1
|
Li X, Liu NX, Sun JT, Nie XD, Si CM, Wei BG. An [(IPr)AuCl]-catalyzed formal [4+2] process of N-Ar N, O-acetals with arylacetylenes for the construction of pyrrolo[1,2- a]quinolines. Chem Commun (Camb) 2025. [PMID: 40357817 DOI: 10.1039/d5cc01581b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
An efficient approach to access functionalized pyrrolo[1,2-a]quinolone skeletons was developed through [(IPr)AuCl]-catalyzed formal intermolecular [4+2] reaction of N-Ar N,O-acetals 6a-6h with arylacetylenes 7a-7r. As a result, a series of 3,3a-dihydropyrrolo[1,2-a]quinolin-1(2H)-one derivatives 8a-8o and 9a-9n were synthesized with excellent regioselectivity.
Collapse
Affiliation(s)
- Xin Li
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Nai-Xuan Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jian-Ting Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Xiao-Di Nie
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Chang-Mei Si
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
2
|
Mou S, Savchenko V, Filz V, Böttcher T, DeShazer D. Burkholderia pseudomallei produces 2-alkylquinolone derivatives important for host virulence and competition with bacteria that employ naphthoquinones for aerobic respiration. Front Microbiol 2024; 15:1474033. [PMID: 39469462 PMCID: PMC11513363 DOI: 10.3389/fmicb.2024.1474033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Melioidosis is caused by Burkholderia pseudomallei, an opportunistic Gram-negative pathogen that inhabits soil and water in tropical and subtropical regions. B. pseudomallei infections often occur following contact with contaminated water or soil or by inhalation of contaminated dust and water droplets. There is limited knowledge about how B. pseudomallei is able to survive in harsh environmental conditions and compete with the microbes that inhabit these niches. Previous research demonstrated that 3-methyl-2-alkylquinolones (MAQs), and their corresponding N-oxides (MAQNOs), are produced by B. pseudomallei and provide a competitive advantage when grown in the presence of Gram-positive bacteria. In this study, 39 Gram-negative environmental bacteria in the Pseudomonadota and Bacteroidota phyla were isolated and characterized. Intriguingly, B. pseudomallei inhibited 71% of bacteria in the phylum Bacteroidota in zone of inhibition and coculture competition assays, but no Pseudomonadota isolates were similarly inhibited. Transposon mutagenesis was utilized to identify B. pseudomallei genes required for the inhibition of Sphingobacterium sp. ST4, a representative member of the Bacteroidota. Three mutations mapped to hmqA-G, the locus encoding 2-alkylquinolone derivatives, and two mutations were identified in scmR, a gene encoding a quorum-sensing controlled LysR-type transcriptional regulator. B. pseudomallei strains with deletion mutations in hmqD and scmR were unable to produce 2-alkylquinolone derivatives or inhibit Bacteroidota isolates in competition assays. RAW264.7 murine macrophage cells were infected with B. pseudomallei 1026b and 1026b ΔhmqD and there was a 94-fold reduction in the number of intracellular 1026b ΔhmqD bacteria relative to 1026b. The 50% lethal dose (LD50) of 1026b and 1026b ΔhmqD in BALB/c mice was determined to be 3 x 105 colony forming units (CFU) and > 1 x 106 CFU, respectively. Taken together, the results indicate that the products of the B. pseudomallei hmqA-G locus are important for intracellular replication in murine macrophages, virulence in a mouse model of melioidosis, and competition with bacteria that utilize naphthoquinones for aerobic respiration.
