1
|
Brinkman P, Wilde M, Ahmed W, Wang R, van der Schee M, Abuhelal S, Schaber C, Cunoosamy D, Clarke GW, Maitland-van der Zee AH, Dahlén SE, Siddiqui S, Fowler SJ. Fulfilling the Promise of Breathomics: Considerations for the Discovery and Validation of Exhaled Volatile Biomarkers. Am J Respir Crit Care Med 2024; 210:1079-1090. [PMID: 38889337 PMCID: PMC11544359 DOI: 10.1164/rccm.202305-0868tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
The exhaled breath represents an ideal matrix for noninvasive biomarker discovery, and exhaled metabolomics have the potential to be clinically useful in the era of precision medicine. In this concise translational review, we specifically address volatile organic compounds in the breath, with a view toward fulfilling the promise of these as actionable biomarkers, in particular, for lung diseases. We review the literature paying attention to seminal work linked to key milestones in breath research; discuss potential applications for breath biomarkers across disease areas and healthcare systems, including the perspectives of industry; and outline critical aspects of study design that will need to be considered for any pivotal research going forward if breath analysis is to provide robust validated biomarkers that meet the requirements for future clinical implementation.
Collapse
Affiliation(s)
- Paul Brinkman
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Michael Wilde
- School of Geography, Earth and Environmental Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Waqar Ahmed
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Ran Wang
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Shahd Abuhelal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Chad Schaber
- Owlstone Medical Ltd., Cambridge, United Kingdom
| | | | - Graham W. Clarke
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Anke-Hilse Maitland-van der Zee
- Department of Pulmonary Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
| | - Sven-Erik Dahlén
- The Department of Medicine Huddinge and the Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden; and
- Department of Respiratory Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Salman Siddiqui
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen J. Fowler
- Division of Immunology, Immunity to Infection & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
- National Institute for Health and Care Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
2
|
Lakestani S. Volatile organic compounds and cancer risk assessment in an intensive care unit. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2024; 68:1731-1739. [PMID: 39023743 PMCID: PMC11461571 DOI: 10.1007/s00484-024-02701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 07/20/2024]
Abstract
Changes caused by air-cleaning devices in the amounts of volatile organic compounds in an intensive care unit were monitored in the study. The cancer risk and hazard index were calculated. The measurements were made for one month at isolated room and two different points and times in the intensive care unit. According to the sampling program, the air-cleaning devices were turned off in weeks 1 and 4 and turned on in weeks 2 and 3. Volatile organic compounds were collected by active sampling. Samples were analyzed by a thermal desorber coupled to a gas chromatography-mass spectrometry instrument with selective ion monitoring. The results showed that the concentrations of benzene, toluene, and o-xylene decreased by about 70% after the air-cleaning devices were installed. The cancer risk assessment for naphthalene was recorded at the highest level of cancer risk (Class A). The hazard index value of naphthalene was recorded at the harmful level when air-cleaning devices were not installed. The concentrations of benzene (p = 0.01), toluene (p = 0.02), ethylbenzene (p = 0.02), styrene (p = 0.01), and m, p-xylene (p = 0.04) before the air-cleaning devices were installed were significantly different from those recorded when the air-cleaning devices were turned on.
Collapse
Affiliation(s)
- Sanaz Lakestani
- Scientific Industrial and Technological Application and Research Center, Bolu Abant Izzet Baysal University, 14030, Golkoy, Bolu, Turkey.
