1
|
Zheng Z, Lin X, Zhao Z, Lin Q, Liu J, Chen M, Wu W, Wu Z, Liu N, Chen H. A vascular endothelial growth factor-loaded chitosan-hyaluronic acid hydrogel scaffold enhances the therapeutic effect of adipose-derived stem cells in the context of stroke. Neural Regen Res 2025; 20:3591-3605. [PMID: 39248177 PMCID: PMC11974663 DOI: 10.4103/nrr.nrr-d-24-00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/13/2024] [Accepted: 07/05/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00028/figure1/v/2025-01-31T122243Z/r/image-tiff Adipose-derived stem cell, one type of mesenchymal stem cells, is a promising approach in treating ischemia-reperfusion injury caused by occlusion of the middle cerebral artery. However, its application has been limited by the complexities of the ischemic microenvironment. Hydrogel scaffolds, which are composed of hyaluronic acid and chitosan, exhibit excellent biocompatibility and biodegradability, making them promising candidates as cell carriers. Vascular endothelial growth factor is a crucial regulatory factor for stem cells. Both hyaluronic acid and chitosan have the potential to make the microenvironment more hospitable to transplanted stem cells, thereby enhancing the therapeutic effect of mesenchymal stem cell transplantation in the context of stroke. Here, we found that vascular endothelial growth factor significantly improved the activity and paracrine function of adipose-derived stem cells. Subsequently, we developed a chitosan-hyaluronic acid hydrogel scaffold that incorporated vascular endothelial growth factor and first injected the scaffold into an animal model of cerebral ischemia-reperfusion injury. When loaded with adipose-derived stem cells, this vascular endothelial growth factor-loaded scaffold markedly reduced neuronal apoptosis caused by oxygen-glucose deprivation/reoxygenation and substantially restored mitochondrial membrane potential and axon morphology. Further in vivo experiments revealed that this vascular endothelial growth factor-loaded hydrogel scaffold facilitated the transplantation of adipose-derived stem cells, leading to a reduction in infarct volume and neuronal apoptosis in a rat model of stroke induced by transient middle cerebral artery occlusion. It also helped maintain mitochondrial integrity and axonal morphology, greatly improving rat motor function and angiogenesis. Therefore, utilizing a hydrogel scaffold loaded with vascular endothelial growth factor as a stem cell delivery system can mitigate the adverse effects of ischemic microenvironment on transplanted stem cells and enhance the therapeutic effect of stem cells in the context of stroke.
Collapse
Affiliation(s)
- Zhijian Zheng
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiaohui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zijun Zhao
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Qiang Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ji Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Manli Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wenwen Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhiyun Wu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Nan Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hongbin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Pereira AR, Pires PC, Hameed H, Lopes D, Lopes J, Sousa-Oliveira I, Babaie S, Mazzola P, Veiga F, Paiva-Santos AC. Injectable nanocomposite hydrogels for targeted intervention in cancer, wound healing, and bone and myocardial tissue engineering. Drug Deliv Transl Res 2025:10.1007/s13346-025-01864-2. [PMID: 40358831 DOI: 10.1007/s13346-025-01864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2025] [Indexed: 05/15/2025]
Abstract
Despite current medicine's fast-paced advances, many acute and chronic illnesses still lack truly effective and safe therapies. Cancer treatments often lead to off-target healthy tissue damage and poor therapeutic outcomes, wound standard treatments generally demonstrate poor healing efficacy and increased susceptibility to infection, and bone tissue engineering and myocardial tissue engineering can result in immunological rejection and limited availability. To tackle these issues, injectable hydrogels have emerged, and through the incorporation of nanoparticles, nanocomposite hydrogels have appeared as versatile platforms, offering improved biocompatibility, mechanical strength, stability, and precise controlled drug release, as well as targeted delivery with increased drug retention at the site of action, reducing systemic drug distribution to non-target sites. With the ability to deliver a diverse range of therapeutic entities, including low molecular weight drugs, proteins, antibodies, and even isolated cells, injectable nanocomposite hydrogels have revolutionized current therapies, working as multifunctional platforms capable of improving efficacy and safety in cancer treatment, including in chemotherapy, immunotherapy, photothermal therapy, magnetic hyperthermia, photodynamic therapy, chemodynamic therapy, radiotherapy, molecularly targeted therapy, and after tumor surgical removal, and in general, chronic diabetic or tumor-induced wound healing, as well as in bone tissue engineering and myocardial tissue engineering. This review provides a thorough summary and critical insight of current advances on injectable nanocomposite hydrogels as an innovative approach that could bring substantial contributions to biomedical research and clinical practice, with a focus on their applications in cancer therapy, wound healing management, and tissue engineering.
Collapse
Affiliation(s)
- Ana Rita Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000 - 548, Coimbra, Portugal
| | - Patrícia C Pires
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000 - 548, Coimbra, Portugal.
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000 - 548, Coimbra, Portugal.
- Department of Medical Sciences, Faculty of Health Sciences, RISE-Health, University of Beira Interior, Av. Infante D. Henrique, 6200 - 506, Covilhã, Portugal.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan
| | - Daniela Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000 - 548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000 - 548, Coimbra, Portugal
| | - Joana Lopes
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000 - 548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000 - 548, Coimbra, Portugal
| | - Inês Sousa-Oliveira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000 - 548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000 - 548, Coimbra, Portugal
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, 51368, Iran
| | - Priscila Mazzola
- Faculty of Pharmaceutical Sciences, Universidade Estadual de Campinas, Campinas, SP, 13083 - 970, Brazil
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000 - 548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000 - 548, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000 - 548, Coimbra, Portugal.
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000 - 548, Coimbra, Portugal.
| |
Collapse
|
3
|
Hu Y, Zhou J, Gao Y, Fan Y, Chen B, Su J, Li H. Multifunctional nanocomposite hydrogels: an effective approach to promote diabetic wound healing. Biomed Mater 2025; 20:032006. [PMID: 40273939 DOI: 10.1088/1748-605x/add06f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Diabetes, a metabolic disease that is becoming increasingly severe globally, presents a significant challenge in the medical field. Diabetic wounds are characterized by their chronicity, difficulty healing, and complex microenvironment that harbors multiple adverse factors, including elevated hyperglycemia, persistent inflammation, susceptibility to infections, and oxidative stress, all of which contribute to the impaired healing process. Nanocomposite hydrogels, as materials with unique physicochemical properties and biocompatibility, have gained growing attention in recent years for their potential applications in diabetic wound healing. These hydrogels provide a moist healing environment for wounds and regulate cellular behavior and signaling pathways, promoting wound repair and healing. By introducing specific functional groups and nanoparticles, nanocomposite hydrogels can respond to pathological features of wounds, enabling adaptive drug release. Owing to their diverse bioactive functions, nanocomposite hydrogels are powerful tools for the treatment of diabetic wounds. Thus, this article provides an overview of recent progress in the use of nanocomposite hydrogels for diabetic wound healing.
