1
|
Dong X, Zhang Z, Wang R, Sun J, Dong C, Sun L, Jia C, Gu X, Zhao C. RSS and ROS Sequentially Activated Carbon Monoxide Release for Boosting NIR Imaging-Guided On-Demand Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309529. [PMID: 38100303 DOI: 10.1002/smll.202309529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Carbon monoxide shows great therapeutic potential in anti-cancer. In particular, the construction of multifunctional CO delivery systems can promote the precise delivery of CO and achieve ideal therapeutic effects, but there are still great challenges in design. In this work, a RSS and ROS sequentially activated CO delivery system is developed for boosting NIR imaging-guided on-demand photodynamic therapy. This designed system is composed of a CO releaser (BOD-CO) and a photosensitizer (BOD-I). BOD-CO can be specifically activated by hydrogen sulfide with simultaneous release of CO donor and NIR fluorescence that can identify H2S-rich tumors and guide light therapy, also depleting H2S in the process. Moreover, BOD-I generates 1O2 under long-wavelength light irradiation, enabling both PDT and precise local release of CO via a photooxidation mechanism. Such sequential activation of CO release by RSS and ROS ensured the safety and controllability of CO delivery, and effectively avoided leakage during delivery. Importantly, cytotoxicity and in vivo studies reveal that the release of CO combined with the depletion of endogenous H2S amplified PDT, achieving ideal anticancer results. It is believed that such theranostic nanoplatform can provide a novel strategy for the precise CO delivery and combined therapy involved in gas therapy and PDT.
Collapse
Affiliation(s)
- Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ziwen Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Cai Jia
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100006, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
2
|
Li Y, Zhang J, Cheng S, Wang X, Zhang J, Xie X, Jiao X, Tang B. Endoplasmic Reticulum-Targeted Carbon Monoxide Photoreleaser for Drug-Induced Hepatotoxicity Remediation. Anal Chem 2023; 95:7439-7447. [PMID: 37141086 DOI: 10.1021/acs.analchem.2c03540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The alleviation of drug-induced liver injury has been a long-term public health concern. Growing evidence suggests that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of drug-induced hepatotoxicity. Therefore, the inhibition of ER stress has gradually become one of the important pathways to alleviate drug-induced liver injury. In this work, we developed an ER-targeted photoreleaser, ERC, for controllable carbon monoxide (CO) release with a near-infrared light trigger. By employing peroxynitrite (ONOO-) as an imaging biomarker of hepatotoxicity, the remediating effect of CO was mapped upon drug acetaminophen (APAP) challenge. The direct and visual evidence of suppressing oxidative and nitrosative stress by CO was obtained both in living cells and in mice. Additionally, the ER stress inhibiting the effect of CO was verified during drug-induced hepatotoxicity. This work demonstrated that CO may be employed as a potent potential antidote for APAP-related oxidative and nitrative stress remediation.
Collapse
Affiliation(s)
- Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jiangong Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Simiao Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
3
|
Ji X, Zhong Z. External stimuli-responsive gasotransmitter prodrugs: Chemistry and spatiotemporal release. J Control Release 2022; 351:81-101. [PMID: 36116579 DOI: 10.1016/j.jconrel.2022.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Gasotransmitters like nitric oxide, carbon monoxide, and hydrogen sulfide with unique pleiotropic pharmacological effects in mammals are an emerging therapeutic modality for different human diseases including cancer, infection, ischemia-reperfusion injuries, and inflammation; however, their clinical translation is hampered by the lack of a reliable delivery form, which delivers such gasotransmitters to the action site with precisely controlled dosage. The external stimuli-responsive prodrug strategy has shown tremendous potential in developing gasotransmitter prodrugs, which affords precise temporospatial control and better dose control compared with endogenous stimuli-sensitive prodrugs. The promising external stimuli employed for gasotransmitter activation range from photo, ultrasound, and bioorthogonal click chemistry to exogenous enzymes. Herein, we highlight the recent development of external stimuli-mediated decaging chemistry for the temporospatial delivery of gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide and sulfur dioxide, and discuss the pros and cons of different designs.
Collapse
Affiliation(s)
- Xingyue Ji
- College of Pharmaceutical Sciences, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
4
|
Sun YJ, Yu C. B-Ring-extended flavonol-based photoCORM: activated by cysteine-ratiometric fluorescence sensing and accurate control of linear CO release. J Mater Chem B 2021; 9:8263-8271. [PMID: 34499076 DOI: 10.1039/d1tb01093j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The first B-ring-extended (to biphenyl) flavonol-based Cys-ratiometric fluorescent probe B-bph-fla-acr (2-([1,1'-biphenyl]-4-yl)-4-oxo-4H-chromen-3-yl acrylate) is developed. B-bph-fla-acr can ratiometrically sense and non-ratiometrically image endogenous and exogenous cysteine (Cys) in living HeLa cells and zebrafish rapidly (45 s), selectively (vs. homocysteine and glutathione), sensitively (detection limit: 18.5 nM), and with a large Stokes shift (186 nm). Quantitatively released (from the reaction of B-bph-fla-acr with Cys) fluorophore B-bph-fla-OH (2-([1,1'-biphenyl]-4-yl)-3-hydroxy-4H-chromen-4-one) is designed as a photoCORM (photo-triggered CO releasing molecule). Under O2 and visible light irradiation, the amount of CO released by B-bph-fla-OH can be accurately controlled linearly by adjusting the light irradiation intensity, irradiation time, or photoCORM dose. This process is accompanied by fluorescence quenching; therefore, the location of the photoCORM and the CO release process can be monitored in real time. B-bph-fla-acr and all reaction products exhibit good membrane permeability and low toxicity for living HeLa cells. In living HeLa cells and zebrafish, B-bph-fla-acr can image endogenous and exogenous Cys, and the released B-bph-fla-OH can photo-release CO under O2 at room temperature. This study is the first to combine a B-ring-extended flavonol-based fluorescent probe (for the effective ratiometric sensing and non-ratiometric imaging of endogenous and exogenous Cys in vitro and in vivo) with a photoCORM (Cys-activated, visible light-triggered linear CO release under O2). Our study provides important insights into the biological roles of Cys and CO, as well as a reliable method for safely supplying accurately controlled amounts of CO to living systems, thereby facilitating the development of convenient clinical diagnostic molecular tools and therapeutic prodrugs.
Collapse
Affiliation(s)
- Ying-Ji Sun
- Department of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China.
| | - Chao Yu
- Department of Chemistry, Dalian University of Technology, Linggong Road 2, 116024, Dalian, China.
| |
Collapse
|
5
|
Peng C, Liang W, Ji J, Fan C, Kanagaraj K, Wu W, Cheng G, Su D, Zhong Z, Yang C. Pyrene-tiaraed pillar[5]arene: Strong intramolecular excimer emission applicable for photo-writing. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.079] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|