1
|
Schrage CA, Galonska P, Metternich JT, Kruss S. Photophysical Properties of Tandem Quantum Defects in Carbon Nanotubes. J Phys Chem Lett 2025; 16:1573-1581. [PMID: 39904739 DOI: 10.1021/acs.jpclett.4c03476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Single-walled carbon nanotubes (SWCNTs) are versatile near-infrared (NIR) fluorophores that can be chemically functionalized to create biosensors. Numerous noncovalent approaches were developed to detect analytes, but these design concepts can be susceptible to nonspecific binding and reduced stability. In contrast, covalent modification of SWCNTs with quantum defects can be utilized to tune their fluorescence properties and enable new molecular recognition concepts. Here, we present and assess four different synthetic pathways/sequences to modify SWCNTs covalently with both sp3 quantum defects and DNA-based guanine defects. We find that it is possible to create two defect types without disrupting the optical properties or chemical stability. Interestingly, the emission peak associated with sp3 defects (E11*) shifts around 3 nm when combined with guanine defects, indicating a coupling between the two defect types. However, it is far lower than the red-shift in bandgap-related emission (E11) by guanine quantum defects (40 nm). We furthermore demonstrate that combinations of defects can be used for (bio)sensing. In summary, the combination of multiple quantum defect types in SWCNTs provides a platform for multifunctional biosensors and a new design space that can be explored.
Collapse
Affiliation(s)
- C Alexander Schrage
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Phillip Galonska
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Justus T Metternich
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstraße 61, 47057 Duisburg, Germany
| | - Sebastian Kruss
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstraße 61, 47057 Duisburg, Germany
| |
Collapse
|
2
|
Hamano R, Niidome Y, Tanaka N, Shiraki T, Fujigaya T. Temperature response of defect photoluminescence in locally functionalized single-walled carbon nanotubes. RSC Adv 2025; 15:4137-4148. [PMID: 39926239 PMCID: PMC11801182 DOI: 10.1039/d4ra08569h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/24/2025] [Indexed: 02/11/2025] Open
Abstract
In vivo temperature monitoring has garnered significant attention for studying biological processes such as cellular differentiation and enzymatic activity. However, current nanoscale thermometers utilizing photoluminescence (PL) in the visible to first near-infrared (NIR-I) region based on organic dyes, quantum dots, and lanthanide-doped nanoparticles face challenges in terms of tissue penetration and sensitivity. In this study, we investigated the temperature dependence of PL (1140 nm) and PL (1260 nm) of locally functionalized single-walled carbon nanotubes (lf-SWCNTs) that emit in the second near-infrared region (NIR-II). The effects of interfacial dielectric environments (hydrophobic surfactant dispersion vs. hydrophilic gel coating), defect density, and nanotube length on the temperature responsiveness were systematically examined. The results demonstrated that PL was more sensitive to temperature changes than PL and lf sites having a lower dielectric environment further enhanced temperature responsiveness. Additionally, longer lf-SWCNTs exhibited greater temperature responsiveness than the shorter ones. These findings provide valuable insights into optimizing gel-coated lf-SWCNTs to achieve higher temperature responsiveness and develop biocompatible temperature sensors capable of monitoring deep tissues within complex biological environments.