Collapse
Affiliation(s)
- Yuchen Hu
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Junchao Zhou
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yuhang Gao
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Ying Fan
- Chongqing University Jiangjin Hospital, Chongqing 402260, People's Republic of China
| | - Ban Chen
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Jiangtao Su
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Hong Li
- School of Pharmacy, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
4
|
Pan Y, Zhao H, Huang W, Liu S, Qi Y, Huang Y. Metal-Protein Hybrid Materials: Unlocking New Frontiers in Biomedical Applications. Adv Healthc Mater 2025; 14:e2404405. [PMID: 39778029 DOI: 10.1002/adhm.202404405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Metal-protein hybrid materials represent a novel class of functional materials that exhibit exceptional physicochemical properties and tunable structures, rendering them remarkable applications in diverse fields, including materials engineering, biocatalysis, biosensing, and biomedicine. The design and development of multifunctional and biocompatible metal-protein hybrid materials have been the subject of extensive research and a key aspiration for practical applications in clinical settings. This review provides a comprehensive analysis of the design strategies, intrinsic properties, and biomedical applications of these hybrid materials, with a specific emphasis on their potential in cancer therapy, drug and vaccine delivery, antibacterial treatments, and tissue regeneration. Through rational design, stable metal-protein hybrid materials can be synthesized using straightforward methods, enabling them with therapeutic, delivery, immunomodulatory, and other desired functionalities. Finally, the review outlines the existing limitations and challenges associated with metal-protein hybrid materials and evaluates their potential for clinical translation, providing insights into their practical implementation within biomedical applications.
Collapse
Affiliation(s)
- Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Han Zhao
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Wenyong Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Siyang Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| |
Collapse
|
5
|
Zhao Y, Dai Z, Huang H, Tian J, Cai H. Injectable Silver Nanoparticle-Based Hydrogel Dressings with Rapid Shape Adaptability and Antimicrobial Activity. Appl Biochem Biotechnol 2025; 197:821-836. [PMID: 39254796 DOI: 10.1007/s12010-024-05048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Burns and scalds often result in deep wounds that challenge adequate debridement and inflammation control using traditional sheet-like hydrogel dressings. Herein, we developed an antibacterial, injectable, and self-healing hydrogel (ADCM@Ag) by employing carboxymethyl chitosan (CMCS) for in situ green reduction of silver ions and utilizing a spontaneous Schiff base reaction with aldehyde-functionalized dextran (AD). SEM analysis revealed a porous structure within the hydrogel. Swelling and enzymatic degradation assays demonstrated that ADCM@Ag hydrogel possesses excellent fluid absorption capacity and biodegradability. Mechanical tests indicated good mechanical properties, allowing the hydrogel to withstand external forces when applied to animal wounds. The hydrogel exhibited good injectability, shape adaptability, and self-healing capability. Cell experiments showed that the ADCM@Ag hydrogel avoided the cytotoxicity caused by high concentrations of silver ions and had good cell compatibility. Antimicrobial assays showed that ADCM@Ag exhibited potent bactericidal effects against Gram-negative and Gram-positive bacteria, achieving at least 85% killing efficacy. Collectively, ADCM@Ag hydrogel has good potential for wound dressing applications.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Zhaobo Dai
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, People's Republic of China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
6
|
Zhao Y, Zhang J, Zhang G, Huang H, Tan WS, Cai H. Injectable Nanocomposite Hydrogel with Synergistic Biofilm Eradication and Enhanced Re-epithelialization for Accelerated Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69086-69102. [PMID: 39635909 DOI: 10.1021/acsami.4c17855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Diabetic wounds remain a critical clinical challenge due to their harsh microenvironment, which impairs cellular function, hinders re-epithelialization and tissue remodeling, and slows healing. Injectable nanocomposite hydrogel dressings offer a promising strategy for diabetic wound repair. In this study, we developed an injectable nanocomposite hydrogel dressing (HDL@W379) using LAP@W379 nanoparticles and an injectable hyaluronic acid-based hydrogel (HA-ADH-ODEX). This dressing provided a sustained, pH-responsive release of W379 antimicrobial peptides, effectively regulating the wound microenvironment to enhance healing. The HDL@W379 hydrogel featured multifunctional properties, including mechanical stability, injectability, self-healing, biocompatibility, and tissue adhesion. In vitro, the HDL@W379 hydrogel achieved synergistic biofilm elimination and subsequent activation of basal cell migration and endothelial cell tube formation. Pathway analysis indicated that the HDL@W379 hydrogel enhances basal cell migration through MEK/ERK pathway activation. In methicillin-resistant Staphylococcus aureus (MRSA)-infected diabetic wounds, the HDL@W379 hydrogel accelerated wound healing by inhibiting bacterial proliferation and promoting re-epithelialization, regenerating the granulation tissue, enhancing collagen deposition, and facilitating angiogenesis. Overall, this strategy of biofilm elimination and basal cell activation to continuously regulate the diabetic wound microenvironment offers an innovative approach to treating chronic wounds.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jingwei Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Guofeng Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Huimin Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
8
|
Gonzalez-Pujana A, Igartua M, Hernandez RM, Santos-Vizcaino E. Laponite nanoclays for the sustained delivery of therapeutic proteins. Eur J Pharm Sci 2024; 201:106858. [PMID: 39033884 DOI: 10.1016/j.ejps.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Protein therapeutics hold immense promise for treating a wide array of diseases. However, their efficacy is often compromised by rapid degradation and clearance. The synthetic smectite clay Laponite emerges as a promising candidate for their sustained delivery. Despite its unique properties allow to load and release proteins mitigating burst release and extending their effects, precise control over Laponite-protein interactions remains challenging since it depends on a complex interplay of factors whose implication is not fully understood yet. The aim of this review article is to shed light on this issue, providing a comprehensive discussion of the factors influencing protein loading and release, including the physicochemical properties of the nanoclay and proteins, pH, dispersion buffer, clay/protein concentration and Laponite degradation. Furthermore, we thoroughly revise the array of bioactive proteins that have been delivered from formulations containing the nanoclay, highlighting Laponite-polymer nanocomposite hydrogels, a promising avenue currently under extensive investigation.
Collapse
Affiliation(s)
- Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Madrid, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
9
|
Li S, Dou W, Ji W, Li X, Chen N, Ji Y, Zeng X, Sun P, Li Y, Liu C, Fan H, Gao Y, Zhao K, Zhao J, Liu H, Hou X, Yuan X. Tissue-adhesive, stretchable and compressible physical double-crosslinked microgel-integrated hydrogels for dynamic wound care. Acta Biomater 2024; 184:186-200. [PMID: 38936752 DOI: 10.1016/j.actbio.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Integrated wound care through sequentially promoting hemostasis, sealing, and healing holds great promise in clinical practice. However, it remains challenging for regular bioadhesives to achieve integrated care of dynamic wounds due to the difficulties in adapting to dynamic mechanical and wet wound environments. Herein, we reported a type of dehydrated, physical double crosslinked microgels (DPDMs) which were capable of in situ forming highly stretchable, compressible and tissue-adhesive hydrogels for integrated care of dynamic wounds. The DPDMs were designed by the rational integration of the reversible crosslinks and double crosslinks into micronized gels. The reversible physical crosslinks enabled the DPDMs to integrate together, and the double crosslinked characteristics further strengthen the formed macroscopical networks (DPDM-Gels). We demonstrated that the DPDM-Gels simultaneously possess outstanding tensile (∼940 kJ/m3) and compressive (∼270 kJ/m3) toughness, commercial bioadhesives-comparable tissue-adhesive strength, together with stable performance under hundreds of deformations. In vivo results further revealed that the DPDM-Gels could effectively stop bleeding in various bleeding models, even in an actual dynamic environment, and enable the integrated care of dynamic skin wounds. On the basis of the remarkable mechanical and appropriate adhesive properties, together with impressive integrated care capacities, the DPDM-Gels may provide a new approach for the smart care of dynamic wounds. STATEMENT OF SIGNIFICANCE: Integrated care of dynamic wounds holds great significance in clinical practice. However, the dynamic and wet wound environments pose great challenges for existing hydrogels to achieve it. This work developed robust adhesive hydrogels for integrated care of dynamic wounds by designing dehydrated, physical double crosslinked microgels (DPDMs). The reversible and double crosslinks enabled DPDMs to integrate into macroscopic hydrogels with high mechanical properties, appropriate adhesive strength and stable performance under hundreds of external deformations. Upon application at the injury site, DPDM-Gels efficiently stopped bleeding, even in an actual dynamic environment and showed effectiveness in integrated care of dynamic wounds. With the fascinating properties, DPDMs may become an effective tool for smart wound care.
