1
|
Zhang Z, Wang L, Yu Q, Li J, Li P, Luan S, Shi H. Bacterial Specific Recognition of Sulfonium Poly(Amino Acid) Adsorbents for Ultrafast MRSA Capture Against Bloodstream Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501298. [PMID: 40223366 DOI: 10.1002/smll.202501298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) bloodstream infections pose significant health risks, potentially leading to severe conditions such as bacteremia. Developing effective treatments to eliminate resistant bacteria from the bloodstream, simultaneously mitigate infection-related complications, and reduce mortality remains challenging. Herein, microspheres are synthesized with bacterial elimination and inflammation prevention by crosslinked sulfonium poly(amino acids). As-synthesized microsphere, PM1 0.6B MS, exhibits an ultrafast adsorption efficiency of 0.41 × 108 CFU mg-1 min-1 for MRSA, which positions the highest index among the reported resin and inorganic adsorptions. This bacterial-specific and efficient capture of PM1 0.6B MS is attributed to its strong interactions with teichoic acids in MRSA (Ka: 1.8 × 105 M-1) rather than acting with phospholipids of mammalian cells. Unlike the present resin-based adsorbent, for example, heparin-modified polyethylene in the only commercial Seraph® 100, PM1 0.6B MS kills adsorbed bacteria within 1 h and can be reused by simple treatment. Meanwhile, PM1 0.6B MS also shows good hemocompatibility and longer thrombin activation time to reduce the risk of thrombosis and hemolysis. In vivo experiments further confirm the abilities of PM1 0.6B MS to prevent inflammation by removing bacteria. This adsorbent is a promising candidate for early treating life-threatening bloodstream infections, potentially preventing bacteremia and subsequent organ damage.
Collapse
Affiliation(s)
- Zhenyan Zhang
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Qing Yu
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun, Changchun, 130022, P. R. China
| | - Peng Li
- State Key Laboratory of Flexible Electronics (LOFE) & Institute of Flexible Electronics (IFE), Shaanxi Key Laboratory of Flexible Electronics and MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
2
|
Chen C, Wang S, Chen X, Xie Z, Zhang P, Bu F, Huang L, Zhao D, Wang Y, Liu F, Xie W, Li G, Wang X. Antimicrobial Silicon Rubber Crosslinked with Bornyl-Siloxane. Macromol Rapid Commun 2025; 46:e2400930. [PMID: 39782700 DOI: 10.1002/marc.202400930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Silicone rubber (SiR) has a wide range of medical applications, but it lacks antimicrobial properties, leading to potential infection issues with related implants or medical devices. Most studies focus on adding anti-bacterial agents or surface modification, which usually result in composites with anti-bacterial properties, rather than synthesizing SiR with intrinsically antimicrobial performances. To tackle this issue, a double substituted bornyl-siloxane crosslinker (BC) is designed. This crosslinker can react with hydroxy-terminated polydimethylsiloxane (PDMS) at room temperature to yield SiR with borneol side groups. The process is simple without using additional solvents. Antimicrobial assay on SiR cured with different ratios of BC/PDMS showed that 20 wt.% BC cross-linked network exhibited outstanding anti-bacterial adhesion (Escherichia coli 99.4%, Staphylococcus aureus 97.3%) performance and long-lasting anti-mold (Aspergillus niger over 99% for 30 days) adhesion properties. Moreover, the subcutaneous implantation model in mice demonstrated its excellent anti-infection, biocompatibility and safety. Therefore, this material is promising for widespread adoption in the medical field, especially in silicon-based products or coatings.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Songtao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xinyu Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zixu Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pengfei Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanqiang Bu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lifei Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuanhang Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fang Liu
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, P. R. China
| | - Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
3
|
Zhang T, Jin Q, Ji J. Antimicrobial Peptides and Their Mimetics: Promising Candidates of Next-Generation Therapeutic Agents Combating Multidrug-Resistant Bacteria. Adv Biol (Weinh) 2025; 9:e2400461. [PMID: 39913150 DOI: 10.1002/adbi.202400461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/05/2025] [Indexed: 02/07/2025]
Abstract
The increasing morbidity and mortality caused by multidrug-resistant bacteria alerts human beings to the fact that conventional antibiotics are no longer reliable and effective alternatives are imperatively needed. Owing to wide range of sources, diverse structures, and unique mode of action, antimicrobial peptides have been highly anticipated and extensively studied in recent years. Besides, the integration of artificial intelligence helps researchers gain access to the vast unexplored chemical space, which opens more opportunities for the optimization and design of novel structures. Moreover, Due to advances in chemistry and synthetic biology, researchers have also begun to focus on the potential of chemical mimetics of antimicrobial peptides. In this review, a comprehensive discussion about natural and synthesized antimicrobial peptides as well as their chemical mimetics is made, so as to provide a comprehensive summary of this field and inspire follow-up research.
Collapse
Affiliation(s)
- Tianyi Zhang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Rd, Hangzhou, 310009, P. R. China
| |
Collapse
|
4
|
Lainioti GC, Druvari D. Designing Antibacterial-Based Quaternary Ammonium Coatings (Surfaces) or Films for Biomedical Applications: Recent Advances. Int J Mol Sci 2024; 25:12264. [PMID: 39596329 PMCID: PMC11595235 DOI: 10.3390/ijms252212264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Antibacterial coatings based on quaternary ammonium compounds (QACs) have been widely investigated in controlled release applications. Quaternary ammonium compounds are low-cost and easily accessible disinfectants that have been extensively used, especially after the COVID-19 outbreak. There has been a growing interest in developing a clearer understanding of various aspects that need to be taken into account for the design of quaternary ammonium compounds to be used in the biomedical field. In this contribution, we outline the mechanism of action of those materials as well as the key design parameters associated with their structure and antibacterial activity. Moreover, emphasis has been placed on the type of antibacterial coatings based on QACs and their applications in the biomedical field. A brief outlook on future research guidelines for the development of dual-function antibacterial coatings is also discussed.
Collapse
Affiliation(s)
- Georgia C. Lainioti
- Department of Food Science & Technology, University of Patras, GR-30100 Agrinio, Greece
| | - Denisa Druvari
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece;
| |
Collapse
|
5
|
Cassa MA, Gentile P, Girón-Hernández J, Ciardelli G, Carmagnola I. Smart self-defensive coatings with bacteria-triggered antimicrobial response for medical devices. Biomater Sci 2024; 12:5433-5449. [PMID: 39320148 DOI: 10.1039/d4bm00936c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Bacterial colonization and biofilm formation on medical devices represent one of the most urgent and critical challenges in modern healthcare. These issues not only pose serious threats to patient health by increasing the risk of infections but also exert a considerable economic burden on national healthcare systems due to prolonged hospital stays and additional treatments. To address this challenge, there is a need for smart, customized biomaterials for medical device fabrication, particularly through the development of surface modification strategies that prevent bacterial adhesion and the growth of mature biofilms. This review explores three bioinspired approaches through which antibacterial and antiadhesive coatings can be engineered to exhibit smart, stimuli-responsive features. This responsiveness is greatly valuable as it provides the coatings with a controlled, on-demand antibacterial response that is activated only in the presence of bacteria, functioning as self-defensive coatings. Such coatings can be designed to release antibacterial agents or change their surface properties/conformation in response to specific stimuli, like changes in pH, temperature, or the presence of bacterial enzymes. This targeted approach minimizes the risk of developing antibiotic resistance and reduces the need for continuous, high-dose antibacterial treatments, thereby preserving the natural microbiome and further reducing healthcare costs. The final part of the review reports a critical analysis highlighting the potential improvements and future evolutions regarding antimicrobial self-defensive coatings and their validation.
Collapse
Affiliation(s)
- Maria Antonia Cassa
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joel Girón-Hernández
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gianluca Ciardelli
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Pisa 56124, Italy
| | - Irene Carmagnola
- Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino 10129, Italy.
