1
|
Mondal PP, Palakkal AS, Neogi S. Water-Resistant Fluoro-Switchable MOF and Reconfigurable Bio-Composite for Nanomolar Level Ultra-Fast Monitoring of Organo-Arsenic and Antibiotic Feed-Additives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501941. [PMID: 40289451 DOI: 10.1002/smll.202501941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/02/2025] [Indexed: 04/30/2025]
Abstract
A mixed-ligand-based novel 3D Cd(II)-based metal-organic framework (MOF) is devised from π-electron-rich organic struts that shows two-fold interpenetrated bilayer-pillar structure. The strong luminescence of the MOF gets remarkably quenched by roxarsone (ROX) organo-arsenic in water. The material further exemplifies one-of-a-kind fluoro-switchable probe for antibiotics and exhibits massive turn-off emission by tetracycline (TTC), whereas sulfamethazine (SMZ) triggers an unprecedented 120% emission enhancement. Apart from regenerative, fast-responsive, and selective fluoro-detection of all three feed-additives, particularly significant is nanomolar limits of detection (LOD) of ROX (48.9 nm), whereas LOD for SMZ (33.9 nm) ranks lowest, and that of TTC (22.8 nm) stands second lowest among reported sensory MOFs. Besides varying degrees of energy transfer contribution for turn-off detection by ROX and TTC, density functional theory calculations manifest changes in MOF energy levels by individual organo-aromatics and additionally describe framework-analyte supramolecular interactions. The MOF sensor works equally well in different wastewater specimens and a wide pH range with good recovery percentage. To broaden the practical scope of the material, cheap MOF@paper strip as well as reconfigurable MOF@chitosan@paper bio-composite is developed and successfully employed for the instantaneous turn-off detection of ROX and fluoro-switchable monitoring of both the antibiotics at their low concentrations.
Collapse
Affiliation(s)
- Partha Pratim Mondal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat, 364002, India
| | - Athulya S Palakkal
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute (CSMCRI), Bhavnagar, Gujarat, 364002, India
| |
Collapse
|
2
|
Ahlawat D, Pachisia S, Aashish, Gupta R. Lanthanide-Based Metal-Organic Frameworks Offering Hydrogen Bonding Cavities: Luminescent Characteristics and Sensing Applications. Chem Asian J 2025; 20:e202401213. [PMID: 39749415 DOI: 10.1002/asia.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/21/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
This work presents the synthesis and characterization of three isomorphous lanthanide-based metal-organic frameworks (Ln-MOFs) (Ln3+=Eu (1), Tb (2), and Sm (3)) supported by a pyridine-2,6-dicarboxamide-based linker offering appended arylcarboxylate groups. Single crystal X-ray diffraction studies highlight that these Ln-MOFs present three-dimensional porous architectures offering large cavities decorated with hydrogen bonding (H-bonding) groups. These Ln-MOFs display noteworthy luminescent characteristics. The mixed-metal strategy affords a series of Ln-MOFs exhibiting color-tunable emissions. The Eu-MOF was utilized for the nanomolar sensing of both nitrobenzene and 4-nitrophenol. The critical role of H-bonding in detecting these analytes is validated through multiple spectroscopic, ξ potential, and molecular docking studies. The Eu-MOF illustrated notable anticounterfeiting as well as practical sensing applications.
Collapse
Affiliation(s)
- Deepti Ahlawat
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Sanya Pachisia
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Aashish
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| |
Collapse
|
3
|
Song X, Hou X, Dang M, Zhao Q, Liu S, Ma Z, Ren Y. Design and preparation of a multi-responsive Cd-based fluorescent coordination polymer for smart sensing of nitrobenzene and ornidazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124656. [PMID: 38880074 DOI: 10.1016/j.saa.2024.124656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
The improper utilization of nitrobenzene (NB) and ornidazole (ORN) has resulted in irreversible effects on the environment. By combining experimental investigation, density functional theory (DFT) calculations, and machine learning, an effective green strategy for detecting NB and ORN in aqueous solutions can be developed. In this study, a one-dimensional Cd-based coordination polymer (Cd-HCIA-3) was designed and synthesized using 5-((4-carboxybenzyl)oxy)isophthalic acid and rigid 2,2'-bipyridine under solvothermal reaction conditions. Cd-HCIA-3 exhibits excellent fluorescence properties and stability in aqueous solutions. DFT calculations were performed to predict the fluorescence sensing performance of Cd-HCIA-3, revealing that photoinduced electron transfer is the key mechanism for inducing fluorescence quenching in the presence of NB and ORN, with weak molecular interactions promoting electron transfer. Fluorescence sensing experiments were conducted to verify the DFT results, showing that Cd-HCIA-3 can selectively detect NB and ORN in aqueous solutions with limits of detection of 7.22 × 10-8 and 1.31 × 10-7 mol/L, respectively. This study's findings provide valuable insights into the design and synthesis of fluorescent coordination polymers for target analytes.