Collapse
Affiliation(s)
- Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China.
| | - Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China
| | - Weijun Ji
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xueping Li
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ning Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yunpeng Ji
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China; College of Life Sciences, Yantai University, Yantai, 264005, Shandong Province, China
| | - Peng Sun
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yansheng Li
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264001, Shandong Province, China
| | - Chan Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China
| | - Honglei Fan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai, 264005, Shandong Province, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jin Zhao
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong Province, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 265503, Shandong Province, China.
| | - Xin Hou
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xubo Yuan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
10
|
Eufrásio-da-Silva T, Erezuma I, Dolatshahi-Pirouz A, Orive G. Enhancing regenerative medicine with self-healing hydrogels: A solution for tissue repair and advanced cyborganic healthcare devices. BIOMATERIALS ADVANCES 2024; 161:213869. [PMID: 38718714 DOI: 10.1016/j.bioadv.2024.213869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 06/04/2024]
Abstract
Considering the global burden related to tissue and organ injuries or failures, self-healing hydrogels may be an attractive therapeutic alternative for the future. Self-healing hydrogels are highly hydrated 3D structures with the ability to self-heal after breaking, this property is attributable to a variety of dynamic non-covalent and covalent bonds that are able to re-linking within the matrix. Self-healing ability specially benefits minimal invasive medical treatments with cell-delivery support. Moreover, those tissue-engineered self-healing hydrogels network have demonstrated effectiveness for myriad purposes; for instance, they could act as delivery-platforms for different cargos (drugs, growth factors, cells, among others) in tissues such as bone, cartilage, nerve or skin. Besides, self-healing hydrogels have currently found their way into new and novel applications; for example, with the development of the self-healing adhesive hydrogels, by merely aiding surgical closing processes and by providing biomaterial-tissue adhesion. Furthermore, conductive hydrogels permit the stimuli and monitoring of natural electrical signals, which facilitated a better fitting of hydrogels in native tissue or the diagnosis of various health diseases. Lastly, self-healing hydrogels could be part of cyborganics - a merge between biology and machinery - which can pave the way to a finer healthcare devices for diagnostics and precision therapies.
Collapse
Affiliation(s)
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
11
|
Gao LT, Chen YM, Aziz Y, Wei W, Zhao XY, He Y, Li J, Li H, Miyatake H, Ito Y. Tough, self-healing and injectable dynamic nanocomposite hydrogel based on gelatin and sodium alginate. Carbohydr Polym 2024; 330:121812. [PMID: 38368083 DOI: 10.1016/j.carbpol.2024.121812] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
Biomacromolecules based injectable and self-healing hydrogels possessing high mechanical properties have widespread potential in biomedical field. However, dynamic features are usually inversely proportional to toughness. It is challenging to simultaneously endow these properties to the dynamic hydrogels. Here, we fabricated an injectable nanocomposite hydrogel (CS-NPs@OSA-l-Gtn) stimultaneously possessing excellent autonomous self-healing performance and high mechanical strength by doping chitosan nanoparticles (CS-NPs) into dynamic polymer networks of oxidized sodium alginate (OSA) and gelatin (Gtn) in the presence of borax. The synergistic effect of the multiple reversible interactions combining dynamic covalent bonds (i.e., imine bond and borate ester bond) and noncovalent interactions (i.e., electrostatic interaction and hydrogen bond) provide effective energy dissipation to endure high fatigue resistance and cyclic loading. The dynamic hydrogel exhibited excellent mechanical properties like maximum 2.43 MPa compressive strength, 493.91 % fracture strain, and 89.54 kJ/m3 toughness. Moreover, the integrated hydrogel after injection and self-healing could withstand 150 successive compressive cycles. Besides, the bovine serum albumin embedded in CS-NPs could be sustainably released from the nanocomposite hydrogel for 12 days. This study proposes a novel strategy to synthesize an injectable and self-healing hydrogel combined with excellent mechanical properties for designing high-strength natural carriers with sustained protein delivery.
Collapse
Affiliation(s)
- Li Ting Gao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Yasir Aziz
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Wei Wei
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xin Yi Zhao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yuan He
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China.
| | - Haopeng Li
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an. Shaanxi 710049, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
12
|
Bai B, Liu Y, Huang J, Wang S, Chen H, Huo Y, Zhou H, Liu Y, Feng S, Zhou G, Hua Y. Tolerant and Rapid Endochondral Bone Regeneration Using Framework-Enhanced 3D Biomineralized Matrix Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305580. [PMID: 38127989 PMCID: PMC10916654 DOI: 10.1002/advs.202305580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Indexed: 12/23/2023]
Abstract
Tissue-engineered bone has emerged as a promising alternative for bone defect repair due to the advantages of regenerative bone healing and physiological functional reconstruction. However, there is very limited breakthrough in achieving favorable bone regeneration due to the harsh osteogenic microenvironment after bone injury, especially the avascular and hypoxic conditions. Inspired by the bone developmental mode of endochondral ossification, a novel strategy is proposed for tolerant and rapid endochondral bone regeneration using framework-enhanced 3D biomineralized matrix hydrogels. First, it is meticulously designed 3D biomimetic hydrogels with both hypoxic and osteoinductive microenvironment, and then integrated 3D-printed polycaprolactone framework to improve their mechanical strength and structural fidelity. The inherent hypoxic 3D matrix microenvironment effectively activates bone marrow mesenchymal stem cells self-regulation for early-stage chondrogenesis via TGFβ/Smad signaling pathway due to the obstacle of aerobic respiration. Meanwhile, the strong biomineralized microenvironment, created by a hybrid formulation of native-constitute osteogenic inorganic salts, can synergistically regulate both bone mineralization and osteoclastic differentiation, and thus accelerate the late-stage bone maturation. Furthermore, both in vivo ectopic osteogenesis and in situ skull defect repair successfully verified the high efficiency and mechanical maintenance of endochondral bone regeneration mode, which offers a promising treatment for craniofacial bone defect repair.
