1
|
Zhang W, Huang YH, Wu TR, Yuan HR, Chen SX, Wu BB, Wang XS. Nickel-Catalyzed Reductive Arylation of gem-Bromofluorocyclopropanes To Construct Monofluorinated Cyclopropane Derivatives. Org Lett 2025; 27:3007-3012. [PMID: 40103423 DOI: 10.1021/acs.orglett.5c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A nickel-catalyzed reductive cross-coupling of gem-bromofluorocyclopropanes with aryl bromides for the synthesis of monofluorinated cyclopropane derivatives is reported. Different from the cleavage route of the cyclopropane ring reported by previous works, this catalytic system shows excellent regioselectivity control of cyclic selectivity, giving monofluorinated cyclopropane derivatives as the major product. This transformation demonstrates mild conditions, high efficiency, a broad substrate scope, and good functional group compatibility, providing a facile method for the synthesis of diversified monofluorinated cyclopropane-containing drugs and bioactive molecules.
Collapse
Affiliation(s)
- Wen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yu-Heng Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tian-Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Hong-Rui Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Song-Xuan Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
2
|
Wu T, Castro AJ, Ganguli K, Rotella ME, Ye N, Gallou F, Wu B, Weix DJ. Cross-Electrophile Coupling to Form Sterically Hindered C(sp 2)-C(sp 3) Bonds: Ni and Co Afford Complementary Reactivity. J Am Chem Soc 2025; 147:9449-9456. [PMID: 40052817 PMCID: PMC12005400 DOI: 10.1021/jacs.4c16912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The formation of sterically hindered C(sp2)-C(sp3) bonds could be a useful synthetic tool but has been understudied in cross-electrophile coupling. Here, we report two methods that couple secondary alkyl bromides with aryl halides that contain sterically hindered C-X bonds: 1) ortho-substituted aryl bromides with nickel catalysts and 2) di-ortho-substituted aryl iodides with cobalt catalysts. Stoichiometric experiments and deuterium labeling studies show that 1) [Co] is better than [Ni] for oxidative addition of di-ortho-substituted Ar-I and 2) [Co] is better than [Ni] for radical capture/reductive elimination steps with di-ortho-substituted arenes. For both metals, Ar-H side products observed in reactions with low-yielding di-ortho-substituted aryl iodides appear to arise from Ar• formation and hydrogen-atom transfer from the solvent. While the origins of the differences in scope are not yet understood, these studies demonstrate a previously unknown complementarity between nickel and cobalt in cross-electrophile coupling.
Collapse
Affiliation(s)
- Tianrui Wu
- Department of Chemistry, UW-Madison, Madison, WI USA 53706
| | | | | | - Madeline E. Rotella
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, PA USA 19104
| | - Ning Ye
- Chemical & Analytical Development, Suzhou Novartis Technical Development Company Limited, Changshu, Jiangsu 215537, China
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Bin Wu
- Chemical & Analytical Development, Suzhou Novartis Technical Development Company Limited, Changshu, Jiangsu 215537, China
| | - Daniel J. Weix
- Department of Chemistry, UW-Madison, Madison, WI USA 53706
| |
Collapse
|
3
|
Liu L, Jiang Q, Tang L, Liu C, Wang Y, Wu F, Wu J. Copper-Catalyzed Asymmetric Tertiary Radical Cyanation for the Synthesis of Chiral Tetrasubstituted Monofluoroacyl Nitriles. Org Lett 2024; 26:10833-10839. [PMID: 39656094 DOI: 10.1021/acs.orglett.4c03914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The construction of chiral tetrasubstituted α-fluoro-α-cyano carbonyl compounds remains a key challenge in synthetic organic chemistry because of their popularity in multiple disciplines. In this paper, we report the copper-catalyzed asymmetric fluorinated tertiary radical cyanation reaction of cyclic α-iodo-α-fluoroindanones with TMSCN to achieve chiral nitriles with carbon-fluorine quaternary stereogenic centers. Thus, an array of optically active tetrasubstituted monofluoroacyl nitriles were synthesized with high reaction efficiency and excellent enantioselectivities (up to 91% yield, 99% ee). Moreover, mechanistic investigations, including experiments, were conducted to clarify the reaction pathway and stereochemical outcomes.
