo
- Department of Chemical and Biological EngineeringPrinceton University Princeton NJ 08544 USA
| | - Biao Zuo
- Department of Chemical and Biological EngineeringPrinceton University Princeton NJ 08544 USA
- Department of ChemistryKey Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education MinistryZhejiang Sci‐Tech University Hangzhou 310018 China
| | - Rodney D. Priestley
- Department of Chemical and Biological EngineeringPrinceton University Princeton NJ 08544 USA
- Princeton Institute for the Science and Technology of MaterialsPrinceton University Princeton NJ 08544 USA
| |
Collapse
|
9
|
Jimenez AM, Zhao D, Misquitta K, Jestin J, Kumar SK. Exchange Lifetimes of the Bound Polymer Layer on Silica Nanoparticles. ACS Macro Lett 2019; 8:166-171. [PMID: 35619424 DOI: 10.1021/acsmacrolett.8b00877] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Understanding the structure and dynamics of the bound polymer layer (BL) that forms on favorably interacting nanoparticles (NPs) is critical to revealing the mechanisms responsible for material property enhancements in polymer nanocomposites (PNCs). Here we use small angle neutron scattering to probe the temporal persistence of this BL in the canonical case of poly(2-vinylpyridine) (P2VP) mixed with silica NPs at two representative temperatures. We have observed almost no long-term reorganization at 150 °C (∼Tg,P2VP + 50 °C), but a notable reduction in the BL thickness at 175 °C. We believe that this apparently strong temperature dependence arises from the polyvalency of the binding of a single P2VP chain to a NP. Thus, while the adsorption-desorption process of a single segment is an activated process that occurs over a broad temperature range, the cooperative nature of requiring multiple segments to desorb converts this into a process that occurs over a seemingly narrow temperature range.
Collapse
Affiliation(s)
- Andrew M. Jimenez
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Dan Zhao
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Kyle Misquitta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jacques Jestin
- Laboratoire Léon Brillouin, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|