| |
Collapse
|
3
|
Zhang S, Hagens LA, Heijnen NFL, Smit MR, Brinkman P, Fenn D, van der Poll T, Schultz MJ, Bergmans DCJJ, Schnabel RM, Bos LDJ. Breath metabolomics for diagnosis of acute respiratory distress syndrome. Crit Care 2024; 28:96. [PMID: 38521944 PMCID: PMC10960461 DOI: 10.1186/s13054-024-04882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/18/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) poses challenges in early identification. Exhaled breath contains metabolites reflective of pulmonary inflammation. AIM To evaluate the diagnostic accuracy of breath metabolites for ARDS in invasively ventilated intensive care unit (ICU) patients. METHODS This two-center observational study included critically ill patients receiving invasive ventilation. Gas chromatography and mass spectrometry (GC-MS) was used to quantify the exhaled metabolites. The Berlin definition of ARDS was assessed by three experts to categorize all patients into "certain ARDS", "certain no ARDS" and "uncertain ARDS" groups. The patients with "certain" labels from one hospital formed the derivation cohort used to train a classifier built based on the five most significant breath metabolites. The diagnostic accuracy of the classifier was assessed in all patients from the second hospital and combined with the lung injury prediction score (LIPS). RESULTS A total of 499 patients were included in this study. Three hundred fifty-seven patients were included in the derivation cohort (60 with certain ARDS; 17%), and 142 patients in the validation cohort (47 with certain ARDS; 33%). The metabolites 1-methylpyrrole, 1,3,5-trifluorobenzene, methoxyacetic acid, 2-methylfuran and 2-methyl-1-propanol were included in the classifier. The classifier had an area under the receiver operating characteristics curve (AUROCC) of 0.71 (CI 0.63-0.78) in the derivation cohort and 0.63 (CI 0.52-0.74) in the validation cohort. Combining the breath test with the LIPS does not significantly enhance the diagnostic performance. CONCLUSION An exhaled breath metabolomics-based classifier has moderate diagnostic accuracy for ARDS but was not sufficiently accurate for clinical use, even after combination with a clinical prediction score.
Collapse
Affiliation(s)
- Shiqi Zhang
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands.
| | - Laura A Hagens
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marry R Smit
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
| | - Paul Brinkman
- Amsterdam UMC, Location AMC, University of Amsterdam, Pulmonary Medicine, Amsterdam, The Netherlands
| | - Dominic Fenn
- Amsterdam UMC, Location AMC, University of Amsterdam, Pulmonary Medicine, Amsterdam, The Netherlands
| | - Tom van der Poll
- Amsterdam UMC, Location AMC, Division of Infectious Diseases, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Location AMC, Center of Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dennis C J J Bergmans
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Maastricht University Medical Centre+, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, The Netherlands
| | - Ronny M Schnabel
- Department of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Lieuwe D J Bos
- Amsterdam UMC, Location AMC, Department of Intensive Care, University of Amsterdam, Meibergdreef 9, Room G3-228, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam UMC, Location AMC, University of Amsterdam, Pulmonary Medicine, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Fitzgerald S, Holland L, Ahmed W, Piechulla B, Fowler SJ, Morrin A. Volatilomes of human infection. Anal Bioanal Chem 2024; 416:37-53. [PMID: 37843549 PMCID: PMC10758372 DOI: 10.1007/s00216-023-04986-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The human volatilome comprises a vast mixture of volatile emissions produced by the human body and its microbiomes. Following infection, the human volatilome undergoes significant shifts, and presents a unique medium for non-invasive biomarker discovery. In this review, we examine how the onset of infection impacts the production of volatile metabolites that reflects dysbiosis by pathogenic microbes. We describe key analytical workflows applied across both microbial and clinical volatilomics and emphasize the value in linking microbial studies to clinical investigations to robustly elucidate the metabolic species and pathways leading to the observed volatile signatures. We review the current state of the art across microbial and clinical volatilomics, outlining common objectives and successes of microbial-clinical volatilomic workflows. Finally, we propose key challenges, as well as our perspectives on emerging opportunities for developing clinically useful and targeted workflows that could significantly enhance and expedite current practices in infection diagnosis and monitoring.
