1
|
Zhuang HF, Gu J, Ye Z, He Y. Stereospecific 3-Aza-Cope Rearrangement Interrupted Asymmetric Allylic Substitution-Isomerization. Angew Chem Int Ed Engl 2025; 64:e202418951. [PMID: 39417348 DOI: 10.1002/anie.202418951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Transition-metal catalyzed asymmetric allylic substitution with alkyl and heteroaryl carbon nucleophiles has been well-established. However, the asymmetric allylic arylation of acyclic internal alkenes with aryl nucleophiles remains challenging and underdeveloped. Herein we report a stereospecific 3-aza-Cope rearrangement interrupted asymmetric allylic substitution-isomerization (Int-AASI) that enables asymmetric allylic arylation. By means of this stepwise strategy, both enantioenriched allylic arylation products and axially chiral alkenes could be readily obtained in high enantioselectivities. Experimental studies support a mechanism involving a cascade of asymmetric allylic amination, stereospecific 3-aza-Cope rearrangement and alkene isomerization. Density functional theory studies detailed the reasons of achieving the high chemoselectivity, regioselectivity, stereoselectivity and stereospecificity, respectively.
Collapse
Affiliation(s)
- Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
2
|
Lin L, Wang M, Zhou J, Li F, Liu H. Highly diastereo- and enantioselective C2 addition of 5 H-oxazol-4-ones to γ-keto-α,β-unsaturated esters. Chem Commun (Camb) 2023; 59:3606-3609. [PMID: 36891781 DOI: 10.1039/d3cc00554b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The direct C2-addition of 5H-oxazol-4-ones to γ-keto-α,β-unsaturated esters catalyzed by a chiral squaramide has been achieved. Diverse highly functionalized γ-keto esters bearing a C2-oxazolone at the α-position were afforded in high yields with excellent stereoselectivities (d.r. > 20 : 1 and up to 98% ee).
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Mei Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Jiawei Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Fei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Huiyun Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
3
|
Nilova A, Mannchen MD, Noel AN, Semenova E, Grenning AJ. Vicinal stereocenters via asymmetric allylic alkylation and Cope rearrangement: a straightforward route to functionally and stereochemically rich heterocycles. Chem Sci 2023; 14:2755-2762. [PMID: 36908968 PMCID: PMC9993902 DOI: 10.1039/d2sc07021a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
An asymmetric allylic alkylation/Cope rearrangement (AAA/[3,3]) capable of stereoselectively constructing vicinal stereocenters has been developed. Strategically integrated 4-methylation on the 3,3-dicyano-1,5-diene controls stereoselectivity and drives Cope rearrangement equilibrium in the forward direction. The AAA/[3,3] sequence rapidly converts abundant achiral and racemic starting materials into valuable (hetero)cycloalkane building blocks bearing significant functional and stereochemical complexity, highlighting the value of (hetero)cyclohexylidenemalononitriles as launching points for complex heterocycle synthesis. On this line, the resulting alkylidenemalononitrile moiety can be readily converted into amides via Hayashi-Lear amidation to ultimately yield amido-piperidines, tropanes, and related scaffolds with 3-5 stereocenters and drug-like functionality.
Collapse
Affiliation(s)
- Aleksandra Nilova
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Michael D Mannchen
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Abdias N Noel
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Evgeniya Semenova
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| | - Alexander J Grenning
- Department of Chemistry, University of Florida PO Box 117200 Gainesville 32611 FL USA
| |
Collapse
|
4
|
Liu Y, Liu X, Feng X. Recent advances in metal-catalysed asymmetric sigmatropic rearrangements. Chem Sci 2022; 13:12290-12308. [PMID: 36382273 PMCID: PMC9629009 DOI: 10.1039/d2sc03806d] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/22/2022] [Indexed: 09/22/2023] Open
Abstract
Asymmetric sigmatropic rearrangement is a powerful organic transformation via substrate-reorganization to efficiently increase molecular complexity from readily accessible starting materials. In particular, a high level of diastereo- and enantioselectivity can be readily accessed through well-defined and predictable transition states in [3,3], [2,3]-sigmatropic rearrangements, which have been widely applied in the synthesis of various chiral building blocks, natural products, and pharmaceuticals. In recent years, catalytic asymmetric sigmatropic rearrangements involving chiral metal complexes to induce stereocontrol have been intensively studied. This review presents an overview of metal-catalysed enantioselective versions of sigmatropic rearrangements in the past two decades, mainly focusing on [3,3], [2,3], and [1,3]-rearrangements, to show the development of substrate design, new catalyst exploitation, and novel cascade processes. In addition, their application in the asymmetric synthesis of complex natural products is also exemplified.