Collapse
Affiliation(s)
- Xiaoming Song
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Xiufang Hou
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| | - Mingxuan Dang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Qingxia Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Shuai Liu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Zhihu Ma
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China
| | - Yixia Ren
- Shaanxi Key Laboratory of Chemical Reaction Engineering, Laboratory of New Energy and New Function Materials, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, Shaanxi 716000, China.
| |
Collapse
|
4
|
Ding J, Li T, Wang X, Li M, Li T, Zhang Z. Preparation of Functionalized Ethylene-Vinyl-Alcohol Nanofibrous Membrane Filter for Rapid and Cyclic Removing of Organic Dye from Aqueous Solution. Polymers (Basel) 2024; 16:2328. [PMID: 39204548 PMCID: PMC11360201 DOI: 10.3390/polym16162328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
A functionalized ethylene-vinyl-alcohol (EVOH) nanofibrous membrane (NFM) was fabricated via co-electrospinning H4SiW12O40 (SiW12) and EVOH first, and then grafting citric acid (CCA) on the electrospun SiW12@EVOH NFM. Characterization with FT-IR, EDX, and XPS confirmed that CCA was introduced to the surface of SiW12@EVOH NFM and the Keggin structure of SiW12 was maintained well in the composite fibers. Due to a number of carboxyl groups introduced by CCA, the as-prepared SiW12@EVOH-CCA NFM can form a high number of hydrogen bonds with CR, and thus can be used to selectively absorb congo red (CR) in aqueous solutions. More importantly, the CR enriched in the NFM can be rapidly degraded via photocatalysis. SiW12 in the NFM acted as a photocatalyst, and the hydroxyl groups in the NFM acted as an electron donor to accelerate the photodegradation rate of CR. Meanwhile, the SiW12@EVOH-CCA NFM was regenerated and then exhibited a relatively stable adsorption capacity in five cycles of filtration-regeneration. The bifunctional nanofibrous membrane filter showed potential for use in the thorough purification of dye wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiming Zhang
- College of Material Science and Engineering, North China University of Science and Technology, Tangshan 063009, China; (J.D.); (T.L.); (X.W.); (M.L.); (T.L.)
| |
Collapse
|
5
|
Cheng Z, Liu X, Zhao B, Liu X, Yang X, Zhang X, Feng X. A smartphone-integrated test paper sensing platform for visual and intelligent detection of nitrofurantoin in honey samples. Food Chem 2024; 445:138783. [PMID: 38417194 DOI: 10.1016/j.foodchem.2024.138783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
The development of a rapid and convenient detection method for nitrofurantoin (NFT) residual is of great significance for food safety. Herein, a new fluorescent probe (Eu-TDCA-Phen) was developed for the visual and sensitive assay of NFT through the fluorescence quenching effect of inner filter effect (IFE) and photo-induced electron transfer (PET). The probe suspension demonstrates a wide linear range (0-0.16 mM), low detection limit (90 nM), high sensitivity, and rapid response time (2 min) in the "turn-off" process. To quantify the visual detection process, a smartphone-assisted test paper sensing platform was established and was applied for NFT determination in real honey samples, achieving satisfactory recovery rate ranges from 98.04 % to 105.04 %. Furthermore, a logic gate device was integrated with the sensing platform to streamline the visual detection process. The sensing platform offers several merits, including simpleness, quantification, portability and cost-effectiveness, making it highly suitable for real-time and on-site detection of antibiotics in food samples.
Collapse
Affiliation(s)
- Zheng Cheng
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China; College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Xinfang Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China.
| | - Beibei Zhao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China; College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Xu Liu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China; College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Xiaorui Yang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China; College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Xiaoyu Zhang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471022, China.