Collapse
Affiliation(s)
- Li Liu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Qi Jiang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Long Tang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Chao Liu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yanzhao Wang
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering and Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
4
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Charboneau DJ, Huang H, Barth EL, Deziel AP, Germe CC, Hazari N, Jia X, Kim S, Nahiyan S, Birriel-Rodriguez L, Uehling MR. Homogeneous Organic Reductant Based on 4,4'- tBu 2-2,2'-Bipyridine for Cross-Electrophile Coupling. Tetrahedron Lett 2024; 145:155159. [PMID: 39036418 PMCID: PMC11258959 DOI: 10.1016/j.tetlet.2024.155159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The synthesis of a new homogeneous reductant based on 4,4'-tBu2-2,2'-bipyridine, tBu-OED4, is reported. tBu-OED4 was prepared on a multigram scale in two steps from inexpensive and commercially available starting materials, with no chromatography required for purification. tBu-OED4 has a reduction potential of -1.33 V (vs Ferrocenium/Ferrocene) and is soluble in a range of common organic solvents. We demonstrate that tBu-OED4 can facilitate Ni/Co dual-catalyzed C(sp2)-C(sp3) cross-electrophile coupling reactions and is highly functional group tolerant. tBu-OED4 is expected to be a valuable addition to the set of homogeneous reductants available for organic transformations.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Haotian Huang
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Emily L Barth
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Anthony P Deziel
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Cameron C Germe
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Xiaofan Jia
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Seoyeon Kim
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Sheikh Nahiyan
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | | | - Mycah R Uehling
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Rahway, New Jersey, 07065, USA
| |
Collapse
|
6
|
Moskalik MY. Monofluoromethylation of N-Heterocyclic Compounds. Int J Mol Sci 2023; 24:17593. [PMID: 38139426 PMCID: PMC10744182 DOI: 10.3390/ijms242417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The review focuses on recent advances in the methodologies for the formation or introduction of the CH2F moiety in N-heterocyclic substrates over the past 5 years. The monofluoromethyl group is one of the most versatile fluorinated groups used to modify the properties of molecules in synthetic medical chemistry. The review summarizes two strategies for the monofluoromethylation of N-containing heterocycles: direct monofluoromethylation with simple XCH2F sources (for example, ICH2F) and the assembly of N-heterocyclic structures from CH2F-containing substrates. The review describes the monofluoromethylation of pharmaceutically important three-, five- and six-membered N-heterocycles: pyrrolidines, pyrroles, indoles, imidazoles, triazoles, benzothiazoles, carbazoles, indazoles, pyrazoles, oxazoles, piperidines, morpholines, pyridines, quinolines and pyridazines. Assembling of 6-fluoromethylphenanthridine, 5-fluoromethyl-2-oxazolines, C5-monofluorinated isoxazoline N-oxides, and α-fluoromethyl-α-trifluoromethylaziridines is also shown. Fluoriodo-, fluorchloro- and fluorbromomethane, FCH2SO2Cl, monofluoromethyl(aryl)sulfoniummethylides, monofluoromethyl sulfides, (fluoromethyl)triphenylphosphonium iodide and 2-fluoroacetic acid are the main fluoromethylating reagents in recent works. The replacement of atoms and entire functional groups with a fluorine atom(s) leads to a change and often improvement in activity, chemical or biostability, and pharmacokinetic properties. The monofluoromethyl group is a bioisoster of -CH3, -CH2OH, -CH2NH2, -CH2CH3, -CH2NO2 and -CH2SH moieties. Bioisosteric replacement with the CH2F group is both an interesting task for organic synthesis and a pathway to modify drugs, agrochemicals and useful intermediates.