- Politecnico di Torino, Polito BIOmed Lab, Torino 10129, Italy
| |
Collapse
|
6
|
Ran P, Qiu B, Zheng H, Xie S, Zhang G, Cao W, Li X. On-demand bactericidal and self-adaptive antifouling hydrogels for self-healing and lubricant coatings of catheters. Acta Biomater 2024; 186:215-228. [PMID: 39111681 DOI: 10.1016/j.actbio.2024.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Catheter-related infections are one of the most common nosocomial infections with increasing morbidity and mortality, and robust antibacterial or antifouling catheter coatings remain great challenges for long-term implantation. Herein, multifunctional hydrogel coatings were developed to provide persistent and self-adaptive antifouling and antibacterial effects with self-healing and lubricant capabilities. Polyvinyl alcohol (PVA) with β-cyclodextrin (β-CD) grafts (PVA-Cd) and 4-arm polyethylene glycol (PEG) with adamantane and quaternary ammonium compound (QAC) terminals (QA-PEG-Ad) were crosslinked through host-guest recognitions between adamantane and β-CD moieties to acquire PVEQ coatings. In response to bacterial infections, QACs exhibit reversible transformation between zwitterions (pH 7.4) and cationic lactones (pH 5.5) to generate on-demand bactericidal effect. Highly hydrophilic PEG/PVA backbones and zwitterionic QACs build a lubricate surface and decrease the friction coefficient 10 times compared with that of bare catheters. The antifouling hydrated layer significantly inhibits blood protein adsorption and platelet activation and reveals negligible hemolysis and cytotoxicity. The dynamic host-guest crosslinking achieves full self-healing of cracks in PVEQ hydrogels, and the mechanical profiles were recovered to over 90 % after rejuvenating the broken hydrogels, exhibiting a long-term stability after mechanical stretching, twisting, knotting and compression. After subcutaneous implantation and local bacterial infection, the retrieved PVEQ-coated catheters display no tissue adhesion and 3 log folds lower bacterial number than that of bare catheters. PVEQ coatings effectively prevent the repeated bacterial infections and there are few inflammatory reactions in the surrounding tissue, while substantial lymphoid infiltration and inflammatory cell aggregation occur in muscle tissues around the bare catheter. Thus, this study demonstrates a catheter coating strategy by on-demand bactericidal, self-adaptive antifouling, self-healing and lubricant hydrogels to address medical devices-related infections. STATEMENT OF SIGNIFICANCE: It is estimated over two billion peripheral intravenous catheters are annually used in hospitals around the world, and catheter-associated infection has become a great clinical challenge with rapidly rising morbidity and mortality. Surface coating is considered a promising approach, but substantial challenges remain in the development of coatings that simultaneously satisfy both anti-fouling and antibacterial attributes. Even more, few attempts have been made to design mechanically robust coatings and reversible antibacterial or antifouling capabilities, which are critical for long-term medical implants. To address these challenges, we propose a concise strategy to develop hydrogel coatings from commercially available poly(ethylene glycol) and polyvinyl alcohol. In addition to self-healing and lubricant capabilities, the reversible conversion between zwitterionic and cationic lactones of quaternary ammonium compounds enables on-demand bactericidal and self-adaptive antifouling effects.
Collapse
Affiliation(s)
- Pan Ran
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; School of Bioscience and Technology, Chengdu Medical College, Chengdu 610051, PR China
| | - Bo Qiu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Huan Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Shuang Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Guiyuan Zhang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Wenxiong Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Xiaohong Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, PR China; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China.
| |
Collapse
|
7
|
Zhu B, Xin H, Yang M, Pan L, Zou X, Lv Z, Yao X, Jin X, Xu Y, Gui S, Lu X. Visualized and pH-responsive hydrogel antibacterial coating for ventilator-associated pneumonia. Biomed Pharmacother 2024; 178:117224. [PMID: 39084079 DOI: 10.1016/j.biopha.2024.117224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) is a common healthcare-acquired infection often arising during artificial ventilation using endotracheal intubation (ETT), which offers a platform for bacterial colonization and biofilm development. In particular, the effects of prolonged COVID-19 on the respiratory system. Herein, we developed an antimicrobial coating (FK-MEM@CMCO-CS) capable of visualizing pH changes based on bacterial infection and releasing meropenem (MEM) and FK13-a1 in a controlled manner. Using a simple dip-coating process with controlled loading, chitosan was cross-linked with sodium carboxymethyl cellulose oxidation (CMCO) and coated onto PVC-based ETT to form a hydrogel coating. Subsequently, the coated segments were immersed in an indicator solution containing bromothymol blue (BTB), MEM, and FK13-a1 to fabricate the FK-MEM@CMCO-CS coating. In vitro studies have shown that MEM and FK13-a1 can be released from coatings in a pH-responsive manner. Moreover, anti-biofilm and antibacterial adhesion results showed that FK-MEM@CMCO-CS coating significantly inhibited biofilm formation and prevented their colonization of the coating surface. In the VAP rat model, the coating inhibited bacterial growth, reduced lung inflammation, and had good biocompatibility. The coating can be applied to the entire ETT and has the potential for industrial production.
Collapse
Affiliation(s)
- Baokang Zhu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China
| | - Hui Xin
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China
| | - Musheng Yang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China
| | - Lingling Pan
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China
| | - Xuan Zou
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ziquan Lv
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiangjie Yao
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yinghua Xu
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotechnology Products, National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Shuiqing Gui
- Intensive Care Unit, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen 518031, China.
| | - Xuemei Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Imbia AS, Ounkaew A, Mao X, Zeng H, Liu Y, Narain R. Mussel-Inspired Polymer-Based Coating Technology for Antifouling and Antibacterial Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10957-10965. [PMID: 38752656 DOI: 10.1021/acs.langmuir.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Zwitterionic coatings provide a promising antifouling strategy against biofouling adhesion. Quaternary ammonium cationic polymers can effectively kill bacteria on the surface, owing to their positive charges. This strategy can avoid the release of toxic biocides, which is highly desirable for constructing coatings for biomedical devices. The present work aims to develop a facile method by covalently grafting zwitterionic and cationic copolymers containing aldehydes to the remaining amine groups of self-polymerized dopamine. Reversible addition-fragmentation chain transfer polymerization was used to copolymerize either zwitterionic 2-methacryloyloxyethyl phosphorylcholine monomer (MPC) or cationic 2-(methacryloyloxy)ethyl trimethylammonium monomer (META) with 4-formyl phenyl methacrylate monomer (FPMA), and the formed copolymers poly(MPC-st-FPMA) and poly(META-st-FPMA) are denoted as MPF and MTF, respectively. MPF and MTF copolymers were then covalently grafted onto the amino groups of polydopamine-coated surfaces. PDA/MPF/MTF-coated surfaces exhibited antibacterial and antifouling properties against S. aureus, E. coli, and bovine serum albumin protein. In addition, they showed excellent viability of normal human lung fibroblast cells MRC-5. We expect the facile surface modification strategy discussed here to be applicable to medical device manufacturing.
Collapse
Affiliation(s)
- Adel S Imbia
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Artjima Ounkaew
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ravin Narain
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
9
|
Tzoumani I, Druvari D, Evangelidis M, Vlamis-Gardikas A, Bokias G, Kallitsis JK. Facile Synthesis of Dual-Functional Cross-Linked Membranes with Contact-Killing Antimicrobial Properties and Humidity-Response. Molecules 2024; 29:2372. [PMID: 38792232 PMCID: PMC11123689 DOI: 10.3390/molecules29102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Poly(2-hydroxyethylmethacrylate-co-2-(dimethylamino)ethyl methacrylate), P(HEMA-co-DMAEMAx), copolymers were quaternized through the reaction of a part of (dimethylamino)ethyl moieties of DMAEMA units with 1-bromohexadecane. Antimicrobial coatings were further prepared through the cross-linking reaction between the remaining DMAEMA units of these copolymers and the epoxide ring of poly(N,N-dimethylacrylamide-co-glycidyl methacrylate), P(DMAm-co-GMAx), copolymers. The combination of P(HEMA-co-DMAEMAx)/P(DMAm-co-GMAx) copolymers not only enabled control over quaternization and cross-linking for coating stabilization but also allowed the optimization of the processing routes towards a more facile cost-effective methodology and the use of environmentally friendly solvents like ethanol. Careful consideration was given to achieve the right content of quaternized units, qDMAEMA, to ensure antimicrobial efficacy through an appropriate amphiphilic balance and sufficient free DMAEMA groups to react with GMA for coating stabilization. Optimal synthesis conditions were achieved by membranes consisting of cross-linked P(HEMA78-co-DMAEMA9-co-qDMAEMA13)/P(DMAm-co-GMA42) membranes. The obtained membranes were multifunctional as they were self-standing and antimicrobial, while they demonstrated a distinct fast response to changes in humidity levels, widening the opportunities for the construction of "smart" antimicrobial actuators, such as non-contact antimicrobial switches.
Collapse
Affiliation(s)
- Ioanna Tzoumani
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (D.D.); (M.E.); (A.V.-G.); (G.B.)
| | - Denisa Druvari
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (D.D.); (M.E.); (A.V.-G.); (G.B.)
| | - Miltiadis Evangelidis
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (D.D.); (M.E.); (A.V.-G.); (G.B.)
| | - Alexios Vlamis-Gardikas
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (D.D.); (M.E.); (A.V.-G.); (G.B.)
| | - Georgios Bokias
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (D.D.); (M.E.); (A.V.-G.); (G.B.)
| | - Joannis K. Kallitsis
- Department of Chemistry, University of Patras, GR-26504 Patras, Greece; (D.D.); (M.E.); (A.V.-G.); (G.B.)