Collapse
Affiliation(s)
- Shane Fitzgerald
- SFI Insight Centre for Data Analytics, School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin, Ireland
| | - Linda Holland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Waqar Ahmed
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Birgit Piechulla
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Stephen J Fowler
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, The University of Manchester, Manchester, UK
- Respiratory Medicine, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Aoife Morrin
- SFI Insight Centre for Data Analytics, School of Chemical Sciences, National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| |
Collapse
|
5
|
Ahmed WM, Fenn D, White IR, Dixon B, Nijsen TME, Knobel HH, Brinkman P, Van Oort PMP, Schultz MJ, Dark P, Goodacre R, Felton T, Bos LDJ, Fowler SJ. Microbial Volatiles as Diagnostic Biomarkers of Bacterial Lung Infection in Mechanically Ventilated Patients. Clin Infect Dis 2023; 76:1059-1066. [PMID: 36310531 PMCID: PMC10029988 DOI: 10.1093/cid/ciac859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early and accurate recognition of respiratory pathogens is crucial to prevent increased risk of mortality in critically ill patients. Microbial-derived volatile organic compounds (mVOCs) in exhaled breath could be used as noninvasive biomarkers of infection to support clinical diagnosis. METHODS In this study, we investigated the diagnostic potential of in vitro-confirmed mVOCs in the exhaled breath of patients under mechanical ventilation from the BreathDx study. Samples were analyzed by thermal desorption-gas chromatography-mass spectrometry. RESULTS Pathogens from bronchoalveolar lavage (BAL) cultures were identified in 45 of 89 patients and Staphylococcus aureus was the most commonly identified pathogen (n = 15). Of 19 mVOCs detected in the in vitro culture headspace of 4 common respiratory pathogens (S. aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli), 14 were found in exhaled breath samples. Higher concentrations of 2 mVOCs were found in the exhaled breath of patients infected with S. aureus compared to those without (3-methylbutanal: P < .01, area under the receiver operating characteristic curve [AUROC] = 0.81-0.87; and 3-methylbutanoic acid: P = .01, AUROC = 0.79-0.80). In addition, bacteria identified from BAL cultures that are known to metabolize tryptophan (E. coli, Klebsiella oxytoca, and Haemophilus influenzae) were grouped and found to produce higher concentrations of indole compared to breath samples with culture-negative (P = .034) and other pathogen-positive (P = .049) samples. CONCLUSIONS This study demonstrates the capability of using mVOCs to detect the presence of specific pathogen groups with potential to support clinical diagnosis. Although not all mVOCs were found in patient samples within this small pilot study, further targeted and qualitative investigation is warranted using multicenter clinical studies.
Collapse
Affiliation(s)
- Waqar M Ahmed
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Dominic Fenn
- Department of Respiratory Medicine, Amsterdam UMC-location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam University Medical Center (UMC), Academic Medical Center (AMC), Amsterdam, The Netherlands
| | - Iain R White
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Laboratory for Environmental and Life Science, University of Nova Gorica, Nova Gorica, Slovenia
| | - Breanna Dixon
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | | | - Hugo H Knobel
- Eurofins Materials Science Netherlands BV, High Tech Campus, Eindhoven, The Netherlands
| | - Paul Brinkman
- Department of Respiratory Medicine, Amsterdam UMC-location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Pouline M P Van Oort
- Department of Anaesthesiology, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Intensive Care, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Clinical Affairs, Hamilton Medical AG, Chur, Switzerland
| | - Paul Dark
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
- Critical Care Unit, Salford Royal NHS Foundation Trust, Northern Care Alliance NHS Group, Manchester, United Kingdom
| | - Royston Goodacre
- Centre for Metabolomics Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Timothy Felton
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Lieuwe D J Bos
- Department of Respiratory Medicine, Amsterdam UMC-location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam University Medical Center (UMC), Academic Medical Center (AMC), Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, and Manchester Academic Health Science Centre and National Institute for Health Research Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | | |
Collapse
|
6
|
