1
|
Rajamanikandan R, Sasikumar K, Ju H. Ti 3C 2 MXene quantum dots as an efficient fluorescent probe for bioflavonoid quercetin quantification in food samples. Anal Chim Acta 2024; 1322:343069. [PMID: 39182987 DOI: 10.1016/j.aca.2024.343069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Quercetin (QC) is known as a typical antioxidant as a bioflavonoid, and its quick, sensitive, and specific detection is crucial for assessing food products. In this study, for the purpose of luminescence-based sensing of QC, bright bluish-green emissive quantum dots of N-doped MXene-based titanium carbide (Ti3C2) were fabricated. Recently, MXene quantum dots (MX-QDs), the rapidly emerging zero-dimensional nanomaterials made from two-dimensional transition metal carbides, have attracted much interest due to their unique physical and chemical features. These include the extremely large surface-to-volume ratio, biocompatibility, luminescence tunability, and hybridization capability while retaining properties of their two-dimensional counterpart including good conductivity and charge transferability. RESULTS The fabricated Ti3C2 MX-QDs had a quantum yield of 8.13 % at the emission wavelength of λem = 465 nm and displayed excellent photostability with great colloidal stability. It was found that introducing QC to near Ti3C2 MX-QDs reduced their fluorescence signals due to quenching effects. These quenching effects that occurred in a very broad linear range of QC (25-600 nM) enabled QC to be sensed quantitatively with the limit of detection of QC (1.35 nM), being the lowest ever reported to date. The quenching phenomena that caused such excellent sensitivity could be accounted for by combined effects of static quenching/radiation-free complex formation and inner filter effects (IFE) of Ti3C2 MX-QDs with QC. SIGNIFICANCE In addition, the quenching-based detection demonstrated excellent specificity against structurally relevant interferants. Therefore, the presented sensing strategies with Ti3C2 MX-QDs-based fluorescence quenching can be one of the strongest candidates as a reliable and cost-effective solution to highly sensitive quantification of QC in food samples.
Collapse
Affiliation(s)
| | - Kandasamy Sasikumar
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea
| | - Heongkyu Ju
- Department of Physics, Gachon University, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
2
|
Das C, Sillanpää M, Zaidi SA, Khan MA, Biswas G. Current trends in carbon-based quantum dots development from solid wastes and their applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45528-45554. [PMID: 36809626 PMCID: PMC9942668 DOI: 10.1007/s11356-023-25822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Urbanization and a massive population boom have immensely increased the solid wastes (SWs) generation and are expected to reach 3.40 billion tons by 2050. In many developed and emerging nations, SWs are prevalent in both major and small cities. As a result, in the current context, the reusability of SWs through various applications has taken on added importance. Carbon-based quantum dots (Cb-QDs) and their many variants are synthesized from SWs in a straightforward and practical method. Cb-QDs are a new type of semiconductor that has attracted the interest of researchers due to their wide range of applications, which include everything from energy storage, chemical sensing, to drug delivery. This review is primarily focused on the conversion of SWs into useful materials, which is an essential aspect of waste management for pollution reduction. In this context, the goal of the current review is to investigate the sustainable synthesis routes of carbon quantum dots (CQDs), graphene quantum dots (GQDs), and graphene oxide quantum dots (GOQDs) from various types SWs. The applications of CQDs, GQDs, and GOQDs in the different areas are also been discussed. Finally, the challenges in implementing the existing synthesis methods and future research directions are highlighted.
Collapse
Affiliation(s)
- Chanchal Das
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
| | - Shabi Abbas Zaidi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| | - Moonis Ali Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University, West Bengal, Cooch Behar, 736101, India
| |
Collapse
|
3
|
Vallejos S, Trigo-López M, Arnaiz A, Miguel Á, Muñoz A, Mendía A, García JM. From Classical to Advanced Use of Polymers in Food and Beverage Applications. Polymers (Basel) 2022; 14:4954. [PMID: 36433081 PMCID: PMC9699061 DOI: 10.3390/polym14224954] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Polymers are extensively used in food and beverage packaging to shield against contaminants and external damage due to their barrier properties, protecting the goods inside and reducing waste. However, current trends in polymers for food, water, and beverage applications are moving forward into the design and preparation of advanced polymers, which can act as active packaging, bearing active ingredients in their formulation, or controlling the head-space composition to extend the shelf-life of the goods inside. In addition, polymers can serve as sensory polymers to detect and indicate the presence of target species, including contaminants of food quality indicators, or even to remove or separate target species for later quantification. Polymers are nowadays essential materials for both food safety and the extension of food shelf-life, which are key goals of the food industry, and the irruption of smart materials is opening new opportunities for going even further in these goals. This review describes the state of the art following the last 10 years of research within the field of food and beverage polymer's applications, covering present applications, perspectives, and concerns related to waste generation and the circular economy.