- Foundation for Research and Technology-Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Street, GR-26504 Patras, Greece
| |
Collapse
|
10
|
Zhang Y, Li M, Li B, Sheng W. Surface Functionalization with Polymer Brushes via Surface-Initiated Atom Transfer Radical Polymerization: Synthesis, Applications, and Current Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5571-5589. [PMID: 38440955 DOI: 10.1021/acs.langmuir.3c03647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Polymer brushes have received great attention in recent years due to their distinctive properties and wide range of applications. The synthesis of polymer brushes typically employs surface-initiated atom transfer radical polymerization (SI-ATRP) techniques. To realize the control of the polymerization process in different environments, various SI-ATRP techniques triggered by different stimuli have been developed. This review focuses on the latest developments in different stimuli-triggered SI-ATRP methods, such as electrochemically mediated, photoinduced, enzyme-assisted, mechanically controlled, and organocatalyzed ATRP. Additionally, SI-ATRP technology triggered by a combination of multiple stimuli sources is also discussed. Furthermore, the applications of polymer brushes in lubrication, biological applications, antifouling, and catalysis are also systematically summarized and discussed. Despite the advancements in the synthesis of various types of 1D, 2D, and 3D polymer brushes via controlled radical polymerization, contemporary challenges remain in the quest for more efficient and straightforward synthetic protocols that allow for precise control over the composition, structure, and functionality of polymer brushes. We anticipate the readers could promote the understanding of surface functionalization based on ATRP-mediated polymer brushes and envision future directions for their application in surface coating technologies.
Collapse
Affiliation(s)
- Yan Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, Shandong, China
| | - Mengyang Li
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, Shandong, China
| | - Bin Li
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, Shandong, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenbo Sheng
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, Shandong, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
11
|
Duque-Sanchez L, Qu Y, Voelcker NH, Thissen H. Tackling catheter-associated urinary tract infections with next-generation antimicrobial technologies. J Biomed Mater Res A 2024; 112:312-335. [PMID: 37881094 DOI: 10.1002/jbm.a.37630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/21/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
Urinary catheters and other medical devices associated with the urinary tract such as stents are major contributors to nosocomial urinary tract infections (UTIs) as they provide an access path for pathogens to enter the bladder. Considering that catheter-associated urinary tract infections (CAUTIs) account for approximately 75% of UTIs and that UTIs represent the most common type of healthcare-associated infections, novel anti-infective device technologies are urgently required. The rapid rise of antimicrobial resistance in the context of CAUTIs further highlights the importance of such preventative strategies. In this review, the risk factors for pathogen colonization in the urinary tract are dissected, taking into account the nature and mechanistics of this unique environment. Moreover, the most promising next-generation preventative strategies are critically assessed, focusing in particular on anti-infective surface coatings. Finally, emerging approaches in this field and their likely clinical impact are examined.
Collapse
Affiliation(s)
- Lina Duque-Sanchez
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicolas H Voelcker
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Helmut Thissen
- Department of Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, Australia
| |
Collapse
|
12
|
Zhang J, Lv S, Zhao X, Ma S, Zhou F. Surface functionalization of polyurethanes: A critical review. Adv Colloid Interface Sci 2024; 325:103100. [PMID: 38330882 DOI: 10.1016/j.cis.2024.103100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Synthetic polymers, particularly polyurethanes (PUs), have revolutionized bioengineering and biomedical devices due to their customizable mechanical properties and long-term stability. However, the inherent hydrophobic nature of PU surfaces arises common issues such as high friction, strong protein adsorption, and thrombosis, especially in the physiological environment of blood contact. To overcome these issues, researchers have explored various modification techniques to improve the surface biofunctionality of PUs. In this review, we have systematically summarized several typical surface modification methods including surface plasma modification, surface oxidation-induced grafting polymerization, isocyanate-based chemistry coupling, UV-induced surface grafting polymerization, adhesives-assisted attachment strategy, small molecules-bridge grafting, solvent evaporation technique, and hydrogen bonding interaction. Correspondingly, the advantages, limitations, and future prospects of these surface modification methods were discussed. This review provides an important guidance or tool for developing surface functionalized PUs in the fields of bioengineering and medical devices.
Collapse
Affiliation(s)
- Jinshuai Zhang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Siyao Lv
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Xiaoduo Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shuanhong Ma
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
13
|
Cao Z, Ma C, Xiang L, Cao L. A main chain biodegradable polyurethane with anti-protein adsorption and anti-bacterial adhesion performances. SOFT MATTER 2023; 20:192-200. [PMID: 38073481 DOI: 10.1039/d3sm01344h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Biofilms are initially formed by substances such as proteins secreted by bacteria adhering to a surface. To achieve a durable antibacterial material, biodegradable dihydroxyl-terminated poly[(ethylene oxide)-co-(ethylene carbonate)] (PEOC(OH)2) with anti-protein adsorption properties was synthesized in this study. Further polycondensation of PEOC(OH)2 and isophorone diisocyanate (IPDI) led to biodegradable polyurethane (PEOC-PU) with PEOC as the soft segment. For comparison, polyurethanes with polyethylene glycol (PEG-PU) and polypropylene glycol (PPG-PU) as soft segments were also synthesized. The chemical structures of the polyurethanes were characterized by 1H NMR and FTIR. The biodegradation behavior of PEOC-PU promoted by lipase due to the presence of ethylene carbonate units was also studied. Their resistance to proteins was studied using quartz crystal microbalance with dissipation (QCM-D) and the results revealed that PEOC-PU exhibited excellent nonspecific resistance to proteins. The colonization of microorganisms on PU in the liquid culture medium was further examined and the results showed that PEOC-PU exhibited excellent antibacterial adhesion performance due to its protein resistance and biodegradation.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China.
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Li Xiang
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China.
- Key Laboratory of Polymer Processing Engineering (South China University of Technology), Ministry of Education, China
| | - Linyan Cao
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China.
| |
Collapse
|
14
|
Mao S, Liu W, Xie Z, Zhang D, Zhou J, Xu Y, Fu B, Zheng SY, Zhang L, Yang J. In Situ Growth of Functional Hydrogel Coatings by a Reactive Polyurethane for Biomedical Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38036509 DOI: 10.1021/acsami.3c10683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Surface modification of thermoplastic polyurethane (TPU) could significantly enhance its suitability for biomedical devices and public health products. Nevertheless, customized modification of polyurethane surfaces with robust interfacial bonding and diverse functions via a simple method remains an enormous challenge. Herein, a novel thermoplastic polyurethane with a photoinitiated benzophenone unit (BPTPU) is designed and synthesized, which can directly grow functional hydrogel coating on polyurethane (PU) in situ by initiating polymerization of diverse monomers under ultraviolet irradiation, without the involvement of organic solvent. The resulting coating not only exhibits tissue-like softness, controllable thickness, lubrication, and robust adhesion strength but also provides customized functions (i.e., antifouling, stimuli-responsive, antibacterial, and fluorescence emission) to the original passive polymer substrates. Importantly, BPTPU can be blended with commercial TPU to produce the BPTPU-based tube by an extruder. Only a trace amount of BPTPU can endow the tube with good photoinitiated capacity. As a proof of concept, the hydrophilic hydrogel-coated BPTPU is shown to mitigate foreign body response in vivo and prevent thrombus formation in rat blood circulation without anticoagulants in vitro. This work offers a new strategy to guide the design of functional polyurethane, an elastomer-hydrogel composite, and holds great prospects for clinical translation.