Collapse
Affiliation(s)
- Mikhail Yu Moskalik
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Sciences, 1 Favorsky Street, 664033 Irkutsk, Russia
| |
Collapse
|
7
|
Synthesis of Monofluoromethylarenes: Direct Monofluoromethylation of Diaryliodonium Bromides using Fluorobis(phenylsulfonyl)methane (FBSM). J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
8
|
Han D, Sun J, Jin J. Picolinamide Ligands: Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Bromocyclopropane and Beyond. Chem Asian J 2023; 18:e202201132. [PMID: 36479828 DOI: 10.1002/asia.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The arylcyclopropane motif as the combination of aryl and cyclopropyl ring systems can be found in an increasing amount of approved and investigational drugs. Herein, we have developed a mild, efficient nickel-catalyzed reductive cross-coupling protocol, featuring a simple Ni(II) precatalyst and a novel picolinamide NN2 pincer ligand. A variety of (hetero)aryl bromides could successfully couple with cyclopropyl bromide to furnish the valued arylcyclopropanes in good to excellent yields. This method is applicable to other alkyl bromides as well. Notably, the reaction is tolerant of a broad range of functionalities including free amines. Furthermore, the synthesis of several significant intermediates of bioactive molecules was achieved in grams, proving the practicability of this method.
Collapse
Affiliation(s)
- Dongyang Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
9
|
Zheng C, Cui X, Wu J, Wu P, Yu Y, Liu H, Wu F. Synthesis and Application of Monofluoroalkyl Building Blocks: α‐Halo‐α‐fluoroketones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cheng Zheng
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Xuhui Cui
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jingjing Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 200032 Shanghai P.R.China
| | - Pingjie Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Yanyan Yu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Hanwen Liu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Fanhong Wu
- Shanghai Engineering Research Center of Green Fluoropharmaceutical Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
10
|
Guo S, Yan W, Zhang Z, Huang Z, Guo Y, Liang Z, Li S, Fu Z, Cai H. Nickel-Catalyzed 1,1-Dihydrophosphinylation of Nitriles with Phosphine Oxides. J Org Chem 2022; 87:5522-5529. [PMID: 35468296 DOI: 10.1021/acs.joc.1c02815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Treatment of phosphine oxides with nitriles usually furnishes 1,2-dihydrophosphinylation products. Herein, we developed a nickel-catalyzed 1,1-dihydrophosphinylation of nitriles with phosphine oxides to access primary amines. This reaction proceeded smoothly under very mild conditions. A series of nitriles and phosphine oxides were compatible with this conversion, and the desired products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Shengmei Guo
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Wenjie Yan
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhebin Zhang
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhenjun Huang
- The Second Clinical Medical College, Nanchang University, Nanchang 330031, P. R. China
| | - Yuyang Guo
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhibin Liang
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Sen Li
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| | - Hu Cai
- Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
11
|
Diao Z, Feng Y, Zhang J, Wang X, Li H, Ding C, Zhou Z, Li X. Nickel‐Catalyzed Reductive Cross‐Coupling of (Hetero)aryl Halides with 2‐Chloro‐1,1‐difluoroethane: Facile Access to 2,2‐Difluoroethylated Aromatics. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhengzhen Diao
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Yu Feng
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Jida Zhang
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xin Wang
- Dongyue Fluorosilicone Technology State Key Laboratory of Fluorinated Functional Membrane Materials CHINA
| | - Hansheng Li
- Dongyue Fluorosilicone Technology State Key Laboratory of Fluorinated Functional Membrane Materials CHINA
| | - Chen Ding
- Dongyue Fluorosilicone Technology State Key Laboratory of Fluorinated Functional Membrane Materials CHINA
| | - Zhen Zhou
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Xinjin Li
- Shandong University of Technology School of Chemistry and Chemical Engineering 266 West Xincun Road 255000 Zibo CHINA
| |
Collapse
|
12
|
Du Y, Chen S, Huang A, Chen Y, Liu YL, Song G, Tang RY, Xu H, Yao G, Li Z. Diversity-Oriented Synthesis of Fluoromethylated Arenes via Palladium-Catalyzed C-H Fluoromethylation of Aryl Iodides. Org Lett 2022; 24:1341-1345. [PMID: 35129989 DOI: 10.1021/acs.orglett.1c04367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the first versatile and expeditious method for the site-selective C-H fluoromethylation of aryl iodides via Pd/norbornene cooperative catalysis, which could work as a robust toolbox for the diversity-oriented synthesis (DOS) of fluoromethylated arenes. This methodology features the use of the low-cost industrial raw material CH2IF as the fluoromethyl source, an excellent functional group tolerance, and a broad ipso termination scope and can be expanded to the late-stage modification of biorelevant molecules.
