1
|
Agrawal AR, Shiouki I, Deree Y, Bogoslavsky B, Gidron O. Controlling helicene's pitch by molecular tethering. Org Biomol Chem 2024; 22:1365-1368. [PMID: 38258458 DOI: 10.1039/d3ob02075d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We applied post-cyclization annulation to introduce a series of tethered S-shaped double [4]helicenes in which the intramolecular tether imposes a specific helical handedness. Introducing a tether and then shortening the tether length incrementally increase the pitch angle of [4]helicene, thus enabling a quantitative study of the effects of helicene's pitch on its electronic and (chiro)optical properties.
Collapse
Affiliation(s)
- Abhijeet R Agrawal
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Israa Shiouki
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Yinon Deree
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Benny Bogoslavsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Ori Gidron
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| |
Collapse
|
2
|
Kumar GJ, Bogoslavsky B, Debnath S, Bedi A. Effect of Chalcogenophenes on Chiroptical Activity of Twisted Tetracenes: Computational Analysis, Synthesis and Crystal Structure Thereof. Molecules 2023; 28:5074. [PMID: 37446736 DOI: 10.3390/molecules28135074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The synthesis of multiply substituted acenes is still a relevant research problem, considering their applications and future potential. Here we present an elegant synthetic protocol to afford tetra-peri-substituted naphthalene and tetracene from their tetrahalo derivatives by a Pd(0)-catalyzed C-C cross-coupling method in a single step. The newly synthesized tetracenes were characterized by NMR, HRMS, UV-vis spectrophotometry, and single-crystal X-ray diffraction (SCXRD). In addition, the first systematic computational study of the effect of chalcogenophenyl substitutions on the chiroptical properties of twistacenes was reported here. The gas phase computational studies using density functional theory (DFT) on a series of chalcogenophene-substituted tetracenes revealed that their chiroptical activity could be systematically increased via the atomistic tuning of peripheral substituents.
Collapse
Affiliation(s)
- Gayathri Jothish Kumar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Benny Bogoslavsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anjan Bedi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| |
Collapse
|
3
|
Rathore R, Abdelwahed SH. Design and Synthesis of Cofacially-Arrayed Polyfluorene Wires for Electron and Energy Transfer Studies. Molecules 2023; 28:molecules28093717. [PMID: 37175127 PMCID: PMC10180040 DOI: 10.3390/molecules28093717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
A study of cofacially arrayed π-systems is of particular importance for the design of functional materials for efficient long-range intra-chain charge transfer through the bulk semiconducting materials in the layers of photovoltaic devices. The effect of π-stacking between a pair of aromatic rings has been mainly studied in the form of cyclophanes, where aromatic rings are forced into a sandwich-like geometry, which extensively deforms the aromatic rings from planarity. The synthetic difficulties associated with the preparation of cyclophane-like structures has prevented the synthesis of many examples of their multi-layered analogues. Moreover, the few available multi-layered cyclophanes are not readily amenable to the structural modification required for the construction of D-spacer-A triads needed to explore mechanisms of electron and energy transfer. In this review, we recount how a detailed experimental and computational analysis of 1,3-diarylalkanes led to the design of a new class of cofacially arrayed polyfluorenes that retain their π-stacked structure. Thus, efficient synthetic strategies have been established for the ready preparation of monodisperse polyfluorenes with up to six π-stacked fluorenes, which afford ready access to D-spacer-A triads by linking donor and acceptor groups to the polyfluorene spacers via single methylenes. Detailed 1H NMR spectroscopy, X-ray crystallography, electrochemistry, and He(I) photoelectron spectroscopy of F2-F6 have confirmed the rigid cofacial stacking of multiple fluorenes in F2-F6, despite the presence of rotatable C-C bonds. These polyfluorenes (F2-F6) form stable cation radicals in which a single hole is delocalized amongst the stacked fluorenes, as judged by the presence of intense charge-resonance transition in their optical spectra. Interestingly, these studies also discern that delocalization of a single cationic charge could occur over multiple fluorene rings in F2-F6, while the exciton is likely localized only onto two fluorenes in F2-F6. Facile synthesis of the D-spacer-A triads allowed us to demonstrate that efficient triplet energy transfer can occur through π-stacked polyfluorenes; the mechanism of energy transfer crosses over from tunneling to hopping with increasing number of fluorenes in the polyfluorene spacer. We suggest that the development of rigidly held π-stacked polyfluorenes, described herein, with well-defined redox and optoelectronic properties provides an ideal scaffold for the study of electron and energy transfer in D-spacer-A triads, where the Fn spacers serve as models for cofacially stacked π-systems.