Collapse
Affiliation(s)
- Shihua Mao
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wei Liu
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Zeming Xie
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Jiahui Zhou
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Baiping Fu
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Si Yu Zheng
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ling Zhang
- Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou 310000, P. R. China
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
15
|
Khan SA, Shakoor A. Recent Strategies and Future Recommendations for the Fabrication of Antimicrobial, Antibiofilm, and Antibiofouling Biomaterials. Int J Nanomedicine 2023; 18:3377-3405. [PMID: 37366489 PMCID: PMC10290865 DOI: 10.2147/ijn.s406078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biomaterials and biomedical devices induced life-threatening bacterial infections and other biological adverse effects such as thrombosis and fibrosis have posed a significant threat to global healthcare. Bacterial infections and adverse biological effects are often caused by the formation of microbial biofilms and the adherence of various biomacromolecules, such as platelets, proteins, fibroblasts, and immune cells, to the surfaces of biomaterials and biomedical devices. Due to the programmed interconnected networking of bacteria in microbial biofilms, they are challenging to treat and can withstand several doses of antibiotics. Additionally, antibiotics can kill bacteria but do not prevent the adsorption of biomacromolecules from physiological fluids or implanting sites, which generates a conditioning layer that promotes bacteria's reattachment, development, and eventual biofilm formation. In these viewpoints, we highlighted the magnitude of biomaterials and biomedical device-induced infections, the role of biofilm formation, and biomacromolecule adhesion in human pathogenesis. We then discussed the solutions practiced in healthcare systems for curing biomaterials and biomedical device-induced infections and their limitations. Moreover, this review comprehensively elaborated on the recent advances in designing and fabricating biomaterials and biomedical devices with these three properties: antibacterial (bacterial killing), antibiofilm (biofilm inhibition/prevention), and antibiofouling (biofouling inhibition/prevention) against microbial species and against the adhesion of other biomacromolecules. Besides we also recommended potential directions for further investigations.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
16
|
Lan X, Zhao M, Zhang X, Zhang H, Zhang L, Qi H. Mussel-inspired proteins functionalize catheter with antifouling and antibacterial properties. Int J Biol Macromol 2023:125468. [PMID: 37348578 DOI: 10.1016/j.ijbiomac.2023.125468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/08/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Bacterial adhesion and subsequent biofilm formation on catheter can cause inevitably infection. The development of multifunctional antibacterial coating is a promising strategy to resist the bacteria adhesion and biofilm formation. Herein, a mussel-inspired chimeric protein MZAgP is prepared and employed to modify a variety of polymeric catheters. The MZAgP is composed of mussel-adhesive peptide, zwitterionic peptide, and silver-binding peptide, which can endow catheters with antifouling, bactericidal and biocompatibility performances. Expectedly, negligible biofilm is observed on the MZAgP coated catheters after incubating with bacteria for 120 h. And ignorable hemolysis and cytotoxicity are obtained on coated catheters. In addition, the modified catheters also display persistent antifouling and bacteriostatic properties throughout 168 h under hydrodynamic conditions. Moreover, the coated catheters still remain excellent antifouling and antibacterial properties even after 2 months of storage. This multifunctional coating may be promising as antibacterial and antibiofilm material, and the coated catheters are potential in clinical application.
Collapse
Affiliation(s)
- Xiang Lan
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Meirong Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Xiangyu Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Hao Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
| | - Haishan Qi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
17
|
Dhingra S, Gaur V, Bhattacharya J, Saha S. Photoinduced micropatterning on biodegradable aliphatic polyester surfaces for anchoring dual brushes and its application in bacteria and cell patterning. J Mater Chem B 2022; 11:83-98. [PMID: 36226487 DOI: 10.1039/d2tb01477g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In view of intrinsic challenges encountered in surface patterning on actual biomaterials such as the ones based on biodegradable polymers, we have demonstrated an innovative strategy to create micro-patterns on the surface of tartaric acid based aliphatic polyester P (poly(hexamethylene 2,3-O-isoprpylidentartarate)) without significant loss of its molecular weight. Around 10 wt% PAG (photoacid generator, 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine) was purposefully encapsulated in a polyester matrix comprising of P and PLA (polylactide) at a ratio of 5 : 95. With the help of a photomask, selective areas of the matrix were exposed to UV radiation at 395 nm for 25 min to trigger the acid release from PAG entrapped unmasked areas for generating hydroxyl functionality that was later converted to an ATRP (atom transfer radical polymerization) initiating moiety on the irradiated domain of P. In subsequent steps, spatio-selective surface modification by surface initiated ATRP was carried out to generate an alternate pattern of polyPEGMA (poly(ethylene glycol)methyl ether methacrylate) and polyDMAPS (poly(3-dimethyl-(methacryloyloxyethyl)ammonium propane sulfonate)) brushes on the matrix. The patterned surface modified with dual brushes was found to be antifouling in nature (rejection of >97% of proteins). Strikingly, an alternate pattern of live bacterial cells (E. coli and S. aureus) was evident and a relatively high population of bacteria was found on the polyPEGMA brush modified domain. However, a complete reverse pattern was visible in the case of L929 mouse fibroblast cells, i.e., cells were found to predominantly adhere to and proliferate on the zwitterionic brush modified surface. An attempt was made to discuss a plausible mechanism of selective cell adhesion on the zwitterionic brush domain. This novel strategy employed on the biodegradable polymer surface provides an easy and straightforward way to micro-pattern various cells, bacteria, etc. on biodegradable substrates which hold great potential to function as biochips, diagnostics, bacteria/cell microarrays, etc.
Collapse
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| | - Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | | | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
18
|
Zhang J, Fu Y, Zhou R, Yin M, Zhu W, Yan S, Wang H. The Construction of Alkaline Phosphatase-Responsive Biomaterial and Its Application for In Vivo Urinary Tract Infection Therapy. Adv Healthc Mater 2022; 12:e2202421. [PMID: 36546611 DOI: 10.1002/adhm.202202421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Urinary tract infections caused by urinary catheter implantations are becoming more serious. Therefore, the construction of a responsive antibacterial biomaterial that can not only provide biocompatible conditions, but also effectively prevent the growth and metabolism of bacteria, is urgently needed. In this work, a benzophenone-derived phosphatase light-triggered antibacterial agent is designed and synthesized, which is tethered to the biological materials using a one-step method for in vivo antibacterial therapy. This surface could kill gram-positive bacteria (Staphylococcus aureus) and gram-negative bacteria (Escherichia coli). More importantly, because this material exhibited a zwitterion structure, it does not damage blood cells and tissue cells. When the bacteria interact with this surface, the initial fouling of the bacteria is reduced by zwitterion hydration. When the bacteria actively accumulate and metabolize to produce a certain amount of alkaline phosphatase, the surface immediately started the sterilization performance, and the bactericidal effect is achieved by destroying the bacterial cell membrane. In summary, an antibacterial biomaterial that shows biocompatibility with mammalian cells is successfully constructed, providing new ideas for the development of intelligent urinary catheters.
Collapse
Affiliation(s)
- Jing Zhang
- Jilin Medical University, Jilin, 132013, P. R. China
| | - Ying Fu
- Jilin Medical University, Jilin, 132013, P. R. China
| | - Rongtao Zhou
- National Engineering Laboratory of Medical Implantable Devices, Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai, 264210, P. R. China
| | - Moli Yin
- Jilin Medical University, Jilin, 132013, P. R. China
| | - Wenhe Zhu
- Jilin Medical University, Jilin, 132013, P. R. China
| | - Shunjie Yan
- National Engineering Laboratory of Medical Implantable Devices, Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai, 264210, P. R. China
| | - Huiyan Wang
- Jilin Medical University, Jilin, 132013, P. R. China
| |
Collapse
|
19
|
Zhao Y, Peng X, Wang D, Zhang H, Xin Q, Wu M, Xu X, Sun F, Xing Z, Wang L, Yu P, Xie J, Li J, Tan H, Ding C, Li J. Chloroplast-inspired Scaffold for Infected Bone Defect Therapy: Towards Stable Photothermal Properties and Self-Defensive Functionality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204535. [PMID: 36109177 PMCID: PMC9631053 DOI: 10.1002/advs.202204535] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 06/02/2023]
Abstract
Bone implant-associated infections induced by bacteria frequently result in repair failure and threaten the health of patients. Although black phosphorus (BP) material with superior photothermal conversion ability is booming in the treatment of bone disease, the development of BP-based bone scaffolds with excellent photothermal stability and antibacterial properties simultaneously remains a challenge. In nature, chloroplasts cannot only convert light into chemical energy, but also hold a protective and defensive envelope membrane. Inspired by this, a self-defensive bone scaffold with stable photothermal property is developed for infected bone defect therapy. Similar to thylakoid and stroma lamella in chloroplasts, BP is integrated with chitosan and polycaprolactone fiber networks. The mussel-inspired polydopamine multifunctional "envelope membrane" wrapped above not only strengthens the photothermal stability of BP-based scaffolds, but also realizes the in situ anchoring of silver nanoparticles. Bacteria-triggered infection of femur defects in vivo can be commendably inhibited at the early stage via these chloroplast-inspired implants, which then effectively promotes endogenous repair of the defect area under mild hyperthermia induced by near-infrared irradiation. This chloroplast-inspired strategy shows outstanding performance for infected bone defect therapy and provides a reference for the functionality of other biomedical materials.