Collapse
Affiliation(s)
- Ryo Hamano
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Naoki Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research (WPI I2CNER), Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research (WPI I2CNER), Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University 744 Motooka Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research (WPI I2CNER), Kyushu University 744 Motooka Fukuoka 819-0395 Japan
- Center for Molecular Systems (CMS), Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| |
Collapse
|
3
|
Taborowska P, Dzienia A, Janas D. Unraveling aryl peroxide chemistry to enrich optical properties of single-walled carbon nanotubes. Chem Sci 2025; 16:1374-1389. [PMID: 39703412 PMCID: PMC11653410 DOI: 10.1039/d4sc04785k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Harnessing the unique optical properties of chirality-enriched single-walled carbon nanotubes (SWCNTs) is the key to unlocking the application of SWCNTs in photonics. Recently, it has been discovered that chemical modification of SWCNTs greatly increases their potential in this context. Despite the dynamic progress in this area, the mechanism of the chemical modification of SWCNTs and the impact of the reaction conditions on the properties of the obtained functional nanomaterials remain unclear. In this study, we demonstrate how the reaction environment influences the observed fluorescence pattern of SWCNTs after modification with benzoyloxy radicals generated in situ. The obtained results reveal that each diacyl peroxide molecule can generate either one or two radicals by two different mechanisms, i.e., induced or spontaneous decomposition. Through proper selection of the reactant concentration, process temperature, and solvent, we were able to activate one or both radical decay pathways. In addition, the choice of a solvent, such as tetrahydrofuran or acetonitrile, allowed drastic changes in the functionalization process. Consequently, the SWCNT surface was grafted with functional groups via C-C bonds using radicals derived from the solvent molecules instead of attaching an aromatic moiety from the reactant present in the system through the expected C-O linkage. Verification of the structure of the chemically bound functional groups through hydrolysis opens the route to further modification of SWCNT surfaces using the labile ester connection. By gaining a better understanding of the emergence and behavior of the generated radicals, we demonstrate the possibility of controlling the density of introduced defects, as well as the selectivity of the functionalization process. The identification of the underlying chemical pathways responsible for the functionalization of SWCNTs paves the way for the design of precise methods of SWCNT modification to adjust their photonic characteristics for specific applications.
Collapse
Affiliation(s)
- Patrycja Taborowska
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| | - Andrzej Dzienia
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology B. Krzywoustego 4 44-100 Gliwice Poland
| |
Collapse
|
4
|
Settele S, Schrage CA, Jung S, Michel E, Li H, Flavel BS, Hashmi ASK, Kruss S, Zaumseil J. Ratiometric fluorescent sensing of pyrophosphate with sp³-functionalized single-walled carbon nanotubes. Nat Commun 2024; 15:706. [PMID: 38267487 PMCID: PMC10808354 DOI: 10.1038/s41467-024-45052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
Inorganic pyrophosphate is a key molecule in many biological processes from DNA synthesis to cell metabolism. Here we introduce sp3-functionalized (6,5) single-walled carbon nanotubes (SWNTs) with red-shifted defect emission as near-infrared luminescent probes for the optical detection and quantification of inorganic pyrophosphate. The sensing scheme is based on the immobilization of Cu2+ ions on the SWNT surface promoted by coordination to covalently attached aryl alkyne groups and a triazole complex. The presence of Cu2+ ions on the SWNT surface causes fluorescence quenching via photoinduced electron transfer, which is reversed by copper-complexing analytes such as pyrophosphate. The differences in the fluorescence response of sp3-defect to pristine nanotube emission enables reproducible ratiometric measurements in a wide concentration window. Biocompatible, phospholipid-polyethylene glycol-coated SWNTs with such sp3 defects are employed for the detection of pyrophosphate in cell lysate and for monitoring the progress of DNA synthesis in a polymerase chain reaction. This robust ratiometric and near-infrared luminescent probe for pyrophosphate may serve as a starting point for the rational design of nanotube-based biosensors.
Collapse
Affiliation(s)
- Simon Settele
- Institute for Physical Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
| | - C Alexander Schrage
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany
| | - Sebastian Jung
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany
| | - Elena Michel
- Institute for Organic Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
| | - Han Li
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe, D-76131, Germany
- Department of Mechanical and Materials Engineering, University of Turku, Turku, FI-20014, Finland
| | - Benjamin S Flavel
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Kaiserstrasse 12, Karlsruhe, D-76131, Germany
| | - A Stephen K Hashmi
- Institute for Organic Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sebastian Kruss
- Department of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, D-44801, Germany.