Collapse
Affiliation(s)
- Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
5
|
Cheng X, Shen C, Dong XQ, Wang CJ. Iridium-catalyzed asymmetric double allylic alkylation of azlactone: efficient access to chiral α-amino acid derivatives. Chem Commun (Camb) 2022; 58:3142-3145. [PMID: 35174829 DOI: 10.1039/d2cc00328g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An unprecedented Ir-catalyzed enantioselective double allylic alkylation of less bulky cyclic imine glycinate (azlactone) was rationally designed and developed, providing various bisallylated chiral amino acid derivatives. Control experiments revealed that this transformation proceeds in a sequential manner featuring quasi-dynamic kinetic resolution of the initially-formed monoallylation intermediates.
Collapse
Affiliation(s)
- Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| | - Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| |
Collapse
|
6
|
Abstract
Carbon–carbon bond formation by [3,3]-sigmatropic rearrangement is a fundamental and powerful method that has been used to build organic molecules for a long time. Initially, Claisen and Cope rearrangements proceeded at high temperatures with limited scopes. By introducing catalytic systems, highly functionalized substrates have become accessible for forming complex structures under mild conditions, and asymmetric synthesis can be achieved by using chiral catalytic systems. This review describes recent breakthroughs in catalytic [3,3]-sigmatropic rearrangements since 2016. Detailed reaction mechanisms are discussed to enable an understanding of the reactivity and selectivity of the reactions. Finally, this review is inspires the development of new cascade reaction pathways employing catalytic [3,3]-sigmatropic rearrangement as related methodologies for the synthesis of complex functional molecules.
Collapse
|
7
|
Wei L, Wang CJ. Recent advances in catalytic asymmetric aza-Cope rearrangement. Chem Commun (Camb) 2021; 57:10469-10483. [PMID: 34550132 DOI: 10.1039/d1cc04387k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aza-Cope rearrangement, as one of the fundamental reactions for C-C and C-N bond formation, has been extensively utilized for the rapid construction of synthetically challenging organic molecules. Despite significant achievements having been made in the past 80 years, catalytic enantioselective versions still remain a challenge, mainly due to the inherent nature of the reversibility of aza-Cope rearrangement. Recently, owing to the intensive development of asymmetric catalysis strategies, various chiral organocatalysts and transition-metal catalysts have been successfully applied to control the stereoselectivity of aza-Cope rearrangement, and remarkable advances have been achieved. This review highlights recent progress relating to catalytic asymmetric aza-Cope rearrangement and covers important features of these studies, including catalytic system design, mechanistic insights, stereochemistry analysis, and synthetic applications.