Collapse
Affiliation(s)
- Yao Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xu Peng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Experimental and Research Animal InstituteSichuan UniversityChengdu610065China
| | - Dingqian Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Hongbo Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Qiangwei Xin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Mingzhen Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xiaoyang Xu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Fan Sun
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zeyuan Xing
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Luning Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Peng Yu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jing Xie
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jiehua Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Hong Tan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chunmei Ding
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jianshu Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- State Key Laboratory of Oral DiseasesWest China Hospital of StomatologyMed‐X Center for MaterialsSichuan UniversityChengdu610041China
| |
Collapse
|
20
|
Zhao H, Chen T, Wu T, Xie L, Ma Y, Sha J. Strategy based on multiplexed brush architectures for regulating the spatiotemporal immobilization of biomolecules. BIOMATERIALS ADVANCES 2022; 141:213092. [PMID: 36191539 DOI: 10.1016/j.bioadv.2022.213092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/03/2022] [Accepted: 08/20/2022] [Indexed: 06/16/2023]
Abstract
Functional surfaces that enable both spatial and temporal control of biomolecules immobilization have attracted enormous attention for various fields including smart biointerface materials, high-throughput bioarrays, and fundamental research in the biosciences. Here, a flexible and promising method was presented for regulating the spatiotemporal arrangement of multiple biomolecules by constructing the topographically and chemically diverse polymer brushes patterned surfaces. A series of polymer brushes patterned surfaces, including antifouling brushes patterned surface, epoxy-presenting brushes patterned surface without and with antifouling background layer, were fabricated to control the spatial distribution of protein and cell adhesion through specific and nonspecific means. The fluorescence measurements demonstrated the effectiveness of spatially regulating the density of surface-immobilized protein through controlling the areal thickness of the poly (glycidyl methacrylate) (PGMA) brush patterns, leading to various complex patterns featuring well-defined biomolecule concentration gradients. Furthermore, a multiplexed surface bearing epoxy groups and azido groups with various areal densities was fabricated for regulating the spatiotemporal arrangement of different proteins, enabling binary biomolecules patterns with higher degrees of functionality and complexity. The presented strategy for the spatiotemporal control of biomolecules immobilization would boost the development of dynamic and multifunctional biosystems.
Collapse
Affiliation(s)
- Haili Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tao Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
| | - Tong Wu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linsheng Xie
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulu Ma
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Sha
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
21
|
Abstract
Pathogenic microorganisms are considered to a major threat to human health, impinging on multiple sectors including hospitals, dentistry, food storage and packaging, and water contamination. Due to the increasing levels of antimicrobial resistance shown by pathogens, often caused by long-term abuse or overuse of traditional antimicrobial drugs, new approaches and solutions are necessary. In this area, antimicrobial polymers are a viable solution to combat a variety of pathogens in a number of contexts. Indeed, polymers with intrinsic antimicrobial activities have long been an intriguing research area, in part, due to their widespread natural abundance in materials such as chitin, chitosan, carrageen, pectin, and the fact that they can be tethered to surfaces without losing their antimicrobial activities. In addition, since the discovery of the strong antimicrobial activity of some synthetic polymers, much work has focused on revealing the most effective structural elements that give rise to optimal antimicrobial properties. This has often been synthesis targeted, with the generation of either new polymers or the modification of natural antimicrobial polymers with the addition of antimicrobial enhancing modalities such as quaternary ammonium or guanidinium groups. In this review, the growing number of polymers showing intrinsic antimicrobial properties from the past decade are highlighted in terms of synthesis; often based on post-synthesis modification and their utilization. This includes as surface coatings, for example on medical devices, such as intravascular catheters, orthopaedic implants and contact lenses, or directly as antibacterial agents (specifically as eye drops). Surface functionalisation with inherently antimicrobial polymers is highlighted and has been achieved via various techniques, including surface-bound initiators allowing RAFT or ATRP surface-based polymerization, or via physical immobilization such as by layer-by-layer techniques. This article also covers the mechanistic modes of action of intrinsic antimicrobial polymers against bacteria, viruses, or fungi.
Collapse
Affiliation(s)
- Meltem Haktaniyan
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, UK.
| |
Collapse
|
22
|
Dhingra S, Gaur V, Saini V, Rana K, Bhattacharya J, Loho T, Ray S, Bajaj A, Saha S. Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections. Biomater Sci 2022; 10:3856-3877. [PMID: 35678619 DOI: 10.1039/d2bm00245k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Biomedical device or implant-associated infections caused by pathogenic bacteria are a major clinical issue, and their prevention and/or treatment remains a challenging task. Infection-resistant antimicrobial coatings with impressive cytocompatibility offer a step towards addressing this problem. Herein, we report a new strategy for constructing highly antibacterial as well as cytocompatible mixed polymer brushes onto the surface of 3D printed scaffold made of biodegradable tartaric acid-based aliphatic polyester blends. The mixed brushes were nothing but a combination of poly(3-dimethyl-(methacryloyloxyethyl) ammonium propane sulfonate) (polyDMAPS) and poly((oligo ethylene glycol) methyl ether methacrylate) (polyPEGMA) with varying chain length (n) of the ethylene glycol unit (n = 1, 6, 11, and 21). Both homo and copolymeric brushes of polyDMAPS with polyPEGMA exhibited antibacterial efficacy against both Gram positive and Gram negative pathogens such as E. coli (Escherichia coli) and S. aureus (Staphylococcus aureus) because of the combined action of bacteriostatic effects originating from strongly hydrated layers present in zwitterionic (polyDMAPS) and hydrophilic (polyPEGMA) copolymer brushes. Interestingly, a mixed polymer brush comprising polyDMAPS and polyPEGMA (ethylene glycol chain unit of 21) at 50/50 ratio provided zero bacterial growth and almost 100% cytocompatibility (tested using L929 mouse fibroblast cells), making the brush-modified biodegradable substrate an excellent choice for an infection-resistant and cytocompatible surface. An attempt was made to understand their extraordinary performance with the help of contact angle, surface charge analysis and nanoindentation study, which revealed the formation of a hydrophilic, almost neutral, very soft surface (99.99% reduction in hardness and modulus) after modification with the mixed brushes. This may completely suppress bacterial adhesion. Animal studies demonstrated that these brush-modified scaffolds are biocompatible and can mitigate wound infections. Overall, this study shows that the fascinating combination of an infection-resistant and cytocompatible surface can be generated on biodegradable polymeric surfaces by modulating the surface hardness, flexibility and hydrophilicity by selecting appropriate functionality of the copolymeric brushes grafted onto them, making them ideal non-leaching, anti-infective, hemocompatible and cytocompatible coatings for biodegradable implants.
Collapse
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| | - Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | | | - Thomas Loho
- Department of Chemical and Materials Engineering, The University of Auckland, New Zealand Institute for Minerals to Materials Research, India
| | - Sudip Ray
- Department of Chemical and Materials Engineering, The University of Auckland, New Zealand Institute for Minerals to Materials Research, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
23
|
Wang C, Xue Y, Tian H, Zhao Z, Shen S, Fang L, Cui R, Han J, Zhu B. Tri‐functional unit groups contained polyurethane composites with excellent antibacterial property and biocompatibility. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuyao Wang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Yunyun Xue
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Hua Tian
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zihao Zhao
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Shuyang Shen
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Lifeng Fang
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Ronglu Cui
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Jun Han
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Baoku Zhu
- Key Laboratory of Macromolecular Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
24
|
Zheng SY, Ni Y, Zhou J, Gu Y, Wang Y, Yuan J, Wang X, Zhang D, Liu S, Yang J. Photo-switchable supramolecular comb-like polymer brush based on host-guest recognition for use as antimicrobial smart surface. J Mater Chem B 2022; 10:3039-3047. [PMID: 35355043 DOI: 10.1039/d2tb00206j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial infections from biomedical devices pose a great threat to the health of humans and thus place a heavy burden on society. Therefore, developing efficient antibacterial surfaces has attracted much attention. However, it is a challenge to identify or develop a combination that efficiently integrates multiple functions via topological tailoring and on-demand function-switch via non-contact and noninvasive stimuli. To resolve this issue, a highly hydrophilic comb polymer brush was constructed here based on supramolecular host-guest recognition. Azobenzene (azo)-modified antifouling and antibacterial polymers were incorporated into cyclodextrin (CD)-modified antifouling polymer brushes grafted on the surface. The surface thus obtained possessed excellent antifouling performance with a low bacterial density of ∼6.25 × 105 cells per cm2 after 48 h and exhibited a high efficiency of ∼88.2% for killing bacteria. Besides, irradiation with UV light resulted in the desorption of the azo-polymers and a release of ∼85.1% attached bacteria. Irradiating visible light led to the re-adsorption of azo-polymers, which regenerated the fresh surface; the process could be repeated for at least three cycles, and the surface still maintained low bacterial attachments with a cell density of ∼7.10 × 105 cells per cm2, high sterilization efficiency of ∼93.8%, and a bacteria release rate of ∼83.1% in the 3rd cycle. The photo-switchable antibacterial surface presented in this research will provide new insights into the development of smart biomedical surfaces.