Collapse
Affiliation(s)
- Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Miriam Trigo-López
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Ana Arnaiz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Universidad Politécnica de Madrid (UPM), 28223 Madrid, Spain
| | - Álvaro Miguel
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
- Facultad de Ciencias, Campus de Cantoblanco, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Asunción Muñoz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Aránzazu Mendía
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| | - José Miguel García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza de Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|
4
|
Jeevika A, Alagarsamy G, Celestina JJ. Biogenic synthesis of carbon quantum dots from garlic peel bio-waste for use as a fluorescent probe for sensing of quercetin. LUMINESCENCE 2022; 37:1991-2001. [PMID: 36063384 DOI: 10.1002/bio.4381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/14/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
Highly fluorescent and water-soluble carbon quantum dots (CQDs) were synthesized from the bio-waste source of garlic peels (renovation of bio-waste into bio-asset) using a controlled carbonization method. Synthesized CQDs were characterized by various analytical methods and explored as a fluorogenic probe for the recognition of quercetin (QT). UV-Vis result shows an absorption maximum at 275 nm attributed to the conjugation of C=C and C=O of CQDs and demonstrates a blue emission in the range of 330-410 nm. Selectivity was performed with various biomolecules, except for QT, all other do not exhibit any considerable change in the fluorescence of CQDs. On the interaction with QT, emission was completely quenched due to FET, confirming the high selective to QT. Effect of pH, sensitivity, and stability studies displayed excellent results under optimized conditions. The LOD fluorescent probe was found to be 6.73 μM. Our approach may suggest a new platform for the development of quick and low-cost CQDs-based sensors for environmental and biological purposes.
Collapse
Affiliation(s)
- Alagan Jeevika
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | | | - Joseph Jone Celestina
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| |
Collapse
|
5
|
Ma Y, Yang X, Leng X, Liu X, Schipper D. A high-nuclearity Cd( ii)–Nd( iii) nanocage for the rapid ratiometric fluorescent detection of quercetin. CrystEngComm 2022. [DOI: 10.1039/d2ce00556e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A 32-metal Cd(ii)–Nd(iii) nanocage was constructed, and it shows rapid and stable ratiometric fluorescent response to quercetin.
Collapse
Affiliation(s)
- Yanan Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaoping Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xilong Leng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaoming Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Desmond Schipper
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas, 78712, USA
| |
Collapse
|
6
|
Li F, Li QL, Hu L, Zhu HY, Wang WJ, Kong FY, Li HY, Wang ZX, Wang W. Ratiometric detection of p-nitrophenol and its derivatives using a dual-emissive neuron cell-like carbonized probe based on a ππ stacking quenching mechanism. Analyst 2021; 146:4566-4575. [PMID: 34152330 DOI: 10.1039/d1an00891a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
p-Nitrophenol and its derivatives can cause serious harm to the health of mankind and the earth's ecosystem. Therefore, it is necessary to develop a novel and rapid detection technology for p-nitrophenol and its derivative. Herein, excellent water-soluble, large-size and dual-emissive neuron cell-analogous carbon-based probes (NCNPs) have been prepared via a solvothermal approach, using o-phenylenediamine as the only precursor, which exhibit two distinctive fluorescence (FL) peaks at 420 and 555 nm under 345 nm excitation. The NCNPs show a neuron cell-like branched structure, are cross-connected, and are in the range of 10-20 nm in skeleton diameter. Interestingly, their blue-green dual-colour fluorescence is quenched by p-nitrophenol or its derivative due to the specific mechanism of the ππ stacking interactions or internal filtration effect. Accordingly, a simple, rapid, direct and free-label ratiometric FL detection of p-nitrophenol is proposed. An excellent linear relationship shows linear regions over the range of 0.1-50 μM between the ratio of the FL intensity (FL555 nm/FL420 nm) and the concentrations of p-nitrophenol. The detection limit is as low as 43 nM (3σ). Importantly, the NCNP-based probe also shows acceptable repeatability and reproducibility for the detection of p-nitrophenol and its derivatives, and the recovery results for p-nitrophenol in real wastewater samples are favourable.
