1
|
Mlinac-Jerkovic K, Kalanj-Bognar S, Heffer M, Blažetić S. Methodological Pitfalls of Investigating Lipid Rafts in the Brain: What Are We Still Missing? Biomolecules 2024; 14:156. [PMID: 38397393 PMCID: PMC10886647 DOI: 10.3390/biom14020156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The purpose of this review is to succinctly examine the methodologies used in lipid raft research in the brain and to highlight the drawbacks of some investigative approaches. Lipid rafts are biochemically and biophysically different from the bulk membrane. A specific lipid environment within membrane domains provides a harbor for distinct raftophilic proteins, all of which in concert create a specialized platform orchestrating various cellular processes. Studying lipid rafts has proved to be arduous due to their elusive nature, mobility, and constant dynamic reorganization to meet the cellular needs. Studying neuronal lipid rafts is particularly cumbersome due to the immensely complex regional molecular architecture of the central nervous system. Biochemical fractionation, performed with or without detergents, is still the most widely used method to isolate lipid rafts. However, the differences in solubilization when various detergents are used has exposed a dire need to find more reliable methods to study particular rafts. Biochemical methods need to be complemented with other approaches such as live-cell microscopy, imaging mass spectrometry, and the development of specific non-invasive fluorescent probes to obtain a more complete image of raft dynamics and to study the spatio-temporal expression of rafts in live cells.
Collapse
Affiliation(s)
| | | | - Marija Heffer
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
2
|
Ota E, Takeda D, Oonuma K, Kato M, Matoba H, Yoritate M, Sodeoka M, Hirai G. Synthesis and biological activity of ganglioside GM3 analogues with a (S)-CHF-Sialoside linkage and an alkyne tag. Glycoconj J 2023; 40:333-341. [PMID: 36939991 DOI: 10.1007/s10719-023-10111-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
The alkyne tag, consisting of only two carbons, is widely used as a bioorthogonal functional group due to its compactness and nonpolar structure, and various probes consisting of lipids bearing an alkyne tag have been developed. Here, we designed and synthesized analogues of ganglioside GM3 bearing an alkyne tag in the fatty acid moiety and evaluated the effect of the alkyne tag on the biological activity. To eliminate the influence of other factors such as degradation of the glycan chain when evaluating biological activity in a cellular environment, we introduced the tag into sialidase-resistant (S)-CHF-linked GM3 analogues developed by our group. The designed analogues were efficiently synthesized by tuning the protecting group of the glucosylsphingosine acceptor. The growth-promoting effect of these analogues on Had-1 cells was dramatically altered depending upon the position of the alkyne tag.
Collapse
Affiliation(s)
- Eisuke Ota
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daiki Takeda
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Kana Oonuma
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Marie Kato
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Mikiko Sodeoka
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Go Hirai
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
- RIKEN Center for Sustainable Resource Science, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan.
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
3
|
Fatty Acid 2-Hydroxylase and 2-Hydroxylated Sphingolipids: Metabolism and Function in Health and Diseases. Int J Mol Sci 2023; 24:ijms24054908. [PMID: 36902339 PMCID: PMC10002949 DOI: 10.3390/ijms24054908] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.
Collapse
|
4
|
Kranaster P, Blum J, Dold JEGA, Wittmann V, Leist M. Use of metabolic glycoengineering and pharmacological inhibitors to assess lipid and protein sialylation on cells. J Neurochem 2023; 164:481-498. [PMID: 36504018 DOI: 10.1111/jnc.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
Metabolic glycoengineering (MGE) has been developed to visualize carbohydrates on live cells. The method allows the fluorescent labeling of sialic acid (Sia) sugar residues on neuronal plasma membranes. For instance, the efficiency of glycosylation along neurite membranes has been characterized as cell health measure in neurotoxicology. Using human dopaminergic neurons as model system, we asked here, whether it was possible to separately label diverse classes of biomolecules and to visualize them selectively on cells. Several approaches suggest that a large proportion of Sia rather incorporated in non-protein components of cell membranes than into glycoproteins. We made use here of deoxymannojirimycin (dMM), a non-toxic inhibitor of protein glycosylation, and of N-butyl-deoxynojirimycin (NBdNM) a well-tolerated inhibitor of lipid glycosylation, to develop a method of differential labeling of sialylated membrane lipids (lipid-Sia) or sialylated N-glycosylated proteins (protein-Sia) on live neurons. The time resolution at which Sia modification of lipids/proteins was observable was in the range of few hours. The approach was then extended to several other cell types. Using this technique of target-specific MGE, we found that in dopaminergic or sensory neurons >60% of Sia is lipid bound, and thus polysialic acid-neural cell adhesion molecule (PSA-NCAM) cannot be considered the major sialylated membrane component. Different from neurons, most Sia was bound to protein in HepG2 hepatoma cells or in neural crest cells. Thus, our method allows visualization of cell-specific sialylation processes for separate classes of membrane constituents.