Collapse
Affiliation(s)
- Baoshuai Bai
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Yanhan Liu
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
- Department of OphthalmologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127P. R. China
| | - Jinyi Huang
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Sinan Wang
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Hongying Chen
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Yingying Huo
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Hengxing Zhou
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Yu Liu
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Shiqing Feng
- Department of OrthopaedicsAdvanced Medical Research InstituteQilu Hospital of Shangdong University Centre for OrthopaedicsShandong UniversityJinanShandong250100P. R. China
- Department of OrthopaedicsCheeloo College of MedicineThe Second Hospital of Shandong UniversityShandong UniversityJinanShandong250033P. R. China
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| | - Yujie Hua
- Shanghai Key Laboratory of Tissue EngineeringDepartment of Plastic and Reconstructive Surgery of Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
- National Tissue Engineering Center of ChinaShanghai200241P. R. China
| |
Collapse
|
13
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 119] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
14
|
Chen Y, Chen Y, Han T, Xie Z, Yang Y, Chen S, Wang C. Enhanced osteogenic and antibacterial properties of polyetheretherketone by ultraviolet-initiated grafting polymerization of a gelatin methacryloyl/epsilon-poly-L-lysine/laponite hydrogel coating. J Biomed Mater Res A 2023; 111:1808-1821. [PMID: 37548424 DOI: 10.1002/jbm.a.37589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/30/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Polyetheretherketone (PEEK) is a promising material for use in orthopedic implants, but its bio-inert character and lack of antibacterial activity limit its applications in bone repair. In the present study, considering the advantages of PEEK in self-initiated graft polymerization and of hydrogels in bone tissue engineering, we constructed a hydrogel coating (GPL) consisting of Gelatin methacryloyl (GelMA), methacrylamide-modified ε-poly-l-lysine (ε-PLMA) and Laponite on PEEK through UV-initiated crosslinking. The coating improved the hydrophilicity of PEEK, and the coating degraded slowly so that approximately 80% was retained after incubation in PBS for 8 weeks. In vitro studies revealed that as compared to culturing on PEEK, culturing on PEEK-GPL led to enhanced viability and adhesion of cultured human umbilical cord Wharton's jelly-derived mesenchymal stem cells (hWJ-MSCs). Due to the synergistic effect of the micron-scale three-dimensional surface and Laponite, PEEK-GPL exhibited a significantly improved induction of osteogenic differentiation of hWJ-MSCs compared to PEEK, as demonstrated by increased alkaline phosphatase activity, matrix mineralization, and expression of osteogenesis-related genes. Furthermore, PEEK-GPL showed antibacterial activity upon contact with Staphylococcus aureus and Escherichia coli, and this activity would be maintained before complete degradation of the hydrogel because the ε-PLMA was cross-linked covalently into the coating. Thus, PEEK-GPL achieved both osteogenesis and infection prevention in a single simple step, providing a feasible approach for the extensive use of PEEK in bone implants.
Collapse
Affiliation(s)
- Yuhong Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Yiyi Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Tianlei Han
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Zhe Xie
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Yuchen Yang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Siyuan Chen
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| | - Chen Wang
- Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing, China
| |
Collapse
|
15
|
Gan S, Zheng Z, Zhang M, Long L, Zhang X, Tan B, Zhu Z, Liao J, Chen W. Lyophilized Platelet-Rich Fibrin Exudate-Loaded Carboxymethyl Chitosan/GelMA Hydrogel for Efficient Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37224006 DOI: 10.1021/acsami.3c02528] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Platelet-rich fibrin (PRF) is an autologous growth factor carrier that promotes bone tissue regeneration, but its effectiveness is restrained by poor storage capabilities, uncontrollable concentration of growth factors, unstable shape, etc. Herein, we developed a photocrosslinkable composite hydrogel by incorporating lyophilized PRF exudate (LPRFe) into the carboxymethyl chitosan methacryloyl (CMCSMA)/gelatin methacryloyl (GelMA) hydrogel to effectively solve the dilemma of PRF. The hydrogel possessed suitable physical properties and sustainable release ability of growth factors in LPRFe. The LPRFe-loaded hydrogel could improve the adhesion, proliferation, migration, and osteogenic differentiation of rat bone mesenchymal stem cells (BMSCs). Furthermore, the animal experiments demonstrated that the hydrogel possessed excellent biocompatibility and biodegradability, and the introduction of LPRFe in the hydrogel can effectively accelerate the bone healing process. Conclusively, the combination of LPRFe with CMCSMA/GelMA hydrogel may be a promising therapeutic approach for bone defects.
Collapse
Affiliation(s)
- Shuaiqi Gan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Long
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bowen Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Jinjiang Out-patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Li Y, Zhao D, Wang Z, Meng Y, Liu B, Li L, Liu R, Dong S, Wei F. Minimally invasive bone augmentation through subperiosteal injectable hydroxylapatite/laponite/alginate nanocomposite hydrogels. Int J Biol Macromol 2023; 231:123232. [PMID: 36681217 DOI: 10.1016/j.ijbiomac.2023.123232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/31/2022] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
Bone augmentation has an enormous demand in oral clinical treatment. Although there are various options available for clinical management to address it, these approaches could increase patient suffering due to surgical trauma and even cause psychological trauma to the patients. Moreover, presently, there is still a lack of well-considered microinvasive bone augmentation systems to deal with this challenge. Herein, we newly developed a subperiosteal injectable and osteogenesis-promoting hydroxylapatite/laponite/alginate nanocomposite hydrogels to address the insufficient microinvasive bone augmentation strategies. The physical performances (like swelling profiles, degradation behaviors, mechanical properties, and surface morphologies) of the gels were determined, and can be slightly tuned through altering concentrations of laponite. The cytocompatibility test results show outstanding biocompatibility of the hydrogels. Furthermore, the in vitro testing for bone-inducing activity and in vivo determination of bone-augmentation in the rat cranial subperiosteum exhibit that the hydrogels significantly promoted rat periosteum-derived mesenchymal stromal cells (P-MSCs) osteogenic differentiation in vitro and bone augmentation in vivo. Therefore, the research reveals that the nanocomposite hydrogels possessing subperiosteal microinvasive injectability, osteogenesis-enhancing capability, and clinical applicability have extremely great potential application in subperiosteal microinvasive bone augmentation.
Collapse
Affiliation(s)
- Yixuan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China; Department of Medical Administration, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, China
| | - Delu Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Ziyao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Yiling Meng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Bohui Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Lan Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Rui Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Sichen Dong
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, Jinan 250012, Shandong, China.
| |
Collapse
|
17
|
Erezuma I, Lukin I, Desimone M, Zhang YS, Dolatshahi-Pirouz A, Orive G. Progress in self-healing hydrogels and their applications in bone tissue engineering. BIOMATERIALS ADVANCES 2023; 146:213274. [PMID: 36640523 DOI: 10.1016/j.bioadv.2022.213274] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Bone tissue engineering (BTE) is constantly seeking novel treatments to address bone injuries in all their varieties. It is necessary to find new ways to create structures that perfectly emulate the native tissue. Self-healing hydrogels have been a breakthrough in this regard, as they are able to reconstitute their links after they have been partially broken. Among the most outstanding biomaterials when it comes to developing these hydrogels for BTE, those polymers of natural origin (e.g., gelatin, alginate) stand out, although synthetics such as PEG or nanomaterials like laponite are also key for this purpose. Self-healing hydrogels have proven to be efficient in healing bone, but have also played a key role as delivery-platforms for drugs or other biological agents. Moreover, some researchers have identified novel uses for these gels as bone fixators or implant coatings. Here, we review the progress of self-healing hydrogels, which hold great promise in the field of tissue engineering.