Collapse
Affiliation(s)
- Si Yu Zheng
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yifeng Ni
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jiahui Zhou
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yucong Gu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yiting Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingfeng Yuan
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Ohio 44325, USA.
| | - Shanqiu Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
25
|
Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS APPLIED BIO MATERIALS 2022; 5:1364-1390. [DOI: 10.1021/acsabm.1c01006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
26
|
Ionic interaction-driven switchable bactericidal surfaces. Acta Biomater 2022; 142:124-135. [PMID: 35149242 DOI: 10.1016/j.actbio.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Bacteria in the external environment inevitably invade the wound and subsequently colonize the wound surface during surgery and biomedical operations, which slows down the process of wound healing and tissue repair; this poses a significant threat to human health. Therefore, the development of an intelligent antibacterial surface has become the focus of research in the field of antimicrobial strategies, which has important social and economic significance. Here, we present a simple approach of producing an ionic interaction-driven anionic activation substratum which is then functionalized with cationic molecules through coulombic interactional immobilization. The switchable multifunctional antibacterial surface can decrease bacterial attachment and inactivate the attached microorganisms, thus overcoming the conventional challenge for antibacterial surfaces. Briefly, poly (3-sulfopropyl methacrylate potassium salt) (PSPMA) brushes were constructed by surface-initiated atom transfer radical polymerization on silicon or cotton fabric substrates, and a positive-charged component, namely lysozyme (LYZ), hexadecyl trimethyl ammonium bromide (CTAB) or chitosan (CS), was loaded on negative-charged sulfonate groups through electrostatic interactions. The resultant brush-grafted surfaces exhibited more than ∼95.5% bactericidal efficacy and ∼92.8% release rate after the introduction of an adequate amount of contra-ions (1.0 M; Na+ & Cl-) against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, thus achieving a regenerated surface through the cyclic process of "assembly-dissociation". Smart cotton fabric (Fabric-PSPMA/LYZ and Fabric-PSPMA/CS) surfaces were constructed, which were found to promote wound epidermal tissue regeneration with a higher efficiency after 7-day in vivo studies. This ionic interaction-driven method used in the present work is simple and can reversibly renew antibacterial surfaces, which will help in the wider utilization of switchable antibacterial materials with a more ecologic and economic significance. STATEMENT OF SIGNIFICANCE: Smart antibacterial surfaces with renewable characteristics have attracted considerable interests over the past few years. Here, we used ionic interaction-driven force to manipulate dynamic conformational changes in PSPMA surface brushes, accompanied by highly switchable bacteria killing and bacteria releasing behaviors. Different cationic molecules were also designed for assembly/dissociation on the PSPMA-modified surfaces, and the essential parameters, including chemical structures, molecular weight, and cationic charge density, were investigated. With the refined structural combinations and the balance of bacteria killing/bacteria releasing behaviors, smart cotton fabrics (e.g., Fabric-PSPMA/lysozyme and Fabric-PSPMA/chitosan) were designed that could promote wound healing and tissue repair. These results contribute to the fundamental understanding of a switchable cationic-anionic pair design and the corresponding practical, renewable, highly antibacterial fabric.
Collapse
|
27
|
Wang X, Yang F, Yang H, Zhang X, Tang H, Luan S. Preparation of antibacterial polypeptides with different topologies and their antibacterial properties. Biomater Sci 2022; 10:834-845. [PMID: 35005755 DOI: 10.1039/d1bm01620b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Antimicrobial peptides (AMPs) are attractive antimicrobial agents used to combat bacterial infections, and have been advanced to be one of the most promising alternatives to conventional antibiotics. They stand out for their attractive broad-spectrum activity, unmatched antibacterial mechanism that is not prone to develop drug resistance and diversified topologies, which can be fabricated with manifold amino acid blocks. In this study, using n-hexylamine and amine-terminated polyamidoamine dendrimers (Gx-PAMAM, x = 1-2) as initiators, a series of AMPs with linear and star-shaped topological structures were constructed via the controllable ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs). The antibacterial performances of the tailored linear and star-shaped AMPs were comprehensively evaluated in both solution states and surface-bonded states. The results indicated that the star-shaped AMPs exhibited enhanced bactericidal activity against Gram-negative E. coli and similar bactericidal activity against Gram-positive S. aureus when compared with the linear AMPs. It is worth mentioning that star-shaped AMPs demonstrated a significantly faster bactericidal efficiency (completely killed bacteria within 5 min at a concentration of 2 × MIC for S. aureus) than their linear analogues (took 15 min to achieve the same effect). However, when the AMPs were immobilized to the surface, they similarly exhibited superior antibacterial activity and fast bactericidal efficiency towards S. aureus and E. coli in the case of the same surface grafting amount. In addition, both the surfaces grafted with AMPs of different topologies demonstrated favorable biocompatibility in vitro.
Collapse
Affiliation(s)
- Xiaodan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fangping Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | - Huawei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Haoyu Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
28
|
Wang L, Sun L, Zhang X, Wang H, Song L, Luan S. A Self-defense Hierarchical Antibacterial Surface with Inherent Antifouling and Bacteria-activated Bactericidal Properties for Infection Resistance. Biomater Sci 2022; 10:1968-1980. [DOI: 10.1039/d1bm01952j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomedical device-associated infection (BAI) is one of the main reasons for the function failure of implants in clinic practices. Development of high-efficiency antibacterial materials is of great significance to reduce...
Collapse
|
29
|
Tian X, Xue R, Yang F, Yin L, Luan S, Tang H. Single-Chain Nanoparticle-Based Coatings with Improved Bactericidal Activity and Antifouling Properties. Biomacromolecules 2021; 22:4306-4315. [PMID: 34569790 DOI: 10.1021/acs.biomac.1c00865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dual-function antibacterial surfaces have exhibited promising potential in addressing implant-associated infections. However, both bactericidal and antifouling properties need to be further improved prior to practical uses. Herein, we report the preparation and properties of a linear block copolymer coating (LP-KF) and a single-chain nanoparticle coating (NP-KF) with poly(ethylene glycol) (PEG) and cationic polypeptide segments. NP-KF with cyclic PEG segments and densely charged polypeptide segments was expected to display improved bactericidal and antifouling properties. LP-KF was prepared by the combination of ring-opening polymerization of N-carboxyanhydride (NCA) monomers and subsequent deprotection. NP-KF was prepared by intramolecular cross-linking of LP-KF in diluted solutions. Both LP-KF- and NP-KF-coated PDMS surfaces were prepared by dipping with polydopamine-coated surfaces. They showed superior in vitro bactericidal activity against both Staphylococcus aureus and Escherichia coli with >99.9% killing efficacy, excellent protein adsorption resistance, antibacterial adhesion, and low cytotoxicity. The NP-KF coating showed higher bactericidal activity and antifouling properties than its linear counterpart. It also showed significant anti-infective property and histocompatibility in vivo, which makes it a good candidate for implants and biomedical device applications.
Collapse
Affiliation(s)
- Xinyun Tian
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Ruizhong Xue
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Fangping Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Haoyu Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
30
|
Xue R, Zhang X, Wei Y, Zhao Z, Liu H, Yang F, Yin L, Song Z, Luan S, Tang H. A sulfonate-based polypeptide toward infection-resistant coatings. Biomater Sci 2021; 9:6425-6433. [PMID: 34582529 DOI: 10.1039/d1bm00951f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multifunctional coatings have gained significant attention for their promising potential to address the issue of medical device-related infections. However, they usually have multiple components in one layer which decreases the density of functional groups on surfaces and hence reduces the biological properties. Herein, we report a mono-component and sulfonate-based anionic polypeptide coating with on-demand antibacterial activity, antifouling property, and biocompatibility. The anionic polypeptide was prepared by ring-opening polymerization of L-cysteine-based N-carboxyanhydride (NCA) with allyl groups and a subsequent thiol-ene reaction to incorporate the sulfonate pendants. It adopted a 17.1-19.5% β-sheet conformation and self-assembled into a spherical nanoparticle. The polypeptide coating showed excellent in vitro antibacterial activity against both Gram-positive (i.e., S. aureus) and Gram-negative bacteria (i.e., E. coli) with >99% killing efficacy after acidic solution treatment and prominent antifouling property and biocompatibility after weak base treatment. An in vivo study revealed that the sulfonate-based polypeptide-coated polydimethylsiloxane (PDMS) exhibited good anti-infection property and histocompatibility.