Collapse
Affiliation(s)
- Rajendra Rathore
- Department of Chemistry, Marquette University, Milwaukee, WI 53233, USA
| | - Sameh H Abdelwahed
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
4
|
Bedi A, Schwartz G, Hananel U, Manor Armon A, Shioukhi I, Markovich G, Gidron O. The effect of axial and helical chirality on circularly polarized luminescence: lessons learned from tethered twistacenes. Chem Commun (Camb) 2023; 59:2011-2014. [PMID: 36723083 DOI: 10.1039/d2cc07074j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of axial and helical twisting on the circularly polarized luminescence of acenes was studied both experimentally and computationally, using four series of tethered twisted acenes. We find that the combination of axial and helical chirality yields the highest anisotropy factors, and that the ratio between the absorption and emission anisotropy factors is an intrinsic property for twistacenes.
Collapse
Affiliation(s)
- Anjan Bedi
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Gal Schwartz
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Uri Hananel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Manor Armon
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Israa Shioukhi
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Gil Markovich
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ori Gidron
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
5
|
Mahlmeister B, Mahl M, Reichelt H, Shoyama K, Stolte M, Würthner F. Helically Twisted Nanoribbons Based on Emissive Near-Infrared Responsive Quaterrylene Bisimides. J Am Chem Soc 2022; 144:10507-10514. [PMID: 35649272 DOI: 10.1021/jacs.2c02947] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Graphene nanoribbons (GNRs) have the potential for next-generation functional devices. So far, GNRs with defined stereochemistry are rarely reported in literature and their optical response is usually bound to the ultraviolet or visible spectral region, while covering the near-infrared (NIR) regime is still challenging. Herein, we report two novel quaterrylene bisimides with either one- or twofold-twisted π-backbones enabled by the steric congestion of a fourfold bay arylation leading to an end-to-end twist of up to 76°. The strong interlocking effect of the π-stacked aryl substituents introduces a rigidification of the chromophore unambiguously proven by single-crystal X-ray analysis. This leads to unexpectedly strong NIR emissions at 862 and 903 nm with quantum yields of 1.5 and 0.9%, respectively, further ensuring high solubility as well as resolvable and highly stable atropo-enantiomers. Circular dichroism spectroscopy of these enantiopure chiral compounds reveals a strong Cotton effect Δε of up to 67 M-1 cm-1 centered far in the NIR region at 849 nm.
Collapse
Affiliation(s)
- Bernhard Mahlmeister
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany
| | - Magnus Mahl
- Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| | | | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany.,Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany.,Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| |
Collapse
|
6
|
Han SY, Mow RK, Bartholomew AK, Ng F, Steigerwald ML, Roy X, Nuckolls C, Wiscons RA. Broad-band Chiral Absorbance of Visible Light. J Am Chem Soc 2022; 144:5263-5267. [PMID: 35302759 DOI: 10.1021/jacs.2c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The amplification of chiral absorbance and emission is a primary figure of merit for the design of chiral chromophores. However, for dyes to be practically relevant in chiroptical applications, they must also absorb and/or emit chiral light over broad wavelength ranges. We investigate the interplay between molecular symmetry and broad-band chiral absorbance in a series of [6]helicenes. We find that an asymmetric [6]helicene containing two distinct chromophores absorbs chiral light across a much wider wavelength range than the symmetric [6]helicenes investigated here. Chemically reducing the helicenes shifts the absorption edge of the ECD spectra into the near-infrared wavelength range while preserving broad chiral absorption, producing a [6]helicene that absorbs a single handedness of light across the entire visible wavelength range.