Collapse
Affiliation(s)
- Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 230021, China
| |
Collapse
|
8
|
Wang J, Qi X, Min XL, Yi W, Liu P, He Y. Tandem Iridium Catalysis as a General Strategy for Atroposelective Construction of Axially Chiral Styrenes. J Am Chem Soc 2021; 143:10686-10694. [PMID: 34228930 DOI: 10.1021/jacs.1c04400] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Axially chiral styrenes are of great interest since they may serve as a class of novel chiral ligands in asymmetric synthesis. However, only recently have strategies been developed for their enantioselective preparation. Thus, the development of novel and efficient methodologies is highly desirable. Herein, we reported the first tandem iridium catalysis as a general strategy for the synthesis of axially chiral styrenes enabled by Asymmetric Allylic Substitution-Isomerization (AASI) using cinnamyl carbonate analogues as electrophiles and naphthols as nucleophiles. In this approach, axially chiral styrenes were generated through two independent iridium-catalytic cycles: iridium-catalyzed asymmetric allylic substitution and in situ isomerization via stereospecific 1,3-hydride transfer catalyzed by the same iridium catalyst. Both experimental and computational studies demonstrated that the isomerization proceeded by iridium-catalyzed benzylic C-H bond oxidative addition, followed by terminal C-H reductive elimination. Amid the central-to-axial chirality transfer, the hydroxyl of naphthol plays a crucial role in ensuring the stereospecificity by coordinating with the Ir(I) center. The process accommodated broad functional group compatibility. The products were generated in excellent yields with excellent to high enantioselectivities, which could be transformed to various axially chiral molecules.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Xiao-Long Min
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
9
|
Fujita K, Miura M, Funahashi Y, Hatanaka T, Nakamura S. Enantioselective Reaction of 2 H-Azirines with Oxazol-5-(4 H)-ones Catalyzed by Cinchona Alkaloid Sulfonamide Catalysts. Org Lett 2021; 23:2104-2108. [PMID: 33650878 DOI: 10.1021/acs.orglett.1c00259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enantioselective reaction of 2H-azirines with oxazol-5-(4H)-ones (oxazolones) using a cinchona alkaloid sulfonamide catalyst has been developed. The reaction proceeded at the C-2 position of oxazolones to afford products with consecutive tetrasubstituted stereogenic centers in high yield with high diastereo- and enantioselectivity. The obtained aziridines were converted into various chiral compounds without loss of enantiopurity.
Collapse
Affiliation(s)
- Kazuki Fujita
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Masataka Miura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| | - Yasuhiro Funahashi
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tsubasa Hatanaka
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Shuichi Nakamura
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.,Frontier Research Institute for Material Science, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
10
|
Lu WY, Wang Y, You Y, Wang ZH, Zhao JQ, Zhou MQ, Yuan WC. Copper-Catalyzed Decarboxylative [3 + 2] Annulation of Ethynylethylene Carbonates with Azlactones: Access to γ-Butyrolactones Bearing Two Vicinal Quaternary Carbon Centers. J Org Chem 2020; 86:1779-1788. [PMID: 33377785 DOI: 10.1021/acs.joc.0c02621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient decarboxylative [3 + 2] annulation reaction of ethynylethylene carbonates and azlactones has been developed with a copper salt as catalyst. This practical methodology gives access to a diverse library of γ-butyrolactones bearing α,β-two vicinal quaternary carbon centers in good to high yields with good levels of diastereoselectivities (up to 98% yield, >95:5 dr). Preliminary trials on enantioselective variant with a chiral PyBox ligand provided chiral products in up to 71% ee. This synthetic method features mild reaction conditions, broad functional group tolerance, large-scale synthesis, and versatile products transformation. A plausible catalytic cycle for the protocol is proposed based on previous related studies and our experimental observations.
Collapse
Affiliation(s)
- Wen-Ya Lu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
11
|
Dong WW, Li YN, Chang X, Shen C, Wang CJ. Chiral Ugi-Type Amines: Practical Synthesis, Ligand Development, and Asymmetric Catalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c04077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Wu-Wei Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yi-Nan Li
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Li L, Yang T, Zhang T, Zhu B, Chang J. Organocatalytic Asymmetric Tandem Cyclization/Michael Addition via Oxazol-5(2 H)-One Formation: Access to Perfluoroalkyl-Containing N, O-Acetal Derivatives. J Org Chem 2020; 85:12294-12303. [PMID: 32893624 DOI: 10.1021/acs.joc.0c01545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report a convenient organocatalytic asymmetric tandem cyclization/Michael addition protocol for the synthesis of diastereomerically pure and highly enantioenriched perfluoroalkyl-containing N,O-acetal derivatives starting from racemic N-perfluoroacyl amino acids under mild conditions. This efficient atom economic reaction leads to highly enantioselective and diastereoselective construction of N,O-acetal derivatives containing oxazolone and perfluoroalkyl moieties containing vicinal quaternary and tertiary stereocenters (up to 97% yield, up to 96% ee, and up to >20:1 dr).