| | - Xun Feng
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
6
|
Ran Q, Zhao D, Ji Y, Fan Z, Lin G, Liu X, Jia K. Recyclable adsorption removal and fluorescent monitoring of hexavalent chromium by electrospun nanofibers membrane derived from Tb 3+ coordinating polyarylene ether amidoxime. Talanta 2024; 266:125058. [PMID: 37572474 DOI: 10.1016/j.talanta.2023.125058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Emerging technologies or advanced materials which can simultaneously adsorb and detect highly toxic Cr(VI) are urgently in demand for environmental remediation. Herein, we have designed and synthesized a functional polyarylene ether with aromatic main chain and pendent carboxyl groups along with amidoxime group that can be coordinated with different metal ions. Thanks to its versatile activation of the lanthanide ions' inherent fluorescence and good processability, the fluorescent nanofiber membranes with competitive Cr(VI) adsorption and detection performance have been fabricated via one-step electrospinning of mixed solution containing synthesized polymer and terbium salt. More specifically, the optimized nanofiber membrane exhibits a maximal Cr(VI) adsorption of 278.2 mg/g and specific detection for hexavalent chromium down to 11.76 nM. More importantly, the prepared fluorescent nanofiber membranes can be easily re-generated and re-used for both Cr(VI) adsorption and detection for five times. Given the unique advantages of easy fabrication, competitive dual functionalities as well as good reusability of electrospun fluorescent nanofiber membranes, the present work basically opens up new insight in the design of multifunctional recyclable material for the remediation of heavy metal pollution.
Collapse
Affiliation(s)
- Qimeng Ran
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Danlei Zhao
- College of Quality and Technical Supervision, Hebei University, Baoding, 071002, China
| | - Yao Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Zilin Fan
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Guo Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Xiaobo Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China
| | - Kun Jia
- School of Materials and Energy, University of Electronic Science and Technology of China, 610054, Chengdu, China; Sichuan Province Engineering Technology Research Center of Novel CN Polymeric Materials, Chengdu, China.
| |
Collapse
|
7
|
Chen M, Shao R, Wang Q, Gao Y, Ma Y, Guan R, Yang T. Eu doped Zn-MOF nanofiber fluorescent membrane and its multifunctional detection of nitroaromatic compounds and Fe3+. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
8
|
Ma T, Zhang J, Zhang L, Zhang Q, Xu X, Xiong Y, Ying Y, Fu Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv Colloid Interface Sci 2023; 311:102828. [PMID: 36587470 DOI: 10.1016/j.cis.2022.102828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Metal organic frameworks and their composites as effective tools for sensing environmental hazards: An up to date tale of mechanism, current trends and future prospects. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
|
11
|
Awasthi G, Kumar P. Relative capability demonstration of luminescent Al-MOFs for ideal detection of nitroaromatic explosives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3467-3473. [PMID: 36052824 DOI: 10.1039/d2ay01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we have synthesised three luminescent Al MOFs i.e., Al-NTP, Al-FDA, and Al-TDA, using common metal ions (AlCl3·6H2O) with different carboxylic acid organic linkers (5-nitroisophthalic acid, 2,5-furan dicarboxylic acid, and 2,5-thiophenedicarboxylic acid) in a semi-aqueous medium. The structural analysis of Al-MOFs has been confirmed through powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and absorption spectroscopy. Afterward, the optical properties of all three Al-MOFs were confirmed using photoluminescence spectroscopy and demonstrated for the detection of nitroaromatic explosives. We have observed host-guest interaction through a quenching mechanism. Among the three synthesised Al-MOFs, Al-NTP MOF exhibit 0.014 ppm lowest limit of detection in chloroform at room temperature. Our comparative study results reveal that the selection of the organic linker and solvent plays a critical role in MOF based sensing applications.
Collapse
Affiliation(s)
- Gaurav Awasthi
- Material Application Research Lab (MARL), Department of Nano Sciences and Materials, Central University of Jammu, Jammu-181143, India.
| | - Pawan Kumar
- Material Application Research Lab (MARL), Department of Nano Sciences and Materials, Central University of Jammu, Jammu-181143, India.
| |
Collapse
|
12
|
Sun LM, Zhou Y, Qiu M. Luminescent Eu-Coordination Polymer: Selective Detection of Nitrofuran Antibiotic and Treatment Activity on Pain After Radiotherapy Mice with Non-small Cell Lung Cancer. J CLUST SCI 2022. [DOI: 10.1007/s10876-021-02060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Li W, Zhao JW, Yan C, Dong B, Zhang Y, Li W, Zai J, Li GR, Qian X. Asymmetric Activation of the Nitro Group over a Ag/Graphene Heterointerface to Boost Highly Selective Electrocatalytic Reduction of Nitrobenzene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25478-25489. [PMID: 35634976 DOI: 10.1021/acsami.2c04533] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The electrocatalytic reduction of nitrobenzene to aniline normally faces high overpotential and poor selectivity because of its six-electron redox nature. Herein, a Ag nanoparticles/laser-induced-graphene (LIG) heterointerface was fabricated on polyimide films and employed as an electrode material for an efficient nitrobenzene reduction reaction (NBRR) via a one-step laser direct writing technology. The first-principles calculations reveal that Ag/LIG shows the lowest activation barriers for the NBRR, which could be attributed to the optimum adsorption of the H atom realized by the appropriate interaction between Ag/LIG heterointerfaces and nitrobenzene. As a result, the overpotential of the NBRR is reduced by 217 mV after silver loading, and Ag/LIG shows a high aniline selectivity of 93%. Furthermore, an electrochemical reduction of nitrobenzene in tandem with an electrochemical oxidative polymerization of aniline was designed to serve as an alternative method to remove nitrobenzene from the aqueous solution. This strategy highlights the significance of heterointerfaces for efficient electrocatalysts, which may stimulate the development of novel electrocatalysts to boost the electrocatalytic activity.