Collapse
Affiliation(s)
- Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Martin Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria 01007, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| |
Collapse
|
18
|
Li R, Zhou C, Chen J, Luo H, Li R, Chen D, Zou X, Wang W. Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration. Bioact Mater 2022; 18:267-283. [PMID: 35387156 PMCID: PMC8961307 DOI: 10.1016/j.bioactmat.2022.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
Irregular defects generated by trauma or surgery in orthopaedics practice were usually difficult to be fitted by the preformed traditional bone graft substitute. Therefore, the injectable hydrogels have attracted an increasing interest for bone repair because of their fittability and mini-invasivity. However, the uncontrollable spreading or mechanical failures during its manipulation remain a problem to be solved. Moreover, in order to achieve vascularized bone regeneration, alternatives of osteogenic and angiogenic growth factors should be adopted to avoid the problem of immunogenicity and high cost. In this study, a novel injectable self-healing hydrogel system (GMO hydrogel) loaded with KP and QK peptides had been developed for enhancing vascularized regeneration of small irregular bone defect. The dynamic imine bonds between gelatin methacryloyl and oxidized dextran provided the GMO hydrogel with self-healing and shear-thinning abilities, which led to an excellent injectability and fittability. By photopolymerization of the enclosed GelMA, GMO hydrogel was further strengthened and thus more suitable for bone regeneration. Besides, the osteogenic peptide KP and angiogenic peptide QK were tethered to GMO hydrogel by Schiff base reaction, leading to desired releasing profiles. In vitro, this composite hydrogel could significantly improve the osteogenic differentiation of BMSCs and angiogenesis ability of HUVECs. In vivo, KP and QK in the GMO hydrogel demonstrated a significant synergistic effect in promoting new bone formation in rat calvaria. Overall, the KP and QK loaded GMO hydrogel was injectable and self-healing, which can be served as an efficient approach for vascularized bone regeneration via a minimally invasive approach.
Collapse
Affiliation(s)
- Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Jun Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- The Key Laboratory of Imflammation and Autoimmune Diseases, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| |
Collapse
|
19
|
Lu CH, Yeh YC. Synthesis and Processing of Dynamic Covalently Crosslinked Polydextran/Carbon Dot Nanocomposite Hydrogels with Tailorable Microstructures and Properties. ACS Biomater Sci Eng 2022; 8:4289-4300. [PMID: 36075100 DOI: 10.1021/acsbiomaterials.2c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using functionalized nanoparticles to crosslink hydrophilic polymers is a growing theme of directly constructing nanocomposite (NC) hydrogels. Employing dynamic covalent chemistry at the nanoparticle-polymer interface is particularly attractive due to the spontaneous formation and reversible manner of dynamic covalent bonds. However, the structure and property modulation of the dynamic covalently crosslinked NC hydrogels has not been thoroughly discussed. Here, we fabricated NC hydrogels by using amine-functionalized carbon dots (CDs) to crosslink polydextran aldehyde (PDA) polymers through imine bond formation. The role of PDA with different oxidation degrees (i.e., PDA10, PDA30, and PDA50) in affecting the microstructures and properties of PDA@CD hydrogels was systematically investigated, showing that the PDA50@CD hydrogel presented the densest structure and the highest mechanical strength among the three PDA@CD hydrogels. The pH-responsiveness, 3D printing, electrospinning, and biocompatibility of PDA@CD hydrogels were also demonstrated, showing the great promise of using PDA@CD hydrogels for applications in biomedicine and biofabrication.
Collapse
Affiliation(s)
- Cheng-Hsun Lu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Wu Q, Qu M, Kim HJ, Zhou X, Jiang X, Chen Y, Zhu J, Ren L, Wolter T, Kang H, Xu C, Gu Z, Sun W, Khademhosseini A. A Shear-Thinning Biomaterial-Mediated Immune Checkpoint Blockade. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35309-35318. [PMID: 35913267 DOI: 10.1021/acsami.2c06137] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Systemic administration of immune checkpoint blockade agents can activate the anticancer activity of immune cells; however, the response varies from patient to patient and presents potential off-target toxicities. Local administration of immune checkpoint inhibitors (ICIs) can maximize therapeutic efficacies while reducing side effects. This study demonstrates a minimally invasive strategy to locally deliver anti-programmed cell death protein 1 (anti-PD-1) with shear-thinning biomaterials (STBs). ICI can be injected into tumors when loaded in STBs (STB-ICI) composed of gelatin and silicate nanoplatelets (Laponite). The release of ICI from STB was mainly affected by the Laponite percentage in STBs and pH of the local microenvironment. Low Laponite content and acidic pH can induce ICI release. In a murine melanoma model, the injection of STB-ICI significantly reduced tumor growth and increased CD8+ T cell level in peripheral blood. STB-ICI also induced increased levels of tumor-infiltrating CD4+ helper T cells, CD8+ cytotoxic T cells, and tumor death. The STB-based minimally invasive strategy provides a simple and efficient approach to deliver ICIs locally.
Collapse
Affiliation(s)
- Qingzhi Wu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Moyuan Qu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Clinical Research Center of Oral Disease of Zhejiang Province, Zhejiang University, Hangzhou 310006, P.R. China
| | - Han-Jun Kim
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Xingwu Zhou
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Pharmaceutic Science, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Xing Jiang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
| | - Yi Chen
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jixiang Zhu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou 511436, P.R. China
| | - Li Ren
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an 710072, P.R. China
| | - Tyler Wolter
- Academy of Integrated Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Chun Xu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, P.R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P.R. China
- Zhejiang Laboratory of Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, P.R. China
- Jinhua Institute of Zhejiang University, Jinhua 321299, P.R. China
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, Department of Chemical and Biomolecular Engineering, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Wujin Sun
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
- Department of Bioengineering, Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, Department of Chemical and Biomolecular Engineering, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Cui H, Zhang L, Zeng S, Wang Y, Li Z, Wang J, Chen Q. Charge-Reversible Pro-Ribonuclease Enveloped in Virus-like Synthetic Nanocapsules for Systemic Treatment of Intractable Glioma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30493-30506. [PMID: 35657733 DOI: 10.1021/acsami.2c03763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have tailored multifaceted chemistries into the manufacture of artificial virus-like delivery vehicles mimicking viral "intelligent" transportation pathways through sequential biological barriers; these vehicles can acquire the ability to dynamically "program transfer" to their target sites. To accomplish this, we created anionic pro-proteins, which facilitate charge reversal when subject to acidic endosomal pH; in this way, carboxylation reactions are performed on proteins with amine-reactive cis-aconitic anhydride. Electrostatic associations then initiate the envelopment of these pro-proteins into multilayered nanoarchitectural vehicles composed of multiple-segmental block copolycationic cyclic Arg-Gly-Asp (RGD)-poly(ethylene glycol)(PEG)-GPLGVRG-polylysine(thiol). Therefore, upon the pro-proteins' initial binding to the tumors via the protruding RGD ligands, the bio-inert PEG surroundings are detached through the enzymolysis of the intermediate GPLGVRG linkage by tumor-enriched matrix metalloproteinases, unveiling the cationic polylysine palisade and imparting intimate affinities to the anionic cytomembranes of the targeted tumors. Essentially, through their active endocytosis into the subcellular endosomal compartments, the pro-proteins are made capable of retrieving the original amine groups through a charge reversal decarboxylation process, consequently eliciting augmented charge densities (charge nonstoichiometric protein@polylysine(disulfide)) to disrupt the anionic endosomal membranes to facilitate translocation into the cytosol. Eventually, the active protein payloads can be liberated from nonstoichiometric protein@polylysine(thiol) by the disassembly of polylysine palisade upon the cleavage of disulfide crosslinking in response to the very high level of glutathione in the cytosol, thereby contributing toward extreme cytotoxic potency. Hence, our elaborated virus-mimicking platform has demonstrated potent antitumor efficacy through the systemic administration of ribonucleases, which will consequently lead to an innovative new therapeutic method by which proteins could reach intracellular targets.