Collapse
Affiliation(s)
- Luyao Li
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tianxiao Yang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Tao Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bo Zhu
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
13
|
Chen P, Li Y, Chen ZC, Du W, Chen YC. Pseudo-Stereodivergent Synthesis of Enantioenriched Tetrasubstituted Alkenes by Cascade 1,3-Oxo-Allylation/Cope Rearrangement. Angew Chem Int Ed Engl 2020; 59:7083-7088. [PMID: 32073203 DOI: 10.1002/anie.202000044] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/14/2020] [Indexed: 12/12/2022]
Abstract
The catalytic diastereodivergent construction of stereoisomers having two or more stereogenic centers has been extensively studied. In contrast, the switchable introduction of another stereogenic element, that is, Z/E configuration involving a polysubstituted alkene group, into the optically active stereoisomers, has not been recognized yet. Disclosed here is the pseudo-stereodivergent synthesis of highly enantioenriched tetrasubstituted alkene architectures from isatin-based Morita-Baylis-Hillman carbonates and allylic derivatives, under the cooperative catalysis of a tertiary amine and a chiral iridium complex. The success of the switchable construction of the tetrasubstituted alkene motif relies on the diastereodivergent 1,3-oxo-allylation reaction between N-allylic ylides and chiral π-allyliridium complex intermediates by ligand and substrate control, followed by the stereoselective concerted 3,3-Cope rearrangement process.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yue Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.,College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
14
|
Jin M, Yin SF, Yang SD. Bismuth(III)-Catalyzed Sequential Enamine-Imine Tautomerism/2-Aza-Cope Rearrangement of Stable β-Enaminophosphonates: One-Pot Synthesis of β-Aminophosphonates. Org Lett 2020; 22:2811-2815. [PMID: 32186884 DOI: 10.1021/acs.orglett.0c00796] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel catalytic tautomeric transformation of a β-enaminophosphoryl and 2-aza-Cope rearrangement sequence has been successfully applied to the one-pot synthesis of β-aminophosphonates with high efficiency and good tolerance. In this tandem reaction, Bi(OTf)3 exhibits unique activities and promotes both of enamine-imine tautomerism and 2-aza-Cope rearrangement.
Collapse
Affiliation(s)
- Ming Jin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shi-Fu Yin
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Chen P, Li Y, Chen Z, Du W, Chen Y. Pseudo‐Stereodivergent Synthesis of Enantioenriched Tetrasubstituted Alkenes by Cascade 1,3‐Oxo‐Allylation/Cope Rearrangement. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peng Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Yue Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Zhi‐Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ying‐Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
- College of Pharmacy Third Military Medical University Chongqing 400038 China
| |
Collapse
|
16
|
Liu Z, Feng X, Xu J, Jiang X, Cai X. Construction of allylic amino acid derivatives through a catalytic asymmetric allylic alkylation of azlactones with vinyl cyclopropanes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Liu X, Jin S, Zhang W, Liu Q, Zheng C, You S. Sequence‐Dependent Stereodivergent Allylic Alkylation/Fluorination of Acyclic Ketones. Angew Chem Int Ed Engl 2020; 59:2039-2043. [DOI: 10.1002/anie.201912882] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Xi‐Jia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shicheng Jin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Yun Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiang‐Qiang Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
18
|
Zhang Z, Xiao F, Wu HM, Dong XQ, Wang CJ. Pd-Catalyzed Asymmetric Hydroalkylation of 1,3-Dienes: Access to Unnatural α-Amino Acid Derivatives Containing Vicinal Quaternary and Tertiary Stereogenic Centers. Org Lett 2020; 22:569-574. [PMID: 31895576 DOI: 10.1021/acs.orglett.9b04341] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pd-phosphinooxazoline (Pd-PHOX)-catalyzed asymmetric hydroalkylation of 1,3-dienes with azlactones was successfully developed for the first time, affording various enantioenriched α-quaternary α-amino acid derivatives bearing contiguous quaternary and tertiary stereogenic centers in good yields with exclusive regioselectivity and excellent stereoselective control (up to 92% yield, >20:1 dr, and >99% ee). The scale-up catalytic asymmetric hydroalkylation was performed well without loss of reactivity and stereoselectivities, which exhibited great potential application. The synthetic utility of the current methodology was demonstrated through product transformations to access other biologically important compounds such as chiral β-amino alcohol and α-quaternary cyclic α-amino acid derivatives.