Collapse
Affiliation(s)
- Wenqian Li
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, Shanghai 200240, P. R. China
| | - Jia-Wei Zhao
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Changyu Yan
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, Shanghai 200240, P. R. China
| | - Boxu Dong
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, Shanghai 200240, P. R. China
| | - Yuchi Zhang
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, Shanghai 200240, P. R. China
| | - Wenjing Li
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, Shanghai 200240, P. R. China
| | - Jiantao Zai
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, Shanghai 200240, P. R. China
| | - Gao-Ren Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuefeng Qian
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University Shanghai, Shanghai 200240, P. R. China
| |
Collapse
|
14
|
Xie W, Yuan Y, Zhou TY, Wang JJ, Nie ZB, Xu YH, Su ZM. Stable zinc metal-organic framework as efficient bifunctional fluorescent probe for selective detection of nitrobenzene and Fe(Ⅲ). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Quan X, Xu X, Yan B. Facile fabrication of Tb 3+-functionalized COF mixed-matrix membrane as a highly sensitive platform for the sequential detection of oxolinic acid and nitrobenzene. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:127869. [PMID: 34844797 DOI: 10.1016/j.jhazmat.2021.127869] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
A novel Tb3+-functionalized covalent organic framework-based polymer mixed-matrix membrane (Tb3+@COF MMM) has been successfully fabricated by incorporating the highly stable Tb3+@PI-COF as filler into polyvinylidene fluoride (PVDF) solution. Compared with pure COF membrane, MMM exhibits its good flexibility, processability and high detection sensitivity. The obtained Tb3+@COF-MMM (M) can be employed as a highly sensitive sensing platform for the sequential detection of oxolinic acid (OA) and nitrobenzene (NB) based on a "off-on-off" process. M has performed its great selectivity, high sensitivity, and low detection limit for detecting OA with "turn-on" mechanism. Moreover, owing to the good chemical stability and anti-interference of M sensor, it is prospective to efficiently detect residues of OA in serum or river water. After the detection of M-15 toward OA, the obtained fluorescent M-15/OA exhibits the rapid quenching, facile manipulation, cycling utility and low detection limits for sensing NB solution and vapor. This work has proposed a typical case of developing flexible Ln3+-functionalized COF-based polymer mixed-matrix membrane as a highly sensitive sensing platform for detecting OA and NB, simultaneously revealed the applied potentiality of M for monitoring animal health and environmental pollution.
Collapse
Affiliation(s)
- Xueping Quan
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Xin Xu
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chem. Sci. and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China; School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
16
|
Panigrahi A, Mandal SC, Pathak B, Sarma TK. Discriminative Detection of Aliphatic, Electron‐Rich and Electron‐Deficient Aromatic Volatile Organic Contaminants Using Conjugated Polymeric Fluorescent Nanoaggregates with Aggregation Induced Emission Characteristics. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Abhiram Panigrahi
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Shyama C. Mandal
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Biswarup Pathak
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
- Discipline of Metallurgy Engineering and Materials Science Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| | - Tridib K. Sarma
- Discipline of Chemistry Indian Institute of Technology Indore Simrol, Khandwa Road Indore 453552 India
| |
Collapse
|
17
|
A multifunctional luminescent chemosensor of YbⅢ-MOF for the detection of Nitrobenzene, Fe3+ and Cr2O72–. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Li B, Zhao D, Wang F, Zhang X, Li W, Fan L. Recent advances in molecular logic gate chemosensors based on luminescent metal organic frameworks. Dalton Trans 2021; 50:14967-14977. [PMID: 34622897 DOI: 10.1039/d1dt02841c] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Luminescent metal-organic frameworks (LMOFs) as chemosensors, can sense various analytes, such as heavy metal ions, antibiotics, pesticides, and small biological molecules. Based on the fluorescence characteristics of LMOFs, a variety of logic gates have been developed. In this review, we mainly discuss some common logic systems based on LMOFs, and then summarize the strategies of constructing logic gates from two perspectives. One is based on superior characteristics of MOFs, which can be synthesized from Ln3+ based MOFs (Ln-MOFs) or form hybrids by encapsulating different materials, including metal ions, dyes, and quantum dots (QDs). The other is to control the presence of inputs by reactions between different reactants and then further control switches of logic gates. Additionally, the common sensing mechanisms of LMOFs in logic gates are discussed. In the end, we have envisioned MOFs that possess a promising future in logic computing areas.