Collapse
Affiliation(s)
- Yiming Du
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Shuxin Chen
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Ao Huang
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Yihan Chen
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Yun-Lin Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, 510006 Guangzhou, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Ri-Yuan Tang
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China
| | - Hanhong Xu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, 510642 Guangzhou, China
| | - Guangkai Yao
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, 510642 Guangzhou, China
| | - Zhaodong Li
- College of Materials and Energy, South China Agricultural University, 510642 Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, 510642 Guangzhou, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
13
|
Li H, Wang F, Zhu S, Chu L. Selective Fluoromethyl Couplings of Alkynes via Nickel Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huan Li
- State Key Laboratory for Modification of Chemical Fibers Sand Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Fang Wang
- State Key Laboratory for Modification of Chemical Fibers Sand Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Shengqing Zhu
- State Key Laboratory for Modification of Chemical Fibers Sand Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| | - Lingling Chu
- State Key Laboratory for Modification of Chemical Fibers Sand Polymer Materials Center for Advanced Low-Dimension Materials College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620 China
| |
Collapse
|
14
|
Li H, Wang F, Zhu S, Chu L. Selective Fluoromethyl Couplings of Alkynes via Nickel Catalysis*. Angew Chem Int Ed Engl 2021; 61:e202116725. [PMID: 34962343 DOI: 10.1002/anie.202116725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 11/09/2022]
Abstract
We describe here a Ni-catalyzed intermolecular carbo-fluoromethylation of alkynes with aliphatic halides and fluoromethyl halides (BrCF 2 H and ICH 2 F) in the presence of zinc, enabling the facile and selective access to a diverse range of biologically valuable CF 2 H/CH 2 F-incorporated alkenes with excellent regio- and stereo-selectivity. Notably, merging intramolecular radical cyclization with fluoromethyl coupling enables the expedient constructions of CF 2 H/CH 2 F-incorporated lactones and lactams with high efficiency and selectivity. Mechanistic studies disclose that this catalytic protocol proceeds via a radical addition to an alkyne followed by selective coupling with the fluoromethyl unit.