- Biomedical Nanosensors, Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg, D-47057, Germany.
| | - Jana Zaumseil
- Institute for Physical Chemistry, Universität Heidelberg, Heidelberg, D-69120, Germany.
| |
Collapse
|
5
|
Dzienia A, Just D, Taborowska P, Mielanczyk A, Milowska KZ, Yorozuya S, Naka S, Shiraki T, Janas D. Mixed-Solvent Engineering as a Way around the Trade-Off between Yield and Purity of (7,3) Single-Walled Carbon Nanotubes Obtained Using Conjugated Polymer Extraction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304211. [PMID: 37467281 DOI: 10.1002/smll.202304211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Indexed: 07/21/2023]
Abstract
The inability to purify nanomaterials such as single-walled carbon nanotubes (SWCNTs) to the desired extent hampers the progress in nanoscience. Various SWCNT types can be purified by extraction, but it is challenging to establish conditions giving rise to the isolation of high-purity fractions. The problem stems from the fact that common organic solvents or water cannot provide an optimal environment for purification. Consequently, one must often decide between the separation yield and purity of the product. This article reports how through the self-synthesis of poly(9,9-dioctylfluorene-alt-benzothiadiazole) with tailored characteristics, in-depth elucidation of the extraction process, and mixed-solvent engineering, a high-yield isolation of monochiral (7,3) SWCNTs is developed. The combination of toluene and tetralin affords a separation medium of unique properties, wherein both high yield and exceptional purity can be attained simultaneously. The reported results pave the way for further research on this rare chirality, which, as illustrated herein, is much more reactive than any of the previously separated SWCNTs.
Collapse
Affiliation(s)
- Andrzej Dzienia
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
- Institute of Materials Engineering, University of Silesia in Katowice, Bankowa 12, Katowice, 40-007, Poland
| | - Dominik Just
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Patrycja Taborowska
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Anna Mielanczyk
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| | - Karolina Z Milowska
- CIC nanoGUNE, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
- TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Shunji Yorozuya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sadahito Naka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dawid Janas
- Department of Chemistry, Silesian University of Technology, B. Krzywoustego 4, Gliwice, 44-100, Poland
| |
Collapse
|
6
|
Oskin P, Demkina I, Dmitrieva E, Alferov S. Functionalization of Carbon Nanotubes Surface by Aryl Groups: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1630. [PMID: 37242046 PMCID: PMC10220858 DOI: 10.3390/nano13101630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The review is devoted to the methods of introducing aryl functional groups to the CNT surface. Arylated nanotubes are characterized by extended solubility, and are widely used in photoelectronics, semiconductor technology, and bioelectrocatalysis. The main emphasis is on arylation methods according to the radical mechanism, such as the Gomberg-Bachmann and Billups reactions, and the decomposition of peroxides. At the same time, less common approaches are also considered. For each of the described reactions, a mechanism is presented in the context of the effect on the properties of functionalized nanotubes and their application. As a result, this will allow us to choose the optimal modification method for specific practical tasks.
Collapse
Affiliation(s)
- Pavel Oskin
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia;
| | - Iraida Demkina
- Chemistry Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Elena Dmitrieva
- Chemistry Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Sergey Alferov
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia;
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| |
Collapse
|
7
|
Wieland S, El Yumin AA, Gotthardt JM, Zaumseil J. Impact of Dielectric Environment on Trion Emission from Single-Walled Carbon Nanotube Networks. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:3112-3122. [PMID: 36824583 PMCID: PMC9940213 DOI: 10.1021/acs.jpcc.2c08338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Trions are charged excitons that form upon optical or electrical excitation of low-dimensional semiconductors in the presence of charge carriers (holes or electrons). Trion emission from semiconducting single-walled carbon nanotubes (SWCNTs) occurs in the near-infrared and at lower energies compared to the respective exciton. It can be used as an indicator for the presence of excess charge carriers in SWCNT samples and devices. Both excitons and trions are highly sensitive to the surrounding dielectric medium of the nanotubes, having an impact on their application in optoelectronic devices. Here, the influence of different dielectric materials on exciton and trion emission from electrostatically doped networks of polymer-sorted (6,5) SWCNTs in top-gate field-effect transistors is investigated. The observed differences of trion and exciton emission energies and intensities for hole and electron accumulation cannot be explained with the polarizability or screening characteristics of the different dielectric materials, but they show a clear dependence on the charge trapping properties of the dielectrics. Charge localization (trapping of holes or electrons by the dielectric) reduces exciton quenching, emission blue-shift and trion formation. Based on the observed carrier type and dielectric material dependent variations, the ratio of trion to exciton emission and the exciton blue-shift are not suitable as quantitative metrics for doping levels of carbon nanotubes.