Collapse
Affiliation(s)
- Hongyan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Liuwei Zhang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Shuang Zeng
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Yu Wang
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian 116044, China
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| | - Qixian Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
- School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
22
|
Kiaee G, Dimitrakakis N, Sharifzadeh S, Kim HJ, Avery RK, Moghaddam KM, Haghniaz R, Yalcintas EP, Barros NRD, Karamikamkar S, Libanori A, Khademhosseini A, Khoshakhlagh P. Laponite-Based Nanomaterials for Drug Delivery. Adv Healthc Mater 2022; 11:e2102054. [PMID: 34990081 PMCID: PMC8986590 DOI: 10.1002/adhm.202102054] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/29/2021] [Indexed: 11/09/2022]
Abstract
Laponite is a clay-based material composed of synthetic disk-shaped crystalline nanoparticles with highly ionic, large surface area. These characteristics enable the intercalation and dissolution of biomolecules in Laponite-based drug delivery systems. Furthermore, Laponite's innate physicochemical properties and architecture enable the development of tunable pH-responsive drug delivery systems. Laponite's coagulation capacity and cation exchangeability determine its exchange capabilities, drug encapsulation efficiency, and release profile. These parameters are exploited to design highly controlled and efficacious drug delivery platforms for sustained drug release. In this review, they provide an overview of how to design efficient delivery of therapeutics by leveraging the properties and specific interactions of various Laponite-polymer composites and drug moieties.
Collapse
Affiliation(s)
- Gita Kiaee
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Nikolaos Dimitrakakis
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | | | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Reginald K Avery
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | | | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | | | | | | | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Parastoo Khoshakhlagh
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| |
Collapse
|
23
|
Xu X, Xiao L, Xu Y, Zhuo J, Yang X, Li L, Xiao N, Tao J, Zhong Q, Li Y, Chen Y, Du Z, Luo K. Vascularized bone regeneration accelerated by 3D-printed nanosilicate-functionalized polycaprolactone scaffold. Regen Biomater 2021; 8:rbab061. [PMID: 34858634 PMCID: PMC8633727 DOI: 10.1093/rb/rbab061] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Critical oral-maxillofacial bone defects, damaged by trauma and tumors, not only affect the physiological functions and mental health of patients but are also highly challenging to reconstruct. Personalized biomaterials customized by 3D printing technology have the potential to match oral-maxillofacial bone repair and regeneration requirements. Laponite (LAP) nanosilicates have been added to biomaterials to achieve biofunctional modification owing to their excellent biocompatibility and bioactivity. Herein, porous nanosilicate-functionalized polycaprolactone (PCL/LAP) was fabricated by 3D printing technology, and its bioactivities in bone regeneration were investigated in vitro and in vivo. In vitro experiments demonstrated that PCL/LAP exhibited good cytocompatibility and enhanced the viability of bone marrow mesenchymal stem cells (BMSCs). PCL/LAP functioned to stimulate osteogenic differentiation of BMSCs at the mRNA and protein levels and elevated angiogenic gene expression and cytokine secretion. Moreover, BMSCs cultured on PCL/LAP promoted the angiogenesis potential of endothelial cells by angiogenic cytokine secretion. Then, PCL/LAP scaffolds were implanted into the calvarial defect model. Toxicological safety of PCL/LAP was confirmed, and significant enhancement of vascularized bone formation was observed. Taken together, 3D-printed PCL/LAP scaffolds with brilliant osteogenesis to enhance bone regeneration could be envisaged as an outstanding bone substitute for a promising change in oral-maxillofacial bone defect reconstruction.
Collapse
Affiliation(s)
- Xiongcheng Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Long Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yanmei Xu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Jin Zhuo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Xue Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Li Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Nianqi Xiao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Jing Tao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Quan Zhong
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Yanfen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yuling Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Zhibin Du
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
| |
Collapse
|
24
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
25
|
Liu R, Wu Q, Huang X, Zhao X, Chen X, Chen Y, Weitz DA, Song Y. Synthesis of nanomedicine hydrogel microcapsules by droplet microfluidic process and their pH and temperature dependent release. RSC Adv 2021; 11:37814-37823. [PMID: 35498106 PMCID: PMC9043787 DOI: 10.1039/d1ra05207a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Chitosan and alginate hydrogels are attractive because they are highly biocompatible and suitable for developing nanomedicine microcapsules. Here we fabricated a polydimethylsiloxane-based droplet microfluidic reactor to synthesize nanomedicine hydrogel microcapsules using Au@CoFeB-Rg3 as a nanomedicine model and a mixture of sodium alginate and PEG-g-chitosan crosslinked by genipin as a hydrogel model. The release kinetics of nanomedicines from the hydrogel were evaluated by simulating the pH and temperature of the digestive tract during drug transport and those of the target pathological cell microenvironment. Their pH and temperature-dependent release kinetics were studied by measuring the mass loss of small pieces of thin films formed by the nanomedicine-encapsulating hydrogels in buffers of pH 1.2, 7.4, and 5.5, which replicate the pH of the stomach, gut and blood, and cancer microenvironment, respectively, at 20 °C and 37 °C, corresponding to the storage temperature of hydrogels before use and normal body temperature. Interestingly, nanomedicine-encapsulating hydrogels can undergo rapid decomposition at pH 5.5 and are relatively stable at pH 7.4 at 37 °C, which are desirable qualities for drug delivery, controlled release, and residue elimination after achieving target effects. These results indicate that the designed nanomedicine hydrogel microcapsule system is suitable for oral administration.
Collapse
Affiliation(s)
- Ran Liu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
| | - Qiong Wu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
| | - Xing Huang
- Physics Department, School of Engineering and Applied Science, Harvard University Cambridge MA 02138 USA
| | - Xiaoxiong Zhao
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
| | - Xinhua Chen
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
| | - Yonggang Chen
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
| | - David A Weitz
- Physics Department, School of Engineering and Applied Science, Harvard University Cambridge MA 02138 USA
| | - Yujun Song
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing Beijing 100083 China
- Zhejiang Key Laboratory for Pulsed Power Translational Medicine Hangzhou 310000 China
- Physics Department, School of Engineering and Applied Science, Harvard University Cambridge MA 02138 USA
| |
Collapse
|
26
|
Devi V. K. A, Shyam R, Palaniappan A, Jaiswal AK, Oh TH, Nathanael AJ. Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications. Polymers (Basel) 2021; 13:3782. [PMID: 34771338 PMCID: PMC8587783 DOI: 10.3390/polym13213782] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Polymeric hydrogels are widely explored materials for biomedical applications. However, they have inherent limitations like poor resistance to stimuli and low mechanical strength. This drawback of hydrogels gave rise to ''smart self-healing hydrogels'' which autonomously repair themselves when ruptured or traumatized. It is superior in terms of durability and stability due to its capacity to reform its shape, injectability, and stretchability thereby regaining back the original mechanical property. This review focuses on various self-healing mechanisms (covalent and non-covalent interactions) of these hydrogels, methods used to evaluate their self-healing properties, and their applications in wound healing, drug delivery, cell encapsulation, and tissue engineering systems. Furthermore, composite materials are used to enhance the hydrogel's mechanical properties. Hence, findings of research with various composite materials are briefly discussed in order to emphasize the healing capacity of such hydrogels. Additionally, various methods to evaluate the self-healing properties of hydrogels and their recent advancements towards 3D bioprinting are also reviewed. The review is concluded by proposing several pertinent challenges encountered at present as well as some prominent future perspectives.
Collapse
Affiliation(s)
- Anupama Devi V. K.