Collapse
Affiliation(s)
- Huan Li
- Donghua University - Songjiang Campus: Donghua University, CALM, 2999 NORTH RENMIN ROAD, 201620, Shanghai, CHINA
| | - Fang Wang
- Donghua University - Songjiang Campus: Donghua University, CALM, 2999 NORTH RENMIN ROAD, 201620, Shanghai, CHINA
| | - Shengqing Zhu
- Donghua University - Songjiang Campus: Donghua University, CALM, 2999 NORTH RENMIN ROAD, 201620, Shanghai, CHINA
| | - Lingling Chu
- Donghua University, Center for Advanced Low-Dimension Materials, 2999 Renmin Road, Songjiang District, 201620, Shanghai, CHINA
| |
Collapse
|
15
|
Fujita T, Kobayashi Y, Takahashi I, Morioka R, Ichitsuka T, Ichikawa J. Nickel-Catalyzed Reductive Allyl-Aryl Cross-Electrophile Coupling via Allylic C-F Bond Activation. Chemistry 2021; 28:e202103643. [PMID: 34881467 DOI: 10.1002/chem.202103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 11/06/2022]
Abstract
Nickel-catalyzed reductive cross-coupling of allylic difluorides with aryl iodides was achieved via allylic C-F bond activation. Based on this protocol, a series of γ-arylated monofluoroalkenes were synthesized in moderate to high yields with high Z-selectivities. Mechanistic studies suggest that the C-I bonds of the aryl iodides and the C-F bonds of the allylic difluorides were cleaved via oxidative addition and β-fluorine elimination, respectively, where the oxidative addition of less reactive C-F bonds was avoided to permit their transformation.
Collapse
Affiliation(s)
- Takeshi Fujita
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Yutaro Kobayashi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Ikko Takahashi
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.,RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Ryutaro Morioka
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Tomohiro Ichitsuka
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.,Research Institute of Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Sendai, Miyagi, 983-8551, Japan
| | - Junji Ichikawa
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| |
Collapse
|
16
|
Ren Q, Zhang D, Zheng L. DFT studies on the mechanisms of enantioselective Ni-catalyzed reductive coupling reactions to form 1,1-diarylalkanes. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Cui R, Sheng J, Wu BB, Hu DD, Zheng HQ, Wang XS. Nickel-catalyzed reductive monofluoroakylation of alkyl tosylate with bromofluoromethane to primary alkyl fluoride. Chem Commun (Camb) 2021; 57:9084-9087. [PMID: 34498613 DOI: 10.1039/d1cc02837e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A nickel-catalysed direct terminal monofluoromethlyation between alkyl tosylates and a low-cost, industrial raw material bromofluoromethane has been developed. This transformation has demonstrated high efficiency, mild conditions, and good functional-group compatibility. The key to success of this transformation lies in the ligand and mild base selection, ensuring the generation of various terminal monofluormethylation products.
Collapse
Affiliation(s)
- Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Duo-Duo Hu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Hong-Qian Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
18
|
Huang B, Chen Y, Zhang X, Yan M. Cross‐Dehydrogenative Coupling of Tetrahydroisoquinolines and 2‐Fluoro‐1,3‐benzodithiole‐1,1,3,3‐tetraoxide: A New Synthetic Approach to α‐Monofluoromethyl Tertiary Amines. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bao‐qin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Yuan Chen
- State Key Laboratory of Medicinal Chemical Biology College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research Nankai University Tianjin 300353 China
| | - Xue‐jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
19
|
Sheng J, Ni H, Ni S, He Y, Cui R, Liao G, Bian K, Wu B, Wang X. Diversity‐Oriented Synthesis of Aliphatic Fluorides via Reductive C(sp
3
)−C(sp
3
) Cross‐Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Hui‐Qi Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Shan‐Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Guang‐Xu Liao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Kang‐Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Bing‐Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Xi‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
20
|
Sheng J, Ni HQ, Ni SX, He Y, Cui R, Liao GX, Bian KJ, Wu BB, Wang XS. Diversity-Oriented Synthesis of Aliphatic Fluorides via Reductive C(sp 3 )-C(sp 3 ) Cross-Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021; 60:15020-15027. [PMID: 33847433 DOI: 10.1002/anie.202102481] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Indexed: 01/14/2023]
Abstract
Monofluorinated alkyl compounds are of great importance in pharmaceuticals, agrochemicals and materials. Herein, we describe a direct nickel-catalyzed monofluoromethylation of unactivated alkyl halides using a low-cost industrial raw material, bromofluoromethane, by demonstrating a general and efficient reductive cross-coupling of two alkyl halides. Results with 1-bromo-1-fluoroalkane also demonstrate the viability of monofluoroalkylation, which further established the first example of reductive C(sp3 )-C(sp3 ) cross-coupling fluoroalkylation. These transformations demonstrate high efficiency, mild conditions, and excellent functional-group compatibility, especially for a range of pharmaceuticals and biologically active compounds. Mechanistic studies support a radical pathway. Kinetic studies reveal that the reaction is first-order dependent on catalyst and alkyl bromide whereas the generation of monofluoroalkyl radical is not involved in the rate-determining step. This strategy provides a general and efficient method for the synthesis of aliphatic fluorides.