Collapse
Affiliation(s)
- Bei Li
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, P. R. China.
| | - Dongsheng Zhao
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, P. R. China.
| | - Feng Wang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, P. R. China.
| | - Xiaoxian Zhang
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, P. R. China.
| | - Wenqian Li
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, P. R. China.
| | - Liming Fan
- Department of Chemistry, College of Science, North University of China, Taiyuan 030051, P. R. China.
| |
Collapse
|
19
|
Zhang X, Wang Y, Liu J, Shi J, Mao D, Midgley AC, Leng X, Kong D, Wang Z, Liu B, Wang S. A metal-organic-framework incorporated vascular graft for sustained nitric oxide generation and long-term vascular patency. CHEMICAL ENGINEERING JOURNAL 2021; 421:129577. [DOI: 10.1016/j.cej.2021.129577] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
|
20
|
Li M, Peng X, Liu X, Wang H, Zhang S, Hu G. Single-atom niobium doped BCN nanotubes for highly sensitive electrochemical detection of nitrobenzene. RSC Adv 2021; 11:28988-28995. [PMID: 35478577 PMCID: PMC9038177 DOI: 10.1039/d1ra05517h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Herein, single-atom niobium-doped boron-carbon-nitrogen nanotubes (SANb-BCN) were synthesized and utilized to fabricate an electrochemical sensor for the detection of nitrobenzene (NB), an environmental pollutant. SANb-BCN were characterized through scanning transmission electron microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis, and Raman spectroscopy. The Nb-BNC material modified on a glassy carbon electrode (GCE) showed an excellent electrochemical response behavior toward NB. The SANb-BCN-modified GCE (SANb-BCN/GCE) gave rise to a prominent NB reduction peak at -0.6 V, which was positively shifted by 120 mV from the NB reduction peak of the bare GCE. Furthermore, the NB peak current (55.74 μA) obtained using SANb-BCN/GCE was nearly 42-fold higher than that using the bare GCE (1.32 μA), indicating that SANb-BCN/GCE is a highly sensitive electrochemical sensor for NB. An ultralow limit of detection (0.70 μM, S/N = 3) was also achieved. Furthermore, the SANb-BCN/GCE sensor was found to possess favorable anti-interference ability during NB detection; thus, the presence of various organic and inorganic coexisting species, including Mg2+, Cr6+, Cu2+, K+, Ca2+, NH4+, Cd2+, urea, 1-bromo-4-nitrobenzene, 3-hydroxybenzoic, terephthalic acid, 1-iodo-4-nitrobenzene, and toluene, minimally affected the NB detection signal. Notably, the SANb-BNC sensor material exhibited high sensitivity and specificity toward detection of NB in environmental samples. Thus, the use of the proposed sensor will serve as an effective alternative method for the identification and treatment of pollutants.
Collapse
Affiliation(s)
- Meng Li
- College of Chemistry, Zhengzhou University Zhengzhou 450000 China
| | - Xianyun Peng
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology Tianjin 300384 China
| | - Xijun Liu
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology Tianjin 300384 China
| | - Huaisheng Wang
- School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252000 China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University Zhengzhou 450000 China
| | - Guangzhi Hu
- College of Chemistry, Zhengzhou University Zhengzhou 450000 China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 China
| |
Collapse
|
21
|
Liu TY, Qu XL, Zhang Y, Yan B. A Stable Cd(II)-Based Metal-Organic Framework: Synthesis, Structure, and Its Eu 3+ Functionalization for Ratiometric Sensing on the Biomarker 2-(2-Methoxyethoxy) Acetic Acid. Inorg Chem 2021; 60:8613-8620. [PMID: 34106687 DOI: 10.1021/acs.inorgchem.1c00589] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel two-dimensional Cd-based metal-organic framework (MOF), [Cd(pddb)H2O]n (Cd-MOF), has been hydrothermally synthesized using the V-shaped ligand 4,4'-(pyridine-2,6-diyl)-dibenzoic acid (H2pddb) and structurally characterized. The framework exhibits fascinating one-dimensional in-plane channels functionalized with active pyridine-N sites. The as-synthesized Cd-MOF exhibits excellent water and chemical stability. Furthermore, a simple and nondestructive coordinated postsynthetic modification method has been applied to Cd-MOF to obtain a class of MOF hybrids functionalized by lanthanide ions. More interestingly, Eu3+@Cd-MOF can act as a dual-emissive ratiometric fluorescent probe for 2-(2-methoxyethoxy) acetic acid (MEAA), a metabolite of 2-(2-methoxyethoxy) ethanol, which could result in DNA damage and teratogenic and developmental toxicity. During the sensing process, the fluorescence sensor exhibits notable water tolerance, reusability, and a low detection limit (8.5 μg mL-1). In addition, the chemical substances in human urine and serum do not interfere with the fluorescence quenching process, which makes it possible for the fluorescent probe to be applied in the detection of MEAA in human urine and serum systems. The possible sensing mechanism is also studied and discussed in detail.