Fenn D, Lilien TA, Hagens LA, Smit MR, Heijnen NF, Tuip-de Boer AM, Neerincx AH, Golebski K, Bergmans DC, Schnabel RM, Schultz MJ, Maitland-van der Zee AH, Brinkman P, Bos LD. Validation of volatile metabolites of pulmonary oxidative injury: a bench to bedside study. ERJ Open Res 2023; 9:00427-2022. [PMID: 36949963 PMCID: PMC10026006 DOI: 10.1183/23120541.00427-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Background Changes in exhaled volatile organic compounds (VOCs) can be used to discriminate between respiratory diseases, and increased concentrations of hydrocarbons are commonly linked to oxidative stress. However, the VOCs identified are inconsistent between studies, and translational studies are lacking. Methods In this bench to bedside study, we captured VOCs in the headspace of A549 epithelial cells after exposure to hydrogen peroxide (H2O2), to induce oxidative stress, using high-capacity polydimethylsiloxane sorbent fibres. Exposed and unexposed cells were compared using targeted and untargeted analysis. Breath samples of invasively ventilated intensive care unit patients (n=489) were collected on sorbent tubes and associated with the inspiratory oxygen fraction (F IO2 ) to reflect pulmonary oxidative stress. Headspace samples and breath samples were analysed using gas chromatography and mass spectrometry. Results In the cell, headspace octane concentration was decreased after oxidative stress (p=0.0013), while the other VOCs were not affected. 2-ethyl-1-hexanol showed an increased concentration in the headspace of cells undergoing oxidative stress in untargeted analysis (p=0.00014). None of the VOCs that were linked to oxidative stress showed a significant correlation with F IO2 (Rs range: -0.015 to -0.065) or discriminated between patients with F IO2 ≥0.6 or below (area under the curve range: 0.48 to 0.55). Conclusion Despite a comprehensive translational approach, validation of known and novel volatile biomarkers of oxidative stress was not possible in patients at risk of pulmonary oxidative injury. The inconsistencies observed highlight the difficulties faced in VOC biomarker validation, and that caution is warranted in the interpretation of the pathophysiological origin of discovered exhaled breath biomarkers.
Collapse
Affiliation(s)
- Dominic Fenn
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
- Corresponding author: Dominic Fenn ()
| | - Thijs A. Lilien
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Paediatric Intensive Care, Amsterdam, Netherlands
| | - Laura A. Hagens
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| | - Marry R. Smit
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| | - Nanon F.L. Heijnen
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Anita M. Tuip-de Boer
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
| | - Anne H. Neerincx
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Korneliusz Golebski
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, Netherlands
| | - Dennis C.J.J. Bergmans
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - Ronny M. Schnabel
- Department of Intensive Care, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Marcus J. Schultz
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| | | | - Paul Brinkman
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
| | - Lieuwe D.J. Bos
- Amsterdam UMC location University of Amsterdam, Department of Pulmonary Medicine, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam, Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Intensive Care, Amsterdam, Netherlands
| |
Collapse
|
7
|
Ahmed W, White IR, Wilkinson M, Johnson CF, Rattray N, Kishore AK, Goodacre R, Smith CJ, Fowler SJ. Breath and plasma metabolomics to assess inflammation in acute stroke. Sci Rep 2021; 11:21949. [PMID: 34753981 PMCID: PMC8578671 DOI: 10.1038/s41598-021-01268-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Inflammation is strongly implicated in both injury and repair processes occurring after stroke. In this exploratory study we assessed the feasibility of repeated sampling of exhaled volatile organic compounds and performed an untargeted metabolomic analysis of plasma collected at multiple time periods after stroke. Metabolic profiles were compared with the time course of the inflammatory markers C-reactive protein (CRP) and interleukin-6 (IL-6). Serial breath sampling was well-tolerated by all patients and the measurement appears feasible in this group. We found that exhaled decanal tracks CRP and IL-6 levels post-stroke and correlates with several metabolic pathways associated with a post-stroke inflammatory response. This suggests that measurement of breath and blood metabolites could facilitate development of novel therapeutic and diagnostic strategies. Results are discussed in relation to the utility of breath analysis in stroke care, such as in monitoring recovery and complications including stroke associated infection.
Collapse
Affiliation(s)
- Waqar Ahmed
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Iain R White
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Maxim Wilkinson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Craig F Johnson
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Nicholas Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Amit K Kishore
- Greater Manchester Comprehensive Stroke Centre, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
- Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Craig J Smith
- Greater Manchester Comprehensive Stroke Centre, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK.
- Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| |
Collapse
|