Collapse
Affiliation(s)
- Sae Young Han
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Rachael K Mow
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Fay Ng
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael L Steigerwald
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ren A Wiscons
- Department of Chemistry, Columbia University, New York, New York 10027, United States.,Department of Chemistry, Amherst College, Amherst, Massachusetts 01002, United States
| |
Collapse
|
7
|
Malakar P, Borin V, Bedi A, Schapiro I, Gidron O, Ruhman S. The impact of twisting on the intersystem crossing in acenes: an experimental and computational study. Phys Chem Chem Phys 2022; 24:2357-2362. [PMID: 35018908 DOI: 10.1039/d1cp05728f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to their unique excited state dynamics, acenes play a dominant role in optoelectronic and light-harvesting applications. Their optical and electronic properties are typically tailored by side-group engineering, which often result in distortion of the acene core from planarity. However, the effect of such distortion on their excited state dynamics is not clear. In this work, we investigate the effect of twisting on the photophysics of acenes, which are helically locked to a defined twist angle by tethers of different lengths. Ultrafast transient absorption and time resolved fluorescence show a clear dependence of the rate of intersystem crossing with twisting. This trend is explained using quantum chemical calculations, showing an increase of spin-orbit coupling (SOC). At much earlier times, structural reorganization in S1, including coherent vibrational wave packet motions, is reflected in transient spectral changes. As predicted by theory, decreasing the length of diagonal tether induces enhanced activity and frequency blue-shifting of a normal vibration consisting of anthracene twisting against restraint of the tethering chain. Overall, these results serve as design principles for tuning photophysical properties of acenes via controlled twisting of their aromatic core.
Collapse
Affiliation(s)
- Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Veniamin Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Anjan Bedi
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Ori Gidron
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
8
|
Controlling the helicity of π-conjugated oligomers by tuning the aromatic backbone twist. Nat Commun 2022; 13:451. [PMID: 35064118 PMCID: PMC8782941 DOI: 10.1038/s41467-022-28072-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/30/2021] [Indexed: 01/01/2023] Open
Abstract
The properties of π-conjugated oligomers and polymers are commonly controlled by side group engineering, main chain engineering, or conformational engineering. The last approach is typically limited to controlling the dihedral angle around the interring single bonds to prevent loss of π-conjugation. Here we propose a different approach to conformational engineering that involves controlling the twist of the aromatic units comprising the backbone by using a tether of varying lengths. We demonstrate this approach by synthesizing an inherently twisted building unit comprised of helically locked tethered acenes, bearing acetylene end-groups to enable backbone extension, which was applied in a series of nine helical oligomers with varying backbone length and twist. We find that the optical and electronic properties of π-conjugated systems may be determined by the additive, antagonistic, or independent effects of backbone length and twist angle. The twisted oligomers display chiral amplification, arising from the formation of secondary helical structures. One approach to altering the properties of π-conjugated oligomers is conformational engineering, in which the degree of rotation around the bonds linking monomers is restricted. Here the authors apply the conformational engineering approach on individual monomers using tethers of varying lengths to twist the aromatic units, and study the effects of varying the angles.
Collapse
|
9
|
Affiliation(s)
- Yimin Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, P. R. China
- Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, P. R. China
| | - Min Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, P. R. China
- Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, P. R. China
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, P. R. China
- Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang 310024, P. R. China
| |
Collapse
|
10
|
Bedi A, Manor Armon A, Gidron O. Effect of Twisting on the Capture and Release of Singlet Oxygen by Tethered Twisted Acenes. Org Lett 2020; 22:7809-7813. [PMID: 32966095 PMCID: PMC8323967 DOI: 10.1021/acs.orglett.0c02666] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The use of polyaromatic hydrocarbons
to capture and release singlet oxygen is of considerable importance
in materials chemistry, synthesis, and photodynamic therapy. Here
we studied the ability of a series of tethered twistacenes, possessing
different degrees of backbone twist, to capture and release singlet
oxygen via the reversible Diels–Alder reaction. When the twistacene
acts as both a sensitizer and a diene, the photo-oxidation rate depends
on the extinction coefficient of the irradiation wavelength. However,
when the twistacenes function solely as a diene, the rate of photo-oxidation
increases with increasing twist. The rate of the reverse reaction,
the singlet oxygen release, also increases with increasing twist.
The calculated transition state energy decreases with increasing twist,
which can explain the observed trend. The presence of the tether significantly
increases the reversibility of the reaction, which can proceed in
repeated forward and reverse cycles in very high yield under mild
conditions, as required for molecular switches.