Collapse
|
8
|
Tomczyk MM, Minoshima M, Kikuchi K, Blacha-Grzechnik A, Starosolski Z, Bhavane R, Zalewski M, Kuźnik N. Hybrid, dual visible and near-infrared fluorescence emission of (6,5) single-walled carbon nanotubes modified with fluorescein through aryl diazonium salt chemistry. NANOTECHNOLOGY 2022; 34:055703. [PMID: 36278289 DOI: 10.1088/1361-6528/ac9c6a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The aryl diazonium salt chemistry offers enhancement of near-infrared (NIR) emission of single-walled carbon nanotubes (SWCNTs), although, the attachment of functional molecules which could bring hybrid properties through the process is underdeveloped. In this work, we utilize aryl diazonium salt of fluorescein to createsp3defects on (6,5) SWCNTs. We study the influence of pH on the grafting process identifying that pH 5-6 is necessary for a successful reaction. The fluorescein-modified (6,5) SWCNTs (F-(6,5) SWCNTs) exhibit red-shiftedE11* emission in the NIR region attributed to luminescentsp3defects, but also visible (Vis) fluorescence at 515 nm from surface-attached fluorescein molecules. The fluorescence in both Vis and NIR regions of F-(6,5) SWCNTs exhibit strong pH-dependency associated with the dissociation of fluorescein molecules with an indication of photoinduced-electron transfer quenching the Vis emission of fluorescein dianion. The F-(6,5) SWCNTs could potentially be used for dual-channel medical imaging as indicated by our preliminary experiments. We hope that our research will encourage new, bold modifications of SWCNTs with functional molecules introducing new, unique hybrid properties.
Collapse
Affiliation(s)
- Mateusz Michał Tomczyk
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| | - Masafumi Minoshima
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Agata Blacha-Grzechnik
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| | - Zbigniew Starosolski
- Texas Children's Hospital, 1102 Bates Street, Suite 850, Houston, TX 77030, United States of America
| | - Rohan Bhavane
- Texas Children's Hospital, 1102 Bates Street, Suite 850, Houston, TX 77030, United States of America
| | - Mariusz Zalewski
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| | - Nikodem Kuźnik
- Division of Chemistry, Silesian University of Technology, ul. M. Strzody 9, Gliwice, Poland
| |
Collapse
|
9
|
Hayashi K, Niidome Y, Shiga T, Yu B, Nakagawa Y, Janas D, Fujigaya T, Shiraki T. Azide modification forming luminescent sp 2 defects on single-walled carbon nanotubes for near-infrared defect photoluminescence. Chem Commun (Camb) 2022; 58:11422-11425. [PMID: 36134499 DOI: 10.1039/d2cc04492g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azide functionalization produced luminescent sp2-type defects on single-walled carbon nanotubes, by which defect photoluminescence appeared in near infrared regions (1116 nm). Changes in exciton properties were induced by localization effects at the defect sites, creating exciton-engineered nanomaterials based on the defect structure design.