Collapse
Affiliation(s)
- Tian-Yu Liu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Xiang-Long Qu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Yu Zhang
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.,School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
22
|
Li T, Zhang Z, Liu L, Gao M, Han Z. A stable metal-organic framework nanofibrous membrane as photocatalyst for simultaneous removal of methyl orange and formaldehyde from aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Yang H, Qi D, Chen Z, Cao M, Deng Y, Liu Z, Shao C, Yang L. A Zn-based metal–organic framework as bifunctional chemosensor for the detection of nitrobenzene and Fe3+. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121970] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Li H, He X, Zhang M, Li X, Wang R, Xu Z, Li F. Postsynthesis Strategy of Functional Zn-MOF Sensors for the Detection of ClO - and DPA. Inorg Chem 2021; 60:2590-2597. [PMID: 33496589 DOI: 10.1021/acs.inorgchem.0c03468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Active species were introduced into MOFs to prepare multifunctional fluorescent probes by a stepwise postsynthetic modulation strategy. First, two-dimensional HPU-16 (HPU = Henan Polytechnic University; HPU-16 = Zn(L)2(H2O); HL = 2-(5-pyridin-4-yl-5H-[1,2,4]triazol-3-yl)-pyrazine) was transformed into three-dimensional HPU-17 ({Zn3(L)2(btc)2(H2O)}n) through a crystal dissolution-recrystallization process. Second, linker replacement was used to introduce -NH2 into the HPU-17 to generate functional NH2-HPU-17 via a single-crystal to single-crystal transformation. The functional amino groups caused NH2-HPU-17 to show a significant response to ClO-. Because of the interaction of amino groups and ClO-, the fluorescence of NH2-HPU-17 gradually changed from blue to yellow-green. More interestingly, NH2-HPU-17 could encapsulate Tb3+ and sensitize the visible-emitting characteristic fluorescence of Tb3+ in aqueous solution. Then, newly generated Tb3+@NH2-HPU-17 could serve as an effective probe for the determination of DPA. This work paves a new way for the design and modulation of ratiometric fluorescence probes for the selective and sensitive detection of special molecules.
Collapse
Affiliation(s)
- Huijun Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Xinglei He
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Mengfan Zhang
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Xin Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Runxin Wang
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Zhouqing Xu
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| | - Feifei Li
- Department of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, P. R. China
| |
Collapse
|
25
|
Sun SL, Sun XY, Sun Q, Gao EQ, Zhang JL, Li WJ. Europium metal-organic framework containing helical metal-carboxylate chains for fluorescence sensing of nitrobenzene and nitrofunans antibiotics. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121701] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
26
|
Qin B, Wu S, Gahungu G, Li H, Zhao Y, Zhang X, Zhang J. A Trinuclear Cobalt-Organic Framework: Solvatochromic Sensor towards CH 2 Cl 2 , and its Derivative as an Anode of Lithium-Ion Batteries with High Performance. Chemistry 2020; 26:14187-14193. [PMID: 32779769 DOI: 10.1002/chem.202002904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Indexed: 11/10/2022]
Abstract
Here, a porous cobalt-organic framework with pillared layer structures, namely [Co3 OBA3 PTD(H2 O)2 ⋅ 2 DMA⋅H2 O]n (1, H2 OBA=4,4'-oxybis(benzoic acid); PTD=6-(pyridin-4-yl)-1,3,5-triazine-2,4-diamine), was fabricated by using cobalt trinuclear nodes, low-cost carboxylic linker, and accessible nitrogen heterocyclic ligands. This compound exhibited a highly efficient solvatochromism towards CH2 Cl2 within one minute and can be used 200 times at least. The corresponding dropper detector was assembled as a practical sensor. Meanwhile, the porous Co3 O4 was obtained by a simple but effective annealing treatment. Electrochemical measurements confirm that this Co3 O4 material derived from compound 1 shows high and stable lithium storage capabilities (1081.75 mA h g-1 at 200 mA g-1 after 115 cycles) and excellent rate properties.