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Rohin Shyam
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunkumar Palaniappan
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| | - Amit Kumar Jaiswal
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| | - Tae-Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea;
| | - Arputharaj Joseph Nathanael
- Tissue Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; (A.D.V.K.); (R.S.); (A.P.)
| |
Collapse
|
27
|
Erezuma I, Eufrasio‐da‐Silva T, Golafshan N, Deo K, Mishra YK, Castilho M, Gaharwar AK, Leeuwenburgh S, Dolatshahi‐Pirouz A, Orive G. Nanoclay Reinforced Biomaterials for Mending Musculoskeletal Tissue Disorders. Adv Healthc Mater 2021; 10:e2100217. [PMID: 34185438 DOI: 10.1002/adhm.202100217] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/10/2021] [Indexed: 12/11/2022]
Abstract
Nanoclay-reinforced biomaterials have sparked a new avenue in advanced healthcare materials that can potentially revolutionize treatment of musculoskeletal defects. Native tissues display many important chemical, mechanical, biological, and physical properties that engineered biomaterials need to mimic for optimal tissue integration and regeneration. However, it is time-consuming and difficult to endow such combinatorial properties on materials via feasible and nontoxic procedures. Fortunately, a number of nanomaterials such as graphene, carbon nanotubes, MXenes, and nanoclays already display a plethora of material properties that can be transferred to biomaterials through a simple incorporation procedure. In this direction, the members of the nanoclay family are easy to functionalize chemically, they can significantly reinforce the mechanical performance of biomaterials, and can provide bioactive properties by ionic dissolution products to upregulate cartilage and bone tissue formation. For this reason, nanoclays can become a key component for future orthopedic biomaterials. In this review, we specifically focus on the rapidly decreasing gap between clinic and laboratory by highlighting their application in a number of promising in vivo studies.
Collapse
Affiliation(s)
- Itsasne Erezuma
- NanoBioCel Group Laboratory of Pharmaceutics School of Pharmacy University of the Basque Country (UPV/EHU) Paseo de la Universidad 7 Vitoria‐Gasteiz 01006 Spain
- Bioaraba NanoBioCel Research Group Vitoria‐Gasteiz 01009 Spain
| | - Tatiane Eufrasio‐da‐Silva
- Department of Dentistry – Regenerative Biomaterials Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen 6525 The Netherlands
| | - Nasim Golafshan
- Department of Orthopedics University Medical Center Utrecht Utrecht GA 3584 the Netherlands
- Regenerative Medicine Utrecht Utrecht 3584 the Netherlands
| | - Kaivalya Deo
- Department of Biomedical Engineering College of Engineering Texas A&M University College Station TX‐77843 USA
| | - Yogendra Kumar Mishra
- Mads Clausen Institute NanoSYD University of Southern Denmark Alsion 2 Sønderborg 6400 Denmark
| | - Miguel Castilho
- Department of Orthopedics University Medical Center Utrecht Utrecht GA 3584 the Netherlands
- Regenerative Medicine Utrecht Utrecht 3584 the Netherlands
- Department of Biomedical Engineering Eindhoven University of Technology Eindhoven MB 5600 The Netherlands
| | - Akhilesh K. Gaharwar
- Department of Biomedical Engineering College of Engineering Texas A&M University College Station TX‐77843 USA
- Material Science and Engineering College of Engineering Texas A&M University College Station TX 77843 USA
- Center for Remote Health Technologies and Systems Texas A&M University College Station TX 77843 USA
- Interdisciplinary Graduate Program in Genetics Texas A&M University College Station TX‐77843 USA
| | - Sander Leeuwenburgh
- Department of Biomaterials Radboud University Medical Center Philips van Leydenlaan 25 Nijmegen 6525 EX the Netherlands
| | - Alireza Dolatshahi‐Pirouz
- Department of Dentistry – Regenerative Biomaterials Radboud University Medical Center Radboud Institute for Molecular Life Sciences Nijmegen 6525 The Netherlands
- Department of Health Technology Center for Intestinal Absorption and Transport of Biopharmaceuticals Technical University of Denmark Sønderborg 2800 Kgs Denmark
| | - Gorka Orive
- NanoBioCel Group Laboratory of Pharmaceutics School of Pharmacy University of the Basque Country (UPV/EHU) Paseo de la Universidad 7 Vitoria‐Gasteiz 01006 Spain
- Bioaraba NanoBioCel Research Group Vitoria‐Gasteiz 01009 Spain
- Biomedical Research Networking Centre in Bioengineering Biomaterials and Nanomedicine (CIBER‐BBN) Vitoria‐Gasteiz 01006 Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU‐Fundación Eduardo Anitua) Vitoria 01007 Spain
- Singapore Eye Research Institute The Academia, 20 College Road, Discovery Tower Singapore 169856 Singapore
| |
Collapse
|
28
|
Mo C, Xiang L, Chen Y. Advances in Injectable and Self-healing Polysaccharide Hydrogel Based on the Schiff Base Reaction. Macromol Rapid Commun 2021; 42:e2100025. [PMID: 33876841 DOI: 10.1002/marc.202100025] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Injectable hydrogel possesses great application potential in disease treatment and tissue engineering, but damage to gel often occurs due to the squeezing pressure from injection devices and the mechanical forces from limb movement, and leads to the rapid degradation of gel matrix and the leakage of the load material. The self-healing injectable hydrogels can overcome these drawbacks via automatically repairing gel structural defects and restoring gel function. The polysaccharide hydrogels constructed through the Schiff base reaction own advantages including simple fabrication, injectability, and self-healing under physiological conditions, and therefore have drawn extensive attention and investigation recently. In this short review, the preparation and self-healing properties of the polysaccharide hydrogels that is established on the Schiff base reaction are focused on and their biological applications in drug delivery and cell therapy are discussed.
Collapse
Affiliation(s)
- Chunxiang Mo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Li Xiang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Yuping Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, Hunan, 421001, China.,School of Pharmaceutical Science, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
29
|
Li Y, Wang X, Han Y, Sun HY, Hilborn J, Shi L. Click chemistry-based biopolymeric hydrogels for regenerative medicine. Biomed Mater 2021; 16:022003. [PMID: 33049725 DOI: 10.1088/1748-605x/abc0b3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Click chemistry is not a single specific reaction, but describes ways of generating products which emulate examples in nature. Click reactions occur in one pot, are not disturbed by water, generate minimal and inoffensive byproducts, and are characterized by a high thermodynamic driving force, driving the reaction quickly and irreversibly towards a high yield of a single reaction product. As a result, over the past 15 years it has become a very useful bio-orthogonal method for the preparation of chemical cross-linked biopolymer-based hydrogel, in the presence of e.g. growth factors and live cells, or in-vivo. Biopolymers are renewable and non-toxic, providing a myriad of potential backbone toolboxes for hydrogel design. The goal of this review is to summarize recent advances in the development of click chemistry-based biopolymeric hydrogels, and their applications in regenerative medicine. In particular, various click chemistry approaches, including copper-catalyzed azide-alkyne cycloaddition reactions, copper-free click reactions (e.g. the Diels-Alder reactions, the strain-promoted azide-alkyne cycloaddition reactions, the radical mediated thiol-ene reactions, and the oxime-forming reactions), and pseudo-click reactions (e.g. the thiol-Michael addition reactions and the Schiff base reactions) are highlighted in the first section. In addition, numerous biopolymers, including proteins (e.g. collagen, gelatin, silk, and mucin), polysaccharides (e.g. hyaluronic acid, alginate, dextran, and chitosan) and polynucleotides (e.g. deoxyribonucleic acid), are discussed. Finally, we discuss biopolymeric hydrogels, cross-linked by click chemistry, intended for the regeneration of skin, bone, spinal cord, cartilage, and cornea. This article provides new insights for readers in terms of the design of regenerative medicine, and the use of biopolymeric hydrogels based on click chemistry reactions.