Collapse
Affiliation(s)
- Ruizhong Xue
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Xu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Yuansong Wei
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Ziyin Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Hao Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Fangping Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Ziyuan Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Haoyu Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
31
|
Effective and biocompatible antibacterial surfaces via facile synthesis and surface modification of peptide polymers. Bioact Mater 2021; 6:4531-4541. [PMID: 34027238 PMCID: PMC8138731 DOI: 10.1016/j.bioactmat.2021.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/16/2022] Open
Abstract
It is an urgent need to tackle drug-resistance microbial infections that are associated with implantable biomedical devices. Host defense peptide-mimicking polymers have been actively explored in recent years to fight against drug-resistant microbes. Our recent report on lithium hexamethyldisilazide-initiated superfast polymerization on amino acid N-carboxyanhydrides enables the quick synthesis of host defense peptide-mimicking peptide polymers. Here we reported a facile and cost-effective thermoplastic polyurethane (TPU) surface modification of peptide polymer (DLL: BLG = 90 : 10) using plasma surface activation and substitution reaction between thiol and bromide groups. The peptide polymer-modified TPU surfaces exhibited board-spectrum antibacterial property as well as effective contact-killing ability in vitro. Furthermore, the peptide polymer-modified TPU surfaces showed excellent biocompatibility, displaying no hemolysis and cytotoxicity. In vivo study using methicillin-resistant Staphylococcus aureus (MRSA) for subcutaneous implantation infectious model showed that peptide polymer-modified TPU surfaces revealed obvious suppression of infection and great histocompatibility, compared to bare TPU surfaces. We further explored the antimicrobial mechanism of the peptide polymer-modified TPU surfaces, which revealed a surface contact-killing mechanism by disrupting the bacterial membrane. These results demonstrated great potential of the peptide-modified TPU surfaces for practical application to combat bacterial infections that are associated with implantable materials and devices. A convenient surface modification of peptide polymer 90 : 10 DLL : BLG to enable material surfaces antibacterial properties. The modified thermoplastic polyurethane (TPU) surfaces show board-spectrum antibacterial performance and excellent biocompatibility both in vitro and in vivo. The contact-killing surfaces demonstrate great potential for practical application to combat bacterial infections associated with implantable materials and devices.
Collapse
|
32
|
Liu L, Shi H, Yu H, Yan S, Luan S. The recent advances in surface antibacterial strategies for biomedical catheters. Biomater Sci 2021; 8:4095-4108. [PMID: 32555809 DOI: 10.1039/d0bm00659a] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As one of the most common hospital-acquired infections, catheter-related infections (CRIs) which are caused by microbial colonization lead to increasing morbidity and mortality of patients and life threat for medical staffs. In this case, a variety of efforts have been made to design functional materials to limit bacterial colonization and biofilm formation. In this review, we focus on the recent advances in surface modification strategies of biomedical catheters used to prevent CRIs. The tests for the evaluation of the performances of modified catheters are listed. Future prospects of surface antibacterial strategies for biomedical catheters are also outlined.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Huan Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and National Engineering Laboratory of Medical Implantable Devices & Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai 264210, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
33
|
Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021; 7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections are a major threat to human health, exacerbated by increasing antibiotic resistance. These infections can result in tremendous morbidity and mortality, emphasizing the need to identify and treat pathogenic bacteria quickly and effectively. Recent developments in detection methods have focused on electrochemical, optical, and mass-based biosensors. Advances in these systems include implementing multifunctional materials, microfluidic sampling, and portable data-processing to improve sensitivity, specificity, and ease of operation. Concurrently, advances in antibacterial treatment have largely focused on targeted and responsive delivery for both antibiotics and antibiotic alternatives. Antibiotic alternatives described here include repurposed drugs, antimicrobial peptides and polymers, nucleic acids, small molecules, living systems, and bacteriophages. Finally, closed-loop therapies are combining advances in the fields of both detection and treatment. This review provides a comprehensive summary of the current trends in detection and treatment systems for bacterial infections.
Collapse
Affiliation(s)
- Carly Deusenbery
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Yingying Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
34
|
Ng G, Judzewitsch P, Li M, Pester CW, Jung K, Boyer C. Synthesis of Polymer Brushes Via SI-PET-RAFT for Photodynamic Inactivation of Bacteria. Macromol Rapid Commun 2021; 42:e2100106. [PMID: 33834575 DOI: 10.1002/marc.202100106] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/11/2021] [Indexed: 12/20/2022]
Abstract
Biofilms are a persistent issue in healthcare and industry. Once formed, the eradication of biofilms is challenging as the extracellular polymeric matrix provides protection against harsh environmental conditions and physically enhances resistance to antimicrobials. The fabrication of polymer brush coatings provides a versatile approach to modify the surface to resist the formation of biofilms. Herein, the authors report a facile synthetic route for the preparation of surface-tethered polymeric brushes with antifouling and visible light activated bactericidal properties using surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization (SI-PET-RAFT). Bactericidal property via the generation of singlet oxygen, which can be temporally and spatially controlled, is investigated against both Gram-positive and Gram-negative bacteria. In addition, the antibacterial properties of the surface can be recycled. This work paves the way for the preparation of polymer films that can resist and kill bacterial biofilms.
Collapse
Affiliation(s)
- Gervase Ng
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Peter Judzewitsch
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Mingxiao Li
- Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Christian W Pester
- Department of Chemical Engineering, Department of Chemistry, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kenward Jung
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, Australian Centre for NanoMedicine, Cluster for Advanced Macromolecular Design, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
35
|
Ni Y, Zhang D, Wang Y, He X, He J, Wu H, Yuan J, Sha D, Che L, Tan J, Yang J. Host-Guest Interaction-Mediated Photo/Temperature Dual-Controlled Antibacterial Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14543-14551. [PMID: 33733728 DOI: 10.1021/acsami.0c21626] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Development of smart switchable surfaces to solve the inevitable bacteria attachment and colonization has attracted much attention; however, it proves very challenging to achieve on-demand regeneration for noncontaminated surfaces. We herein report a smart, host-guest interaction-mediated photo/temperature dual-controlled antibacterial surface, topologically combining stimuli-responsive polymers with nanobactericide. From the point of view of long-chain polymer design, the peculiar hydration layer generated by hydrophilic poly(2-hydroxyethyl methacrylate) (polyHEMA) segments severs the route of initial bacterial attachment and subsequent proliferation, while the synergistic effect on chain conformation transformation poly(N-isopropylacrylamide) (polyNIPAM) and guest complex dissociation azobenzene/cyclodextrin (Azo/CD) complex greatly promotes the on-demand bacterial release in response to the switch of temperature and UV light. Therefore, the resulting surface exhibits triple successive antimicrobial functions simultaneously: (i) resists ∼84.9% of initial bacterial attachment, (ii) kills ∼93.2% of inevitable bacteria attack, and (iii) releases over 94.9% of killed bacteria even after three cycles. The detailed results not only present a potential and promising strategy to develop renewable antibacterial surfaces with successive antimicrobial functions but also contribute a new antimicrobial platform to biomedical or surgical applications.
Collapse
Affiliation(s)
- Yifeng Ni
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Yang Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaomin He
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jian He
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Huimin Wu
- Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jingfeng Yuan
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Dongyong Sha
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lingbin Che
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
36
|
Dai Z, Zhang Y, Chen C, Yu F, Tian J, Cai H, Jiang X, Zhang L, Zhang W. An Antifouling and Antimicrobial Zwitterionic Nanocomposite Hydrogel Dressing for Enhanced Wound Healing. ACS Biomater Sci Eng 2021; 7:1621-1630. [PMID: 33769031 DOI: 10.1021/acsbiomaterials.1c00039] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaobo Dai
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanhao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Jia Tian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoze Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
| | - Liangshun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Weian Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
37
|
Zhang Z, Jones MM, Sabatini C, Vanyo ST, Yang M, Kumar A, Jiang Y, Swihart MT, Visser MB, Cheng C. Synthesis and antibacterial activity of polymer-antibiotic conjugates incorporated into a resin-based dental adhesive. Biomater Sci 2021; 9:2043-2052. [PMID: 33464241 PMCID: PMC7990707 DOI: 10.1039/d0bm01910k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This work reports on polymer-antibiotic conjugates (PACs) as additives to resin-based restorative dental materials as a new strategy to convey sustained antibacterial character to these materials. Such antibacterial performance is expected to improve their longevity in the oral cavity. Using the previously reported ciprofloxacin (Cip)-based PAC as a control, a penicillin V (PV)-based PAC was investigated. The monomer-antibiotic conjugate (MAC) containing a methacrylate monomer group and a PV moiety was prepared via nucleophilic substitution between 2-chloroethyl methacrylate (CEMA) and penicillin V potassium (PVK). The PV-based PAC was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization of the MAC with hydroxyethyl methacrylate (HEMA), and further characterized by 1H NMR and gel permeation chromatography (GPC) analysis. Antibiotic resistance was investigated by passaging bacteria in low concentrations of the antibiotic for 19 days, followed by a 48 h challenge at higher concentrations. Our results suggest that the development of antibiotic resistance is unlikely. Zone of inhibition (ZOI) assays revealed no clearing zones around PV-containing resins indicating minimal antibiotic leakage from the material. Similarly, MTT assay demonstrated that the antibiotic-containing specimens did not release cytotoxic byproducts that may inhibit human gingival fibroblast growth. Counting of colony-forming units in an S. mutans biofilm model was used to assess bacterial survival at baseline and after subjecting the antibiotic-containing resin specimens to an enzymatic challenge for 30 days. Significantly reduced bacterial counts were observed as the biofilm aged from 24 to 72 h, and salivary enzymatic exposure did not reduce the antibacterial efficacy of the discs, suggesting that PV-resin will be effective in reducing the re-incidence of dental caries.