Collapse
Affiliation(s)
- Bowen Qin
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Shuangyu Wu
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Godefroid Gahungu
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - He Li
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yaling Zhao
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoying Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Jingping Zhang
- Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
27
|
Bai Z, Liu S, Chen P, Cheng G, Wu G, Li H, Liu Y. Nickel nanoparticles embedded in porous carbon nanofibers and its electrochemical properties. NANOTECHNOLOGY 2020; 31:305705. [PMID: 32235076 DOI: 10.1088/1361-6528/ab8594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible porous carbon nanofibers containing nickel nanoparticles were synthesized by direct carbonization of electrospun Ni-MOFs/polyacrylonitrile fibers. The as-synthesized composite nanofibers were employed as binder-free electrodes, and exhibit high specific capacitance (up 672 F g-1 at current density of 2 A g-1) and superior rate capability (57% capacitance retention from current density of 2-10 A g-1), which may be attributed to their binder-free nature, unique one-dimensional (1D) structure and highly dispersed electrochemically active nickel nanoparticles. Furthermore, a symmetric supercapacitor was assembled using the fiber electrodes in 6 M KOH, and the energy density of 17.8 Wh kg-1 was achieved in a potential window of 1.5 V. This self-standing fiber with abundant mesopores and macropores is expected to become a promising electrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Zhongxiong Bai
- School of Physical Sciences, Guizhou University, Guiyang 550025, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
28
|
Xie Y, Ma H, He FL, Chen J, Ji Y, Han S, Zhu D. Preparation of a DNA-Tb-MOF conjugate as a time-resolved probe for the detection of SO 2 derivatives through an off-on effect. Analyst 2020; 145:4772-4776. [PMID: 32558830 DOI: 10.1039/d0an00861c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we synthesize a DNA-sensitized Tb-MOF conjugate (DNA-Tb-MOF) as a time-resolved luminescent probe to sensitively and selectively assay SO2 and their derivatives (i.e., HSO3-) through a photoluminescence off-on effect. The charge and energy transfer mechanism enables the demonstration of the effect of the photoluminescence turn-on which results from the reaction between the amino group of the DNA-Tb-MOF conjugate and SO2/HSO3-. The results demonstrate that the DNA-Tb-MOF conjugate probe can sense SO2 and their derivatives (i.e., HSO3-) with a detection limit of 0.02 ppm. Moreover, the photoluminescence off-on effect can be observed even by the naked eye.
Collapse
Affiliation(s)
- Yaochen Xie
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Huang SZ, Liu SS, Zhang HJ, Han Z, Zhao G, Dong XY, Zang SQ. Dual-Functional Proton-Conducting and pH-Sensing Polymer Membrane Benefiting from a Eu-MOF. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28720-28726. [PMID: 32470284 DOI: 10.1021/acsami.0c08103] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous metal-organic frameworks (MOFs) have demonstrated a great potential in proton conduction and luminescence sensing due to functionalized nodes, ligands and channels, or pores. Herein, we prepared a hydrothermally stable Eu-MOF that also resisted acid and base using a bifunctional organic ligand containing carboxylic acid groups, which are easily coordinated to Eu ions, and Eu-phobic tetrazolyl groups as potential proton-hopping sites. The hydrogen bond network, which was constructed by the uncoordinated anionic tetrazolium and the coordinated and free water molecules, endowed this Eu-MOF with the highest proton conductivity of 4.45 × 10-2 S/cm at 373 K and 93% relative humidity. The proton conductivity of the Nafion membrane containing this Eu-MOF increased 1.74 times. More interestingly, the hybrid membrane displayed luminescence pH sensing because the changeable protonation levels of uncoordinated tetrazolium groups along with the pH tuned the emission of embedded Eu-MOFs. Such a dual-functional MOF-based hybrid membrane including proton conduction and pH sensing is reported for the first time, which could open an avenue to the more practical application for functional MOFs.
Collapse
Affiliation(s)
- Sheng-Zheng Huang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shan-Shan Liu
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hui-Ju Zhang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China
| | - Zhen Han
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Zhao
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo 454000, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
30
|
Chen YQ, Cao C, Tian Y, Liu SJ, Qu XY, Zhang XZ, Gao Q, Zhong M. Three Cd(II)-based luminescent metal-organic frameworks constructed from the mixed-ligand strategy for highly selective detection of nitrobenzene. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Bai Z, Liu S, Chen P, Cheng G, Wu G, Liu Y. Enhanced proton conduction of imidazole localized in one-dimensional Ni-metal-organic framework nanofibers. NANOTECHNOLOGY 2020; 31:125702. [PMID: 31783393 DOI: 10.1088/1361-6528/ab5d5e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) show possibilities to be potential candidates for proton exchange membranes (PEMs). However, the poor flexibility and processability of MOFs due to their crystalline nature limit their applications significantly. An efficient approach to overcome this limitation is to combine MOFs with polymers. In this work, novel lightweight and flexible Ni-MOFs/polyacrylonitrile nanofibers were fabricated by electrospinning. The nanofibers consisted of one-dimensional proton conduction channels for imidazole and show enhanced proton conductivity. A proton conductivity of 6.04 × 10-5 Scm-1 was achieved at 363 K and 90% RH. Furthermore, the proton transport dynamics of the fibers were investigated using the AC impedance technique.