Collapse
Affiliation(s)
- Feng Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Qi-Le Li
- School of Science, Jiangsu Ocean University, Lianyungang, 222005, P.R. China
| | - Lei Hu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Hong-Yu Zhu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Wen-Juan Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zhong-Xia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
7
|
Wang ZX, Jin X, Wang WJ, Kong FY, Zhu J, Li HY, Ding YJ, Wang W. Green synthesis of a deep-ultraviolet carbonized nanoprobe for ratiometric fluorescent detection of feroxacin and enrofloxacin in food and serum samples. Analyst 2021; 146:874-881. [DOI: 10.1039/d0an02114h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A sensitive ratiometric fluorescent probe for EFC and FXC detection in milk and bovine serum samples based on the internal filtration effect.
Collapse
Affiliation(s)
- Zhong-Xia Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Xing Jin
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
- College of Biochemical Engineering
| | - Wen-Juan Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Jing Zhu
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Heng-Ye Li
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| | - Yu-Jie Ding
- College of Biochemical Engineering
- Anhui Polytechnic University
- Wuhu
- P. R. China
| | - Wei Wang
- School of Chemistry and Chemical Engineering
- Yancheng Institute of Technology
- Yancheng 224051
- P. R. China
| |
Collapse
|
8
|
Niu M, Yang X, Ma Y, Wang C, Schipper D. NIR luminescent detection of quercetin based on an octanuclear Zn( ii)–Nd( iii) salen nanocluster. RSC Adv 2021; 11:35893-35897. [PMID: 35492787 PMCID: PMC9043252 DOI: 10.1039/d1ra06494k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
A NIR luminescent octanuclear Zn(ii)–Nd(iii) nanocluster 1 was constructed by the use of a salen-type Schiff base ligand. 1 exhibits a lanthanide luminescent response to Que with high sensitivity. The quenching constant of Que to the lanthanide emission is 2.6 × 104 M−1, and the detection limit of 1 to Que is 2.5 μM. The response behavior of 1 to Que is not affected by the existence of some potential interferents such as biomolecules. An octanuclear Zn(ii)–Nd(iii) nanocluster was constructed by the use of a salen-type Schiff base ligand, and it shows an interesting NIR lanthanide luminescent response to quercetin with high sensitivity and selectivity.![]()
Collapse
Affiliation(s)
- Mengyu Niu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Zhejiang Key Laboratory of Carbon Materials, Wenzhou 325035, China
| | - Xiaoping Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Zhejiang Key Laboratory of Carbon Materials, Wenzhou 325035, China
| | - Yanan Ma
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Zhejiang Key Laboratory of Carbon Materials, Wenzhou 325035, China
| | - Chengri Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Zhejiang Key Laboratory of Carbon Materials, Wenzhou 325035, China
| | - Desmond Schipper
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station A5300, Austin, Texas, 78712, USA
| |
Collapse
|
9
|
Wang Z, Gao Y, Wang W, Kong F, Li H, Fan D, Wang W. On-off Fluorescent Switching of Excitation-independent Near-ultraviolet Emission Carbon Nanobelts for Ultrasensitive Detection Nimesulide in Pharmaceutical Tablet. ANAL SCI 2020; 36:1379-1385. [PMID: 32655105 DOI: 10.2116/analsci.20p181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here, we present an excellent strategy of unmodified near-ultraviolet fluorescence nitrogen doping carbon nanobelts (NFNCBs) for detecting nimesulide (Nim). After a simple hydrothermal process of uric acid and hydroquinone in DMF solvent, NFNCBs shows the shape of corroded stalactite-like composed of nanobelts aggregates, near-ultraviolet luminescence and a narrowed full width at half maximum. This could improve/change the electronic properties and surface chemical active site, as the result of a sensitive response to Nim. By employing this sensor, the quantitative measurement displays a linear range of 2.0 nM - 100.0 μM with a lower detection limit of 0.21 nM (3σ/k) for Nim. Our work has provided a high selectivity for Nim, which may be capable for pharmaceutical sample analysis in real tablets. Furthermore, the results concerning the recoveries (96.3 - 106.2%) for real sample analysis indicate that this nanoprobe might expand a good avenue to design an effective luminescence nanoprobe for other biologically related drugs.