Collapse
Affiliation(s)
- Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Hui-Qi Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shan-Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yan He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Guang-Xu Liao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
21
|
Min Y, Sheng J, Yu J, Ni S, Ma G, Gong H, Wang X. Diverse Synthesis of Chiral Trifluoromethylated Alkanes via Nickel‐Catalyzed Asymmetric Reductive Cross‐Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yue Min
- School of Materials Science and Engineering Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Jian‐Liang Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Shan‐Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Guobin Ma
- School of Materials Science and Engineering Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
| | - Hegui Gong
- School of Materials Science and Engineering Center for Supramolecular Chemistry and Catalysis Department of Chemistry Shanghai University Shanghai 200444 China
| | - Xi‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry Center for Excellence in Molecular Synthesis of CAS University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
22
|
Reichel M, Sile S, Kornath A, Karaghiosoff K. Fluoromethyl-2,4,6-trinitrophenylsulfonate: A New Electrophilic Monofluoromethylating Reagent. J Org Chem 2021; 86:4423-4431. [PMID: 33661635 DOI: 10.1021/acs.joc.0c02670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluoromethyl-2,4,6-trinitrophenylsulfonate has been prepared for the first time and qualified as a simple to use monofluoromethylating reagent. Its molecular structure in the solid state has been determined by single-crystal X-ray diffraction studies. This reagent proves to be effective for the electrophilic introduction of a CH2F group into selected chalcogen and nitrogen nucleophiles. Monofluoromethyl derivatives of various bifunctional N,O-nucleophiles have been synthesized using fluoromethyl-2,4,6-trinitrophenylsulfonate. Due to the good crystallizing properties of the anion, the fluoromethylated products as well as side products that are difficult to identify by nuclear magnetic resonance spectroscopy can readily be characterized by X-ray crystallographic techniques.
Collapse
Affiliation(s)
- Marco Reichel
- Department of Chemistry, Ludwig-Maximilian University Munich, Butenandtstrasse 5-13 (D), 81377 Munich, Germany
| | - Sami Sile
- School of Natural and Environmental Sciences, Agriculture Building, King's Road, Newcastle upon Tyne NE1 7RU, U.K
| | - Andreas Kornath
- Department of Chemistry, Ludwig-Maximilian University Munich, Butenandtstrasse 5-13 (D), 81377 Munich, Germany
| | - Konstantin Karaghiosoff
- Department of Chemistry, Ludwig-Maximilian University Munich, Butenandtstrasse 5-13 (D), 81377 Munich, Germany
| |
Collapse
|
23
|
Min Y, Sheng J, Yu JL, Ni SX, Ma G, Gong H, Wang XS. Diverse Synthesis of Chiral Trifluoromethylated Alkanes via Nickel-Catalyzed Asymmetric Reductive Cross-Coupling Fluoroalkylation. Angew Chem Int Ed Engl 2021; 60:9947-9952. [PMID: 33569847 DOI: 10.1002/anie.202101076] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Indexed: 11/06/2022]
Abstract
The trifluoromethyl group represents one of the most functional and widely used fluoroalkyl groups in drug design and screening, while the drug candidates containing chiral trifluoromethyl-bearing carbons are still few due to the lack of efficient methods for the asymmetric introduction of trifluoromethyl group into organic molecules. Herein, we described a nickel-catalyzed asymmetric trifluoroalkylation of aryl iodides, for the first time, by utilizing reductive cross-coupling in enantioselective fluoroalkylation. This novel method has demonstrated high efficiency, mild conditions, and excellent functional group tolerance, especially for substrates containing diverse pharmaceutical and bioactive molecules moieties. This strategy provided an efficient and facile way for diversity-oriented synthesis of chiral trifluoromethylated alkanes.