Collapse
Affiliation(s)
- Anjan Bedi
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Amit Manor Armon
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Ori Gidron
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|
11
|
Aida Y, Nogami J, Sugiyama H, Uekusa H, Tanaka K. Enantioselective Synthesis of Polycyclic Aromatic Hydrocarbon (PAH)-Based Planar Chiral Bent Cyclophanes by Rhodium-Catalyzed [2+2+2] Cycloaddition. Chemistry 2020; 26:12579-12588. [PMID: 32350943 DOI: 10.1002/chem.202001450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Indexed: 11/08/2022]
Abstract
The enantioselective synthesis of polycyclic aromatic hydrocarbon (PAH)-based planar chiral cyclophanes was achieved for the first time by the rhodium-catalyzed intramolecular regio- and enantioselective [2+2+2] cycloaddition of tethered diyne-benzofulvenes followed by stepwise oxidative transformations. The thus synthesized planar chiral bent cyclophanes, that possess bent p-terphenyl- and 9-fluorenone-cores, were converted to 9-fluorenol-based ones with excellent ee values of >99 % by diastereoselective 1,2-reduction. These 9-fluorenol-based cyclophanes exhibited high fluorescence quantum yields, which were significantly higher than that of an acyclic reference molecule (78-82 % vs. 48 %). The bending effect on the chiroptical property was also examined, which revealed that the anisotropy factors (gabs values) for electronic circular dichroism (ECD) of these 9-fluorenol-based planar chiral bent cyclophanes increase as the tether length becomes shorter.
Collapse
Affiliation(s)
- Yukimasa Aida
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Haruki Sugiyama
- Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku, Yokohama, Japan
| | - Hidehiro Uekusa
- Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
12
|
Bedi A, Gidron O. The Consequences of Twisting Nanocarbons: Lessons from Tethered Twisted Acenes. Acc Chem Res 2019; 52:2482-2490. [PMID: 31453688 DOI: 10.1021/acs.accounts.9b00271] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The properties of polycyclic aromatic hydrocarbons are determined by their size, shape, and functional groups. Equally important is their curvature, since deviation from planarity can affect their optical, electronic, and magnetic properties and also induce chirality. Acenes, which can be viewed as one-dimensional nanocarbons, are often twisted out of planarity. Although twisting is expected to affect the above-mentioned properties, it is often overlooked. This Account focuses on helically locked twistacenes (twisted acenes) having different twist angles and the effect of twisting on their electronic and optical properties. Various synthetic approaches to inducing backbone twist in acenes are discussed, with a focus on the introduction of a diagonal tether across the core, as this minimizes confounding substituent effects. Using such tethered acenes as our model, we then discuss the effects of twisting the aromatic core on twistacene properties. Electronic properties. Increasing the degree of twist only slightly affects the HOMO and LUMO energy levels. Twisting leads to a small increase in the HOMO level and a decrease in the LUMO level, which produces an overall decrease in the HOMO-LUMO gap. Optical properties. As the degree of twist increases, a slight bathochromic shift is observed in the absorption spectra, in accordance with the decrease in the HOMO-LUMO gap. The fluorescence quantum efficiency and the fluorescence lifetime also decrease. This is likely to be related to an increasing rate of intersystem crossing, which arises from increased spin-orbit coupling. In addition, computational studies indicate that the S0-T1 energy gap decreases with increasing twist. Chiroptical properties. Increased twisting results in a larger Cotton effect and anisotropy factor, with the anisotropy factors of Ant-Cn being higher than those of longer helicenes. The parallel orientation of electric and magnetic transition dipole moments in twistacenes underlies this behavior and renders them as excellent chiroptical materials. The same trend is observed for the radical cations of twistacenes, which absorb in the NIR spectral region. Conjugation and delocalization. Twisting the anthracene radical cation up to 40° (13° per benzene ring) does not significantly affect spin delocalization, with the EPR spectra of twistacene radical cations showing that only slight localization occurs. This is in line with computational studies, which show only a small decrease in π-overlap for large acene twist. Overall, modifying the length of the tether in diagonally tethered acenes allows chemists to control core twist and to induce chirality. Twisting affects key optical, electronic, and chiroptical properties of acenes. Consequently, controlling the twist angle can improve the future design of nanocarbons with desired properties.
Collapse
Affiliation(s)
- Anjan Bedi
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - Ori Gidron
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| |
Collapse
|