Collapse
Affiliation(s)
- Zhongxia Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology
| | - Yuanfei Gao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology
| | - Wenjuan Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology
| | - Fenying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology
| | - Hengye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology
| | - Dahe Fan
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology
| |
Collapse
|
10
|
Tümay SO, Şanko V, Demirbas E, Şenocak A. Fluorescence determination of trace level of cadmium with pyrene modified nanocrystalline cellulose in food and soil samples. Food Chem Toxicol 2020; 146:111847. [PMID: 33160013 DOI: 10.1016/j.fct.2020.111847] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 12/23/2022]
Abstract
Cadmium is one of the most toxic metal that accumulates in the human body via food chain, industrial/agricultural activites. It also has negative effects in organs such as the brain, liver and central nervous system. Therefore, International Agency for Research on Cancer is classified cadmium as "carcinogenic to humans" (group 1). In this work, novel pyrene modified nanocrystalline cellulose (NP-1) was designed as a fluorescence sensor for selective determination of Cd2+ in food and soil samples. FTIR, UV-Vis, SEM, TEM and TGA were used for structural, morphological characterizations and thermal properties of NP-1. The experimental conditions such as selectivity, pH, sensor concentration, photostability, time and interaction mechanism were examined and optimized. The LOD was determined as 0.09 μM (10.70 μg/L) which was lower than WHO's permissible limit of cadmium in plant with 0.10-60.00 μM linear working range. Validation of the present method was performed by spike/recovery test and ICP-MS, then fluorescence determination of Cd2+ in food and soil samples was succesfully applied. The results indicated that the proposed method based on "turn-on" fluorescence of NP-1 was a simple, sensitive and reliable for rapid determination of Cd2+ in real samples with high applicability and stability.
Collapse
Affiliation(s)
- Süreyya Oğuz Tümay
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey.
| | - Vildan Şanko
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Erhan Demirbas
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Ahmet Şenocak
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey.
| |
Collapse
|
11
|
Li QL, Shi LX, Du K, Qin Y, Qu SJ, Xia DQ, Zhou Z, Huang ZG, Ding SN. Copper-Ion-Assisted Precipitation Etching Method for the Luminescent Enhanced Assembling of Sulfur Quantum Dots. ACS OMEGA 2020; 5:5407-5411. [PMID: 32201831 PMCID: PMC7081439 DOI: 10.1021/acsomega.9b04465] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/20/2020] [Indexed: 05/04/2023]
Abstract
In this study, we report a metal-ion-assisted precipitation etching strategy that can be used to manipulate the optical properties associated with the assembling of sulfur quantum dots (S dots) using copper ions. Transmission electron microscopy confirmed that the S dots were mainly distributed within 50-80 nm and that they exhibited an ambiguous boundary. After the post-synthetic Cu2+-assisted modification was completed, the assisted precipitation-etching S dots (APE-S dots) were observed to exhibit a relatively clear boundary with a high fluorescence (FL) quantum yield (QY) of 32.8%. Simultaneously, the Fourier transform infrared radiation, X-ray photoelectron spectra, and time-resolved FL decay spectra were used to illustrate the improvement in the FL QY of the APE-S dots.