Collapse
Affiliation(s)
- Yue Min
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jian-Liang Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Shan-Xiu Ni
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Guobin Ma
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
24
|
Hu CC, Hu WQ, Xu XH, Qing FL. 2-Position-selective C H fluoromethylation of six-membered heteroaryl N-oxides with (fluoromethyl)triphenylphosphonium iodide. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Abstract
This review highlights important developments in nickel-catalysed mono-, di- and tri-fluoromethylation, trifluoromethylthiolation and trifluoromethylselenolation.
Collapse
Affiliation(s)
- Pravya P. Nair
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, 686560 India
| | - Rose Mary Philip
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, 686560 India
| | - Gopinathan Anilkumar
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS), Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, 686560 India
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, 686560 India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam, Kerala, 686560 India
| |
Collapse
|
26
|
Zaheer MK, Vaishanv NK, Kant R, Mohanan K. Utilization of Unsymmetric Diaryliodonium Salts in α-Arylation of α-Fluoroacetoacetamides. Chem Asian J 2020; 15:4297-4301. [PMID: 33180366 DOI: 10.1002/asia.202001160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Indexed: 11/10/2022]
Abstract
The use of unsymmetric diaryliodonium salts as a versatile class of arylating agents has been demonstrated by developing a novel strategy to quickly access α-arylated α-fluoroacetoacetamides. The protocol provides a convenient metal-free method for the α-arylation of a diverse class of fluorinated acetoacetamides, and the products are obtained in good yields. The strategy, upon use of electron-deficient diaryliodonium salts as an arylating agent, provides α-fluoroacetamides through a spontaneous arylation/deacylation cascade.
Collapse
Affiliation(s)
- Mohd Khalid Zaheer
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Narendra Kumar Vaishanv
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ruchir Kant
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kishor Mohanan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
27
|
Charboneau DJ, Barth EL, Hazari N, Uehling MR, Zultanski SL. A Widely Applicable Dual Catalytic System for Cross-Electrophile Coupling Enabled by Mechanistic Studies. ACS Catal 2020; 10:12642-12656. [PMID: 33628617 DOI: 10.1021/acscatal.0c03237] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A dual catalytic system for cross-electrophile coupling reactions between aryl halides and alkyl halides that features a Ni catalyst, a Co cocatalyst, and a mild homogeneous reductant is described. Mechanistic studies indicate that the Ni catalyst activates the aryl halide, while the Co cocatalyst activates the alkyl halide. This allows the system to be rationally optimized for a variety of substrate classes by simply modifying the loadings of the Ni and Co catalysts based on the reaction product profile. For example, the coupling of aryl bromides and aryl iodides with alkyl bromides, alkyl iodides, and benzyl chlorides is demonstrated using the same Ni and Co catalysts under similar reaction conditions but with different optimal catalyst loadings in each case. Our system is tolerant of numerous functional groups and is capable of coupling heteroaryl halides, di-ortho-substituted aryl halides, pharmaceutically relevant druglike aryl halides, and a diverse range of alkyl halides. Additionally, the dual catalytic platform facilitates a series of selective one-pot three-component cross-electrophile coupling reactions of bromo(iodo)arenes with two distinct alkyl halides. This demonstrates the unique level of control that the platform provides and enables the rapid generation of molecular complexity. The system can be readily utilized for a wide range of applications as all reaction components are commercially available, the reaction is scalable, and toxic amide-based solvents are not required. It is anticipated that this strategy, as well as the underlying mechanistic framework, will be generalizable to other cross-electrophile coupling reactions.