Collapse
Affiliation(s)
- Ya Li
- College of Biology, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Ertas YN, Vaziri AS, Abedi-Dorcheh K, Kazemi-Aghdam F, Sohrabinejad M, Tutar R, Rastegar-Adib F, Ashammakhi N. Ian Situ Tissue Engineering: A New Dimension. ENGINEERING MATERIALS FOR STEM CELL REGENERATION 2021:325-350. [DOI: 10.1007/978-981-16-4420-7_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Han X, Xu H, Che L, Sha D, Huang C, Meng T, Song D. Application of Inorganic Nanocomposite Hydrogels in Bone Tissue Engineering. iScience 2020; 23:101845. [PMID: 33305193 PMCID: PMC7711279 DOI: 10.1016/j.isci.2020.101845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone defects caused by trauma and surgery are common clinical problems encountered by orthopedic surgeons. Thus, a hard-textured, natural-like biomaterial that enables encapsulated cells to obtain the much-needed biophysical stimulation and produce functional bone tissue is needed. Incorporating nanomaterials into cell-laden hydrogels is a straightforward tactic for producing tissue engineering structures that integrate perfectly with the body and for tailoring the material characteristics of hydrogels without hindering nutrient exchange with the surroundings. In this review, recent developments in inorganic nanocomposite hydrogels for bone tissue engineering that are of vital importance but have not yet been comprehensively reviewed are summarized.
Collapse
Affiliation(s)
- Xiaying Han
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lingbin Che
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Dongyong Sha
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Chaojun Huang
- Department of Orthopedics, Shanghai General Hospital, Nanjing Medical University, Shanghai 200080, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 New Songjiang Road, Shanghai 200080, China
| |
Collapse
|
32
|
Yuan W, Li Z, Xie X, Zhang ZY, Bian L. Bisphosphonate-based nanocomposite hydrogels for biomedical applications. Bioact Mater 2020; 5:819-831. [PMID: 32637746 PMCID: PMC7321771 DOI: 10.1016/j.bioactmat.2020.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022] Open
Abstract
Nanocomposite hydrogels consist of polymeric network embedded with functional nanoparticles or nanostructures, which not only contribute to the enhanced mechanical properties but also exhibit the bioactivities for regulating cell behavior. Bisphosphonates (BPs) are capable of coordinating with various metal ions and modulating bone homeostasis. Thanks to the inherent dynamic properties of metal-ligand coordination bonds, BP-based nanocomposite hydrogels possess tunable mechanical properties, highly dynamic structures, and the capability to mediate controlled release of encapsulated therapeutic agents, thereby making them highly versatile for various biomedical applications. This review presents the comprehensive overview of recent developments in BP-based nanocomposite hydrogels with an emphasis on the properties of embedded nanoparticles (NPs) and interactions between hydrogel network and NPs. Furthermore, various challenges in the biomedical applications of these hydrogels are discussed to provide an outlook of potential clinical translation.
Collapse
Affiliation(s)
- Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
| | - Zhi-Yong Zhang
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, PR China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, PR China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518172, PR China
- Translational Research Centre of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, State Key Laboratory of Respiratory Disease, The Third Affiliated Hospital of Guangzhou Medical University, No.63 Duobao Road, Liwan District, Guangzhou City, Guangdong Province, 510150, PR China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, 310058, PR China
| |
Collapse
|
33
|
Hu J, Miszuk JM, Stein KM, Sun H. Nanoclay Promotes Mouse Cranial Bone Regeneration Mainly through Modulating Drug Binding and Sustained Release. APPLIED MATERIALS TODAY 2020; 21:100860. [PMID: 33225042 PMCID: PMC7673671 DOI: 10.1016/j.apmt.2020.100860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nanoclay (Nanosilicates, NS) is appearing as an intriguing 2D nanomaterial for bone tissue engineering with multiple proposed functions, e.g., intrinsic osteoinductivity, improving mechanical properties, and drug release capacity. However, the mechanism of NS for in vivo bone regeneration has been hardly defined so far. This knowledge gap will significantly affect the design/application of NS-based biomaterials. To determine the role of NS in osteoblastic differentiation and bone formation, we used the mouse calvarial-derived pre-osteoblasts (MC3T3-E1) and a clinically-relevant mouse cranial bone defect model. Instead of a hydrogel, we prepared biomimetic 3D gelatin nanofibrous scaffolds (GF) and NS-blended composite scaffolds (GF/NS) to determine the essential role of NS in critical low-dose (0.5 μg per scaffold) of BMP2-induced cranial bone regeneration. In contrast to "osteoinductivity", our data indicated that NS could enable single-dose of BMP2, promoting significant osteoblastic differentiation while multiple-dose of BMP2 (without NS) was required to achieve similar efficacy. Moreover, our release study revealed that direct binding to NS in GF scaffolds provided stronger protection to BMP2 and sustained release compared to GF/NS composite scaffolds. Consistently, our in vivo data indicated that only BMP2/NS direct binding treatment was able to repair the large mouse cranial bone defects after 6 weeks of transplantation while neither BMP2, NS alone, nor BMP2 released from GF/NS scaffolds was sufficient to induce significant cranial bone defect repair. Therefore, we concluded that direct nanoclay-drug binding enabled sustained release is the most critical contribution to the significantly improved bone regeneration compared to other possible mechanisms based on our study.
Collapse
Affiliation(s)
- Jue Hu
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Jacob M. Miszuk
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Kyle M. Stein
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
| | - Hongli Sun
- Department of Oral and Maxillofacial Surgery, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry, Iowa City, IA 52242, USA
- Corresponding Authors: Professor Hongli Sun, Ph.D., Department of Oral and Maxillofacial Surgery, Iowa Institute for Oral Health Research, N405 DSB, College of Dentistry, 801 Newton Road, The University of Iowa, Iowa City, IA 52242, Tel: 319-335-1217,
| |
Collapse
|
34
|
Maiz-Fernández S, Pérez-Álvarez L, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Mendez S. Polysaccharide-Based In Situ Self-Healing Hydrogels for Tissue Engineering Applications. Polymers (Basel) 2020; 12:E2261. [PMID: 33019575 PMCID: PMC7600516 DOI: 10.3390/polym12102261] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
In situ hydrogels have attracted increasing interest in recent years due to the need to develop effective and practical implantable platforms. Traditional hydrogels require surgical interventions to be implanted and are far from providing personalized medicine applications. However, in situ hydrogels offer a wide variety of advantages, such as a non-invasive nature due to their localized action or the ability to perfectly adapt to the place to be replaced regardless the size, shape or irregularities. In recent years, research has particularly focused on in situ hydrogels based on natural polysaccharides due to their promising properties such as biocompatibility, biodegradability and their ability to self-repair. This last property inspired in nature gives them the possibility of maintaining their integrity even after damage, owing to specific physical interactions or dynamic covalent bonds that provide reversible linkages. In this review, the different self-healing mechanisms, as well as the latest research on in situ self-healing hydrogels, is presented, together with the potential applications of these materials in tissue regeneration.
Collapse
Affiliation(s)
- Sheila Maiz-Fernández
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Leyre Pérez-Álvarez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Leire Ruiz-Rubio
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Jose Luis Vilas-Vilela
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- Macromolecular Chemistry Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (S.M.-F.); (L.R.-R.); (J.L.V.-V.); (S.L.-M.)
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|