Collapse
Affiliation(s)
- Keita Hayashi
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yoshiaki Niidome
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Tamehito Shiga
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Boda Yu
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Yasuto Nakagawa
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Dawid Janas
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan. .,International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
10
|
Niidome Y, Wakabayashi R, Goto M, Fujigaya T, Shiraki T. Protein-structure-dependent spectral shifts of near-infrared photoluminescence from locally functionalized single-walled carbon nanotubes based on avidin-biotin interactions. NANOSCALE 2022; 14:13090-13097. [PMID: 35938498 DOI: 10.1039/d2nr01440h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) emit photoluminescence (PL) in the near-infrared (NIR) region (>900 nm). To enhance their PL properties, defect doping via local chemical functionalization has been developed. The locally functionalized SWCNTs (lf-SWCNTs) emit red-shifted and bright E11* PL originating from the excitons localized at the defect-doped sites. Here, we observe the E11* PL energy shifts induced by protein adsorption via the avidin-biotin interactions at the doped sites of lf-SWCNTs. We establish that the difference in the structures of the avidin derivatives notably influences the energy shifts. First, lf-SWCNT-tethering biotin groups (lf-SWCNTs-b) are synthesized based on diazonium chemistry, followed by post-modification. The responsiveness of the lf-SWCNTs-b to different microenvironments is investigated, and a correlation between the E11* PL energy shift and the induction-polarity parameters of surrounding solvents is established. The adsorption of neutravidin onto the lf-SWCNTs-b induces an increase in the induction-polarity parameters around the biotin-doped sites, resulting in the red-shift of the E11* PL peak. The E11* PL shift behaviors of the lf-SWCNTs-b change noticeably when avidin and streptavidin are introduced compared to the case with neutravidin. This is due to the different microenvironments formed at the biotin-doped sites, attributed to the difference in the structural features of the introduced avidin derivatives. Moreover, we successfully enhance the detection signals of lf-SWCNTs-b (>three fold) for streptavidin detection using a fabricated film device. Therefore, lf-SWCNTs exhibit significant promise for application in advanced protein detection/recognition devices based on NIR PL.
Collapse
Affiliation(s)
- Yoshiaki Niidome
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- Center for Future Chemistry (CFC), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Molecular Systems (CMS), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Shiraki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
|
12
|
Shiraki T. Molecular Functionalization of Carbon Nanotubes towards Near Infrared Photoluminescent Nanomaterials. CHEM LETT 2021. [DOI: 10.1246/cl.200776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Shiraki
- Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
13
|
Mann FA, Herrmann N, Opazo F, Kruss S. Quantum Defects as a Toolbox for the Covalent Functionalization of Carbon Nanotubes with Peptides and Proteins. Angew Chem Int Ed Engl 2020; 59:17732-17738. [PMID: 32511874 PMCID: PMC7540668 DOI: 10.1002/anie.202003825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near-infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red-shifted emission peak. Here, we report on quantum defects, introduced using light-driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine-containing proteins such as a GFP-binding nanobody. In addition, an Fmoc-protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.