Collapse
Affiliation(s)
- Sherry Mou
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Viktoriia Savchenko
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Verena Filz
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Böttcher
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - David DeShazer
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
3
|
Angelov P, Mollova-Sapundzhieva Y, Alonso F, Goranov B, Nedialkov P, Bachvarova D. Concise Synthesis of Pseudane IX, Its N-Oxide, and Novel Carboxamide Analogs with Antibacterial Activity. Molecules 2024; 29:3676. [PMID: 39125082 PMCID: PMC11314064 DOI: 10.3390/molecules29153676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
A four-step synthesis of the natural product pseudane IX, starting from 3-oxododecanoic acid phenylamide and including only one chromatographic purification, was accomplished with an overall yield of 52%. The same synthetic sequence, but with a controlled partial reduction of a nitro group in the penultimate intermediate, led to the N-oxide of pseudane IX (NQNO). A shortened three-step variation of the synthesis allowed for the preparation of novel carboxamide analogs of the natural product. An agar diffusion assay against six different bacterial strains revealed significant antibacterial activity of the novel analogs against S. aureus at a concentration of 100 µg/mL. One of the novel compounds showed a remarkably broad spectrum of antibacterial activity, comparable to that of the positive control NQNO.
Collapse
Affiliation(s)
- Plamen Angelov
- Department of Organic Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (Y.M.-S.); (D.B.)
| | - Yordanka Mollova-Sapundzhieva
- Department of Organic Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (Y.M.-S.); (D.B.)
| | - Francisco Alonso
- Instituto de Síntesis Orgánica and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain;
| | - Bogdan Goranov
- Department of Microbiology, University of Food Technologies, 26 Maritza Boulevard, 4002 Plovdiv, Bulgaria;
| | - Paraskev Nedialkov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria;
| | - Denitsa Bachvarova
- Department of Organic Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria; (Y.M.-S.); (D.B.)
| |
Collapse
|
4
|
Mollova-Sapundzhieva Y, Angelov P, Georgiev D, Yanev P. Synthetic approach to 2-alkyl-4-quinolones and 2-alkyl-4-quinolone-3-carboxamides based on common β-keto amide precursors. Beilstein J Org Chem 2023; 19:1804-1810. [PMID: 38033452 PMCID: PMC10682542 DOI: 10.3762/bjoc.19.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
β-Keto amides were used as convenient precursors to both 2-alkyl-4-quinolones and 2-alkyl-4-quinolone-3-carboxamides. The utility of this approach is demonstrated with the synthesis of fourteen novel and four known quinolone derivatives, including natural products of microbial origin such as HHQ and its C5-congener. Two compounds with high activity against S. aureus have been identified among the newly obtained quinolones, with MICs ≤ 3.12 and ≤ 6.25 µg/mL, respectively.
Collapse
Affiliation(s)
- Yordanka Mollova-Sapundzhieva
- Department of Organic Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Plamen Angelov
- Department of Organic Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Danail Georgiev
- Department of Biochemistry and Microbiology, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| | - Pavel Yanev
- Department of Organic Chemistry, University of Plovdiv Paisii Hilendarski, 24 Tsar Asen Str., 4000 Plovdiv, Bulgaria
| |
Collapse
|
5
|
Lu N, Liang H, Miao C, Lan X. Theoretical Investigation on the Mechanism and Selectivity of Catalyst-Free Annulation of Ynediones and (Iso)quinoline N-Oxides. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Fisyuk AS, Kostyuchenko AS, Goncharov DS. Camps Reaction and Related Cyclizations. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020110019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Yang WW, Ye YF, Chen LL, Fu JY, Zhu JY, Wang YB. Catalyst- and Additive-Free Annulation of Ynediones and (Iso)Quinoline N-Oxides: An Approach to Synthesis of Pyrrolo[2,1- a]Isoquinolines and Pyrrolo[1,2- a]Quinolines. J Org Chem 2020; 86:169-177. [PMID: 33252226 DOI: 10.1021/acs.joc.0c01932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A simple and effective annulation of ynediones and (iso)quinoline N-oxides was developed to afford various functionalized pyrrolo[2,1-a]isoquinolines and pyrrolo[1,2-a]quinolines in moderate to excellent yields. This protocol underwent a tandem [3 + 2] cycloaddition/ring-opening/N-nucleophilic addition, which exhibited high regioselectivity, broad substrate tolerance, and atom economy under catalyst-, additive-free, and air conditions. Moreover, indolizine was also successfully prepared using pyridine N-oxide.