Collapse
Affiliation(s)
- Ziwen Zhang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Luo H, Yin XQ, Tan PF, Gu ZP, Liu ZM, Tan L. Polymeric antibacterial materials: design, platforms and applications. J Mater Chem B 2021; 9:2802-2815. [PMID: 33710247 DOI: 10.1039/d1tb00109d] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Over the past decades, the morbidity and mortality caused by pathogen invasion remain stubbornly high even though medical care has increasingly improved worldwide. Besides, impacted by the ever-growing multidrug-resistant bacterial strains, the crisis owing to the abuse and misuse of antibiotics has been further exacerbated. Among the wide range of antibacterial strategies, polymeric antibacterial materials with diversified synthetic strategies exhibit unique advantages (e.g., their flexible structural design, processability and recyclability, tuneable platform construction, and safety) for extensive antibacterial fields as compared to low molecular weight organic or inorganic antibacterial materials. In this review, polymeric antibacterial materials are summarized in terms of four structure styles and the most representative material platforms to achieve specific antibacterial applications. The superiority and defects exhibited by various polymeric antibacterial materials are elucidated, and the design of various platforms to elevate their efficacy is also described. Moreover, the application scope of polymeric antibacterial materials is summarized with regard to tissue engineering, personal protection, and environmental security. In the last section, the subsequent challenges and direction of polymeric antibacterial materials are discussed. It is highly expected that this critical review will present an insight into the prospective development of antibacterial functional materials.
Collapse
Affiliation(s)
- Hao Luo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | | | | | | | | | | |
Collapse
|
39
|
Liu S, Bae M, Hao L, Oh JK, White AR, Min Y, Cisneros-Zevallos L, Akbulut M. Bacterial Antifouling Characteristics of Helicene-Graphene Films. NANOMATERIALS 2021; 11:nano11010089. [PMID: 33401616 PMCID: PMC7830421 DOI: 10.3390/nano11010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/20/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022]
Abstract
Herein, we describe interfacially-assembled [7]helicene films that were deposited on graphene monolayer using the Langmuir-Schaefer deposition by utilizing the interactions of nonplanar (helicene) and planar (graphene) π–π interactions as functional antifouling coatings. Bacterial adhesion of Staphylococcus aureus on helicene—graphene films was noticeably lower than that on bare graphene, up to 96.8% reductions in bacterial adhesion. The promising bacterial antifouling characteristics of helicene films was attributed to the unique molecular geometry of helicene, i.e., nano-helix, which can hinder the nanoscale bacterial docking processes on a surface. We envision that helicene—graphene films may eventually be used as protective coatings against bacterial antifouling on the electronic components of clinical and biomedical devices.
Collapse
Affiliation(s)
- Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (S.L.); (M.B.)
| | - Michael Bae
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (S.L.); (M.B.)
| | - Li Hao
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Korea;
| | - Andrew R. White
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; (A.R.W.); (Y.M.)
| | - Younjin Min
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA; (A.R.W.); (Y.M.)
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Mustafa Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (S.L.); (M.B.)
- Correspondence:
| |
Collapse
|
40
|
Xu H, Cai Y, Chu X, Chu H, Li J, Zhang D. A mussel-bioinspired multi-functional hyperbranched polymeric coating with integrated antibacterial and antifouling activities for implant interface modification. Polym Chem 2021. [DOI: 10.1039/d1py00246e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of a function integrating strategy, a mussel-inspired hyperbranched polymeric coating with antibacterial and antifouling properties was ingeniously designed and synthesized for the interface modification of implants.
Collapse
Affiliation(s)
- Huilin Xu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Yusong Cai
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Xing Chu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Hetao Chu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering
| | - Dongyue Zhang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
41
|
Ricardo SIC, Anjos IIL, Monge N, Faustino CMC, Ribeiro IAC. A Glance at Antimicrobial Strategies to Prevent Catheter-Associated Medical Infections. ACS Infect Dis 2020; 6:3109-3130. [PMID: 33245664 DOI: 10.1021/acsinfecdis.0c00526] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urinary and intravascular catheters are two of the most used invasive medical devices; however, microbial colonization of catheter surfaces is responsible for most healthcare-associated infections (HAIs). Several antimicrobial-coated catheters are available, but recurrent antibiotic therapy can decrease their potential activity against resistant bacterial strains. The aim of this Review is to question the actual effectiveness of currently used (coated) catheters and describe the progress and promise of alternative antimicrobial coatings. Different strategies have been reviewed with the common goal of preventing biofilm formation on catheters, including release-based approaches using antibiotics, antiseptics, nitric oxide, 5-fluorouracil, and silver as well as contact-killing approaches employing quaternary ammonium compounds, chitosan, antimicrobial peptides, and enzymes. All of these strategies have given proof of antimicrobial efficacy by modifying the physiology of pathogens or disrupting their structural integrity. The aim for synergistic approaches using multitarget processes and the combination of both antifouling and bactericidal properties holds potential for the near future. Despite intensive research in biofilm preventive strategies, laboratorial studies still present some limitations since experimental conditions usually are not the same and also differ from biological conditions encountered when the catheter is inserted in the human body. Consequently, in most cases, the efficacy data obtained from in vitro studies is not properly reflected in the clinical setting. Thus, further well-designed clinical trials and additional cytotoxicity studies are needed to prove the efficacy and safety of the developed antimicrobial strategies in the prevention of biofilm formation at catheter surfaces.
Collapse
Affiliation(s)
- Susana I. C. Ricardo
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês I. L. Anjos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Monge
- Centro Interdisciplinar de Estudos Educacionais (CIED), Escola Superior de Educação de Lisboa, Instituto Politécnico de Lisboa, Campus de Benfica do IPL, 1549-003 Lisboa, Portugal
| | - Célia M. C. Faustino
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Isabel A. C. Ribeiro
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
42
|
Huang DN, Wang J, Ren KF, Ji J. Functionalized biomaterials to combat biofilms. Biomater Sci 2020; 8:4052-4066. [PMID: 32500875 DOI: 10.1039/d0bm00526f] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathogenic microbial biofilms that readily form on implantable medical devices or human tissues have posed a great threat to worldwide healthcare. Hopes are focused on preventive strategies towards biofilms, leaving a thought-provoking question: how to tackle the problem of established biofilms? In this review, we briefly summarize the functionalized biomaterials to combat biofilms and highlight current approaches to eradicate pre-existing biofilms. We believe that all of these strategies, alone or in combination, could represent a blueprint for fighting biofilm-associated infections in the postantibiotic era.
Collapse
Affiliation(s)
- Dan-Ni Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | |
Collapse
|
43
|
Deng Y, Shi X, Chen Y, Yang W, Ma Y, Shi XL, Song P, Dargusch MS, Chen ZG. Bacteria-Triggered pH-Responsive Osteopotentiating Coating on 3D-Printed Polyetheretherketone Scaffolds for Infective Bone Defect Repair. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yi Deng
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Xiuyuan Shi
- Department of Materials, Imperial College London, South Kensington Campus, London SW7 2AZ, U. K
| | - Yong Chen
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weizhong Yang
- College of Materials Science and Engineering, School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Ma
- Department of Neurosurgery, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Xiao-Lei Shi
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
- Centre for Materials Processing and Manufacturing, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| | - Matthew S. Dargusch
- Centre for Materials Processing and Manufacturing, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhi-Gang Chen
- Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia
| |
Collapse
|
44
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
45
|
Tian J, Liu Y, Miao S, Yang Q, Hu X, Han Q, Xue L, Yang P. Amyloid-like protein aggregates combining antifouling with antibacterial activity. Biomater Sci 2020; 8:6903-6911. [DOI: 10.1039/d0bm00760a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new class of biopolymer coating based on amyloid-like protein aggregates is reported to combine both antifouling and antibacterial activity.
Collapse
Affiliation(s)
- Juanhua Tian
- Department of Urology
- The Second Affiliated Hospital of Xi'an Jiaotong University
- Xi'an 710004
- China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Shuting Miao
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Qingmin Yang
- School of Chemistry and Chemical Engineering
- Northwestern Polytechnical University
- Xi'an 710072
- China
| | - Xinyi Hu
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Qian Han
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| | - Li Xue
- Department of Urology
- The Second Affiliated Hospital of Xi'an Jiaotong University
- Xi'an 710004
- China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi'an 710119
| |
Collapse
|