Collapse
Affiliation(s)
- Florian A. Mann
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| | - Niklas Herrmann
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| | - Felipe Opazo
- Center for Biostructural Imaging of NeurodegenerationVon-Siebold-Straße 3a37075GöttingenGermany
| | - Sebastian Kruss
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| |
Collapse
|
14
|
Mann FA, Herrmann N, Opazo F, Kruss S. Quantendefekte als Werkzeugkasten für die kovalente Funktionalisierung von Kohlenstoffnanoröhren mit Peptiden und Proteinen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Florian A. Mann
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| | - Niklas Herrmann
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3a 37075 Göttingen Deutschland
| | - Sebastian Kruss
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| |
Collapse
|
15
|
Berger F, Lüttgens J, Nowack T, Kutsch T, Lindenthal S, Kistner L, Müller CC, Bongartz LM, Lumsargis VA, Zakharko Y, Zaumseil J. Brightening of Long, Polymer-Wrapped Carbon Nanotubes by sp 3 Functionalization in Organic Solvents. ACS NANO 2019; 13:9259-9269. [PMID: 31381849 PMCID: PMC6716210 DOI: 10.1021/acsnano.9b03792] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/05/2019] [Indexed: 05/18/2023]
Abstract
The functionalization of semiconducting single-walled carbon nanotubes (SWNTs) with sp3 defects that act as luminescent exciton traps is a powerful means to enhance their photoluminescence quantum yield (PLQY) and to add optical properties. However, the synthetic methods employed to introduce these defects are currently limited to aqueous dispersions of surfactant-coated SWNTs, often with short tube lengths, residual metallic nanotubes, and poor film-formation properties. In contrast to that, dispersions of polymer-wrapped SWNTs in organic solvents feature unrivaled purity, higher PLQY, and are easily processed into thin films for device applications. Here, we introduce a simple and scalable phase-transfer method to solubilize diazonium salts in organic nonhalogenated solvents for the controlled reaction with polymer-wrapped SWNTs to create luminescent aryl defects. Absolute PLQY measurements are applied to reliably quantify the defect-induced brightening. The optimization of defect density and trap depth results in PLQYs of up to 4% with 90% of photons emitted through the defect channel. We further reveal the strong impact of initial SWNT quality and length on the relative brightening by sp3 defects. The efficient and simple production of large quantities of defect-tailored polymer-sorted SWNTs enables aerosol-jet printing and spin-coating of thin films with bright and nearly reabsorption-free defect emission, which are desired for carbon nanotube-based near-infrared light-emitting devices.
Collapse
Affiliation(s)
- Felix
J. Berger
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jan Lüttgens
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tim Nowack
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Tobias Kutsch
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
- Institute
of Physical Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - Sebastian Lindenthal
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Lucas Kistner
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Christine C. Müller
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Lukas M. Bongartz
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Victoria A. Lumsargis
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Yuriy Zakharko
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Jana Zaumseil
- Institute
for Physical Chemistry and Centre for Advanced Materials, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
16
|
Luo HB, Wang P, Wu X, Qu H, Ren X, Wang Y. One-Pot, Large-Scale Synthesis of Organic Color Center-Tailored Semiconducting Carbon Nanotubes. ACS NANO 2019; 13:8417-8424. [PMID: 31268668 DOI: 10.1021/acsnano.9b04087] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Organic color center-tailored semiconducting single-walled carbon nanotubes are a rising family of synthetic quantum emitters that display bright defect photoluminescence molecularly tunable for imaging, sensing, and quantum information processing. A major advance in this area would be the development of a high-yield synthetic route that is capable of producing these materials well exceeding the current μg/mL scale. Here, we demonstrate that adding a chlorosulfonic acid solution of raw carbon nanotubes, sodium nitrite, and an aniline derivative into water readily leads to the synthesis of organic color center-tailored nanotubes. This unexpectedly simple one-pot reaction is highly scalable (yielding hundreds of milligrams of materials in a single run), efficient (reaction completes in seconds), and versatile (achieved the synthesis of organic color centers previously unattainable). The implanted organic color centers can be easily tailored by choosing from the more than 40 aniline derivatives that are commercially available, including many fluoroaniline and aminobenzoic acid derivatives, and that are difficult to convert into diazonium salts. We found this chemistry works for all the nanotube chiralities investigated. The synthesized materials are neat solids that can be directly dispersed in either water or an organic solvent by a surfactant or polymer depending on the specific application. The nanotube products can also be further sorted into single chirality-enriched fractions with defect-specific photoluminescence that is tunable over ∼1100 to ∼1550 nm. This one-pot chemistry thus provides a highly scalable synthesis of organic color centers for many potential applications that require large quantities of materials.
Collapse
Affiliation(s)
- Hong-Bin Luo
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
| | - Peng Wang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Haoran Qu
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Xiaoming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , P. R. China
| | - YuHuang Wang
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
- Maryland NanoCenter , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|