Collapse
Affiliation(s)
- Zongpeng Zhang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Hui-Min Wu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Shanghai 230021 , China
| |
Collapse
|
19
|
Yang H, Xing D. Palladium-catalyzed diastereo- and enantioselective allylic alkylation of oxazolones with 1,3-dienes under base-free conditions. Chem Commun (Camb) 2020; 56:3721-3724. [DOI: 10.1039/d0cc00265h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein, we report a highly diastereo- and enantioselective allylic alkylation of oxazolones with 1,3-dienes by palladium-hydride catalyst under base-free conditions.
Collapse
Affiliation(s)
- Haijian Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| |
Collapse
|
20
|
Liu X, Jin S, Zhang W, Liu Q, Zheng C, You S. Sequence‐Dependent Stereodivergent Allylic Alkylation/Fluorination of Acyclic Ketones. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201912882] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xi‐Jia Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shicheng Jin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Wen‐Yun Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiang‐Qiang Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
21
|
Yen A, Pham AH, Larin EM, Lautens M. Rhodium-Catalyzed Enantioselective Synthesis of Oxazinones via an Asymmetric Ring Opening-Lactonization Cascade of Oxabicyclic Alkenes. Org Lett 2019; 21:7549-7553. [PMID: 31539925 DOI: 10.1021/acs.orglett.9b02819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rhodium-catalyzed asymmetric ring opening reaction of oxabicyclic alkenes is shown to be an efficient method for synthesizing chiral heterocycles. We demonstrate that the pairwise combination of chiral catalyst with chiral amino-acid-derived pronucleophiles results in a stereodivergent synthesis of diastereomeric hydroxyesters. A favorable conformational preference induces the subsequent lactonization of one diastereomer leading to the highly enantioselective synthesis of oxazinones.
Collapse
Affiliation(s)
- Andy Yen
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , Toronto , Canada , M5S 3H6
| | - Anh Hoang Pham
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , Toronto , Canada , M5S 3H6
| | - Egor M Larin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , Toronto , Canada , M5S 3H6
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , Toronto , Canada , M5S 3H6
| |
Collapse
|
22
|
Marra IFS, de Castro PP, Amarante GW. Recent Advances in Azlactone Transformations. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901076] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Isabella F. S. Marra
- Chemistry Department; Federal University of Juiz de Fora; José Lourenço Kelmer, São Pedro Juiz de Fora Brazil
| | - Pedro P. de Castro
- Chemistry Department; Federal University of Juiz de Fora; José Lourenço Kelmer, São Pedro Juiz de Fora Brazil
| | - Giovanni W. Amarante
- Chemistry Department; Federal University of Juiz de Fora; José Lourenço Kelmer, São Pedro Juiz de Fora Brazil
| |
Collapse
|
23
|
Sihag P, Jeganmohan M. Iridium(III)-Catalyzed Intermolecular Allylic C–H Amidation of Internal Alkenes with Sulfonamides. J Org Chem 2019; 84:13053-13064. [DOI: 10.1021/acs.joc.9b02047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
24
|
Shen C, Wang RQ, Wei L, Wang ZF, Tao HY, Wang CJ. Catalytic Asymmetric Umpolung Allylation/2-Aza-Cope Rearrangement for the Construction of α-Tetrasubstituted α-Trifluoromethyl Homoallylic Amines. Org Lett 2019; 21:6940-6945. [DOI: 10.1021/acs.orglett.9b02543] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ruo-Qing Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zuo-Fei Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hai-Yan Tao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Wang Y, Deng LF, Zhang X, Niu D. Catalytic Asymmetric Synthesis of α-Tetrasubstituted α-Trifluoromethyl Homoallylic Amines by Ir-Catalyzed Umpolung Allylation of Imines. Org Lett 2019; 21:6951-6956. [PMID: 31418581 DOI: 10.1021/acs.orglett.9b02550] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Yingwei Wang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Li-Fan Deng
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| |
Collapse
|