Collapse
Affiliation(s)
- Qi-Le Li
- School
of Science, Jiangsu Ocean University, Lianyungang 222005, P. R. China
- Jiangsu
Pacific Quartz Co., Ltd., Lianyungang 222005, P. R. China
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing, Jiangsu 211189, P. R. China
| | - Lin-Xing Shi
- School
of Science, Jiangsu Ocean University, Lianyungang 222005, P. R. China
- Jiangsu
Key Laboratory of Function Control Technology for Advanced Materials, Jiangsu Ocean University, Lianyungang 222000, P. R. China
| | - Ke Du
- School
of Science, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Yong Qin
- School
of Science, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Shu-Jie Qu
- School
of Science, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - De-Qian Xia
- School
of Science, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Zhen Zhou
- School
of Science, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Zeng-Guang Huang
- School
of Science, Jiangsu Ocean University, Lianyungang 222005, P. R. China
| | - Shou-Nian Ding
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing, Jiangsu 211189, P. R. China
| |
Collapse
|
12
|
Gao B, Sun Y, Miao Y, Xu L, Wang Z. Fluorometric detection of pH and quercetin based on nitrogen and phosphorus co-doped highly luminescent graphene-analogous flakes. Analyst 2019; 145:115-121. [PMID: 31746826 DOI: 10.1039/c9an02077b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Highly luminescent nitrogen and phosphorus co-doped graphene-analogous flakes (NPCGFs) were synthesized by a one-pot simple hydrothermal reaction using β-cyclodextrin (β-CD), vinylphosphoric acid (VPA), and o-phenylenediamine (oPD) as the precursors. VPA, as an important organic P-containing monomer, was selected as the phosphorus source to generate additional conjugated and effective binding sites on the surface of the NPCGFs. This synthetic strategy not only allows enhancement of structural rigidity, but also effectively eliminates surface traps of the NPCGFs, resulting in an improved fluorescence quantum yield (FL QY) of the NPCGFs. Additionally, oPD simultaneously acts as a nitrogen source and enables amino functionalisation of the NPCGF surface in the synthesis process. The NPCGFs (QY, 32.49%) are irregularly shaped with a typical diameter of approximately 54 nm and display strong fluorescence, with excitation/emission maxima of 360/445 nm. It was found that the NPCGFs can serve as a multifunctional FL probe for pH measurement and quercetin (Qc) detection. A linear relationship exists between the decrease in FL intensity and the concentration of Qc in the range from 0.35 to 30 μg mL-1 as well as the pH variation between 4.0 and 7.0. The probe was further applied to the determination of Qc in living cells.
Collapse
Affiliation(s)
- Buhong Gao
- Advanced Analysis & Testing Center, Nanjing Forestry University, Nanjing 210037, China.
| | | | | | | | | |
Collapse
|
13
|
Gao YF, Jin X, Kong FY, Wang ZX, Wang W. One-pot green and simple synthesis of actinian nickel-doped carbon nanoflowers for ultrasensitive sensing of quercetin. Analyst 2019; 144:7283-7289. [PMID: 31697283 DOI: 10.1039/c9an01907c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In this contribution, a one-pot method possessing the advantages of easy preparation, rapidness, efficiency and environmental friendliness has been developed for the first time for the facile synthesis of highly fluorescent actinian nickel-doped carbon nanoflowers (Ni-CNFWs) by using nickel(ii)acetylacetonate as a metal-carbon source. Various characterization studies indicate that metal nickel atoms have been successfully doped into carbon nanoflower frameworks with a weight percentage of 1.46 wt%. The Ni-CNFWs showed a "shell-core" actinian structure with ∼400 nm diameter and highly efficient fluorescence quenching ability in the presence of quercetin (Qut) due to the formed Meisenheimer complexes via the conjugation effect of p, π-electrons between Ni-CNFWs and Qut, which allowed the analysis of Qut in a very facile method. Under the optimal conditions, the decreased fluorescence of Ni-CNFWs showed a good linear relationship with the concentration of Qut ranging from 0.5 to 300.0 μM, and the limit of detection was 0.137 μM (3σ/k). Finally, the content of Qut in bovine serum was successfully detected with the novel on-off sensor, and the recoveries were 97.3-101.9%, which indicate that the constructed on-off sensor has a high selectivity and accuracy.
Collapse
Affiliation(s)
- Yuan-Fei Gao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | | | | | | | | |
Collapse
|