Collapse
Affiliation(s)
- Zhongxiong Bai
- School of Physical Sciences, Guizhou University, Guiyang 550025, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Yu H, Fan M, Liu Q, Su Z, Li X, Pan Q, Hu X. Two Highly Water-Stable Imidazole-Based Ln-MOFs for Sensing Fe3+,Cr2O72–/CrO42– in a Water Environment. Inorg Chem 2020; 59:2005-2010. [DOI: 10.1021/acs.inorgchem.9b03364] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haihuan Yu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People’s Republic of China
| | - Mingyue Fan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
| | - Qun Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, People’s Republic of China
| | - Zhongmin Su
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
| | - Xiao Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
| | - Qingqing Pan
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
| | - Xiaoli Hu
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, People’s Republic of China
| |
Collapse
|
33
|
Abstract
In this review, the recent advances in the shaping of MOFs are overviewed, and some promising strategies recently developed are highlighted, including templated shaping, self-shaping, shaping on substrates, and shaping with sacrificial materials.
Collapse
Affiliation(s)
- Xiao-Min Liu
- Institute of Circular Economy
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemistry and Chemical Engineering
- College of Environmental and Energy Engineering
- Beijing University of Technology
- Beijing 100124
- P. R. China
| | - Yufeng Wu
- Institute of Circular Economy
- Beijing University of Technology
- Beijing 100124
- P. R. China
| |
Collapse
|
34
|
Multifunctional Ln-MOF luminescent probe displaying superior capabilities for highly selective sensing of Fe3+ and Al3+ ions and nitrotoluene. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124094] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
35
|
Yue D, Wang Y, Chen D, Wang Z. Solvent triggering structural changes for two terbium-based metal–organic frameworks and their photoluminescence sensing. Chem Commun (Camb) 2020; 56:4320-4323. [DOI: 10.1039/d0cc00353k] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
TbPDBA-8 and TbPDBA-9 have been obtained based on the same ligand, and have different structures and luminescence properties.
Collapse
Affiliation(s)
- Dan Yue
- School of Materials and Chemical Engineering
- Henan International Joint Laboratory of Rare Earth Composite Materials
- Henan University of Engineering
- Zhengzhou
- P. R. China
| | - Yanyan Wang
- School of Materials and Chemical Engineering
- Henan International Joint Laboratory of Rare Earth Composite Materials
- Henan University of Engineering
- Zhengzhou
- P. R. China
| | - Dong Chen
- School of Materials and Chemical Engineering
- Henan International Joint Laboratory of Rare Earth Composite Materials
- Henan University of Engineering
- Zhengzhou
- P. R. China
| | - Zhenling Wang
- School of Materials and Chemical Engineering
- Henan International Joint Laboratory of Rare Earth Composite Materials
- Henan University of Engineering
- Zhengzhou
- P. R. China
| |
Collapse
|
36
|
Xian S, Chen HL, Feng WL, Yang XZ, Wang YQ, Li BX. Eu(III) doped zinc metal organic framework material and its sensing detection for nitrobenzene. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.120984] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Wang YM, Zhang JW, Wang QY, Li HY, Dong XY, Wang S, Zang SQ. Fabrication of silver chalcogenolate cluster hybrid membranes with enhanced structural stability and luminescence efficiency. Chem Commun (Camb) 2019; 55:14677-14680. [PMID: 31746859 DOI: 10.1039/c9cc07797a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study reports the fabrication of a silver chalcogenolate cluster hybrid membrane (SCC membrane) through self-assembly of SCCs, and then covalent cross-linking of the modified SCC assembled materials. This strategy provides access to silver clusters with superior chemical stability and enhanced luminescence efficiency for practical applications.
Collapse
Affiliation(s)
- Yi-Man Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Jiang-Wei Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, P. R. China
| | - Qian-You Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Hai-Yang Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Xi-Yan Dong
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China. and Henan Polytechnic University, College of Chemistry and Chemical Engineering, Jiaozuo, 454000, China
| | - Shan Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|