Collapse
Affiliation(s)
- Wan-Wan Yang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Ya-Fang Ye
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Lu-Lu Chen
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Ji-Ya Fu
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Jun-Yan Zhu
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Yan-Bo Wang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| |
Collapse
|
8
|
Huang J, Su H, Bao M, Qiu L, Zhang Y, Xu X. Gold(iii)-catalyzed azide-yne cyclization/O-H insertion cascade reaction for the expeditious construction of 3-alkoxy-4-quinolinone frameworks. Org Biomol Chem 2020; 18:3888-3892. [PMID: 32373897 DOI: 10.1039/d0ob00745e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gold-catalyzed 6-endo-dig azide-yne cyclization/O-H insertion cascade reaction of azide-tethered alkynes with alcohols has been developed, and it provides an expeditious access to 3-alkoxy-4-quinoline derivatives in good to high yields under mild and neutral reaction conditions with broad substrate generality. The utility of this method is emphasized by a scalable experiment and concise total synthesis of a bioactive natural product Leiokinine A, and other bioactive quinoline analogs.
Collapse
Affiliation(s)
- Jingjing Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Han Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Lihua Qiu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuanqing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China. and College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Immunogenicity and Protective Effect of a Virus-Like Particle Containing the SAG1 Antigen of Toxoplasma gondii as a Potential Vaccine Candidate for Toxoplasmosis. Biomedicines 2020; 8:biomedicines8040091. [PMID: 32325746 PMCID: PMC7235809 DOI: 10.3390/biomedicines8040091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
This study was carried out to evaluate the vaccination effect of a virus-like particle (VLP) including the surface antigen 1 (SAG1) of Toxoplasma gondii as a potential vaccine for toxoplasmosis. The SAG1 virus-like particles (SAG1-VLPs) were expressed by Sf9 cells, and their expression was confirmed through cloning, RT-PCR analysis, and western blot method. The immunogenicity and vaccine efficacy of SAG1-VLPs were assessed by the antibody response, cytokine analysis, neutralization activity, splenocyte assay, and survival rates through a mouse model. In particular, IgG, IgG1, IgG2a, and IgA were markedly increased after immunization, and the survival rates of T. gondii were strongly inhibited by the immunized sera. Furthermore, the immunization of SAG1-VLPs effectively decreased the production of specific cytokines, such as IL-1β, IL-6, TNF-α, and IFN-γ, after parasite infection. In particular, the immunized group showed strong activity and viability compared with the non-immunized infection group, and their survival rate was 75%. These results demonstrate that SAG1-VLP not only has the immunogenicity to block T. gondii infection by effectively inducing the generation of specific antibodies against T. gondii, but is also an effective antigen delivery system for preventing toxoplasmosis. This study indicates that SAG1-VLP can be effectively utilized as a promising vaccine candidate for preventing or inhibiting T. gondii infection.
Collapse
|
10
|
Sundaravelu N, Sekar G. Cu-Catalyzed one-pot synthesis of thiochromeno-quinolinone and thiochromeno-thioflavone via oxidative double hetero Michael addition using in situ generated nucleophiles. Chem Commun (Camb) 2020; 56:8826-8829. [DOI: 10.1039/d0cc03210g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper catalyzed three-component synthesis of π-conjugated tetracyclic thiochromeno-quinolinone and thiochromeno-thioflavone was established via oxidative double hetero Michael addition using in situ generated nucleophiles.
Collapse
Affiliation(s)
| | - Govindasamy Sekar
- Department of Chemistry
- Indian Institute of Technology Madras
- Chennai-600036
- India
| |
Collapse
|