Collapse
Affiliation(s)
- Petra Kranaster
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| | - Jonathan Blum
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany
| | - Jeremias E G A Dold
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany.,Department of Chemistry, University of Konstanz, Constance, Germany
| | - Valentin Wittmann
- Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany.,Department of Chemistry, University of Konstanz, Constance, Germany
| | - Marcel Leist
- In vitro Toxicology and Biomedicine, Dept inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
5
|
Design, synthesis and neurite outgrowth activity of novel ganglioside GM1 derivatives by remodeling of the fatty acid moiety. Eur J Med Chem 2022; 241:114636. [DOI: 10.1016/j.ejmech.2022.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
6
|
Liang Y, Feng Q, Wang Z. Mass Spectrometry Imaging as a New Method: To Reveal the Pathogenesis and the Mechanism of Traditional Medicine in Cerebral Ischemia. Front Pharmacol 2022; 13:887050. [PMID: 35721195 PMCID: PMC9204101 DOI: 10.3389/fphar.2022.887050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Mass spectrometry imaging (MSI) can describe the spatial distribution of molecules in various complex biological samples, such as metabolites, lipids, peptides and proteins in a comprehensive way, and can provide highly relevant supplementary information when combined with other molecular imaging techniques and chromatography techniques, so it has been used more and more widely in biomedical research. The application of mass spectrometry imaging in neuroscience is developing. It is very advantageous and necessary to use MSI to study various pathophysiological processes involved in brain injury and functional recovery during cerebral ischemia. Therefore, this paper introduces the techniques of mass spectrometry, including the principle of mass spectrometry, the acquisition and preparation of imaging samples, the commonly used ionization techniques, and the optimization of the current applied methodology. Furthermore, the research on the mechanism of cerebral ischemia by mass spectrometry was reviewed, such as phosphatidylcholine involved, dopamine, spatial distribution and level changes of physiological substances such as ATP in the Krebs cycle; The characteristics of mass spectrometry imaging as one of the methods of metabolomics in screening biomarkers related to cerebral ischemia were analyzed the advantages of MSI in revealing drug distribution and the mechanism of traditional drugs were summarized, and the existing problems of MSI were also analyzed and relevant suggestions were put forward.
Collapse
Affiliation(s)
- Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoqiao Feng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Zhang Wang,
| |
Collapse
|
7
|
Wang J, Lu D, Sun R, Lei S, Luo S, Dang X, Zhang Y, Yuan C, Zhang Y, Wu J, Yang G, Fu L, Jiang F. One-Pot Enzymatic Synthesis and Biological Evaluation of Ganglioside GM3 Derivatives as Potential Cancer Immunotherapeutics. J Med Chem 2022; 65:1883-1897. [PMID: 35073068 DOI: 10.1021/acs.jmedchem.1c01301] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer is a leading cause of death worldwide. Recent research studies have revealed that GM3 derivatives have considerable promise as potential therapeutic agents for cancer. To discover novel GM3 derivatives as potential antitumor agents, a one-pot enzymatic synthesis was established, yielding 14 GM3 derivatives in high total yields (22-41%). Subsequently, the inhibitory activities of GM3 derivatives were assessed by wound-healing assays and Transwell assays and tumor-bearing animal models. Among all the GM3 derivatives, N-12 showed excellent migration and invasion inhibitory effects in cells and marked antitumor activity in C57BL/6 mice. The subsequent analysis of cancer tissues and serum samples revealed that N-12 induces tumor inhibition, which was closely related to immune response. Taken together, N-12 can be further developed as an effective therapeutic for the treatment of cancer. An RNA-sequencing (RNA-seq) analysis was then performed and indicated that the antitumor mechanism of N-12 involved focal adhesion and ECM-receptor interaction signaling pathways.
Collapse
Affiliation(s)
- Juntao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Dan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Ran Sun
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Shuwen Lei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Shuhua Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Xin Dang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Yang Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Chang Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Yong Zhang
- School of Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Guangyu Yang
- School of Science and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Lei Fu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| | - Faqin Jiang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, PR China
| |
Collapse
|
8
|
Francischini DS, Arruda MA. When a picture is worth a thousand words: Molecular and elemental imaging applied to environmental analysis – A review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Ica R, Munteanu CV, Vukelic Z, Zamfir AD. High-resolution mass spectrometry reveals a complex ganglioside pattern and novel polysialylated structures associated with the human motor cortex. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:205-214. [PMID: 34516313 DOI: 10.1177/14690667211040912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have developed here a superior methodology based on high-resolution mass spectrometry for screening and fragmentation analysis of gangliosides extracted and purified from the human motor cortex . The experiments, conducted on a nanoelectrospray Orbitrap mass spectroscope in the negative ion mode, allowed the discrimination in the native mixture extracted from human motor cortex of no less than 83 different gangliosides, which represents the highest number of structures identified so far in this brain region. The spectral data, acquired in high-resolution mass spectrometry mode with a remarkable sensitivity and an average mass accuracy of 4.48 ppm, also show that the gangliosidome of motor cortex is generally characterized by species exhibiting a much higher degree of sialylation than previously known. Motor cortex was found dominated by complex structures with a sialylation degree ≥3, exhibiting long saccharide chains, in the G1 class. Fucogangliosides and species with the glycan chain elongated by either O-acetylation and/or acetate anion attachments were also detected; the later modification was for the first time discovered in this brain region. Of major significance is the identification of hepta and octasialylated species of GS1 and GO1 type, which are among the structures with the longest oligosaccharide chain discovered so far in the human brain. In the last stage of research, tandem mass spectrometry performed by higher energy collision dissociation provided structural data documenting the occurrence of GT1b (d18:1/20:0) isomer in the human motor cortex.
Collapse
Affiliation(s)
- Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Romania
- Faculty of Physics, 124255West University of Timisoara, Romania
| | | | - Zeljka Vukelic
- Department of Chemistry and Biochemistry, University of Zagreb Medical School, Croatia
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Romania
- "Aurel Vlaicu"University of Arad, Romania
| |
Collapse
|