Collapse
Affiliation(s)
- David J. Charboneau
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Emily L. Barth
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R. Uehling
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Kenilworth, New Jersey 07033, United States
| | - Susan L. Zultanski
- Merck & Co., Inc., Department of Process Research and Development, Rahway, New Jersey 07065, United States
| |
Collapse
|
28
|
Hong X, Liu Y, Lu L, Shen Q. Monofluoromethyl‐Substituted
Sulfonium Ylides: Preparation,
Structure‐Reactivity
Study and Substrate Scope
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000206] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Hong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yafei Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Long Lu
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
29
|
Reichel M, Karaghiosoff K. Reagents for Selective Fluoromethylation: A Challenge in Organofluorine Chemistry. Angew Chem Int Ed Engl 2020; 59:12268-12281. [PMID: 32022357 PMCID: PMC7383490 DOI: 10.1002/anie.201913175] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/30/2020] [Indexed: 01/09/2023]
Abstract
The introduction of a monofluoromethyl moiety has undoubtedly become a very important area of research in recent years. Owing to the beneficial properties of organofluorine compounds, such as their metabolic stability, the incorporation of the CH2 F group as a bioisosteric substitute for various functional groups is an attractive strategy for the discovery of new pharmaceuticals. Furthermore, the monofluoromethyl unit is also widely used in agrochemistry, in pharmaceutical chemistry, and in fine chemicals. The problems associated with climate change and the growing need for environmentally friendly industrial processes mean that alternatives to the frequently used CFC and HFBC fluoromethylating agents (CH2 FCl and CH2 FBr) are urgently needed and also required by the Montreal Protocol. This has recently prompted many researchers to develop alternative fluoromethylation agents. This Minireview summarizes both the classical and new generation of fluoromethylating agents. Reagents that act via electrophilic, nucleophilic, and radical pathways are discussed, in addition to their precursors.
Collapse
Affiliation(s)
- Marco Reichel
- Department of ChemistryLudwig-Maximilian UniversityButenandstr. 5–1381377MunichGermany
| | | |
Collapse
|
30
|
Sun ZY, Zhou S, Yang K, Guo M, Zhao W, Tang X, Wang G. Tetrahydroxydiboron-Promoted Radical Addition of Alkynols. Org Lett 2020; 22:6214-6219. [DOI: 10.1021/acs.orglett.0c02367] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ze-Ying Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Sen Zhou
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Kai Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Minjie Guo
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wentao Zhao
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xiangyang Tang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Guangwei Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
31
|
Reichel M, Karaghiosoff K. Reagenzien für die selektive Fluormethylierung: Herausforderungen der Organofluorchemie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913175] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Reichel
- Department Chemie Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Department Chemie Ludwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Deutschland
| |
Collapse
|
32
|
Wang J, Pang YB, Tao N, Zeng R, Zhao Y. Nickel-Catalyzed, para-Selective, Radical-Based Alkylation of Aromatic Ketones. Org Lett 2020; 22:854-857. [PMID: 31922418 DOI: 10.1021/acs.orglett.9b04327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A direct, para-selective, radical-based alkylation of aromatic ketones with alkanes has been developed using a nickel catalyst with oxamide as the ligand. Acetophenones bearing electron-withdrawing substituents were functionalized directly with simple alkanes with high para-selectivity while acetophenones with electron-donating groups were mainly para-functionalized. A mechanistic study indicated that C-H bond activation of the aromatic ring may be the rate-determining step of the reaction.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Yu-Bo Pang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Na Tao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Runsheng Zeng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| |
Collapse
|
33
|
Yang Y, Luo G, Li Y, Tong X, He M, Zeng H, Jiang Y, Liu Y, Zheng Y. Nickel-Catalyzed Reductive Coupling for Transforming Unactivated Aryl Electrophiles into β-Fluoroethylarenes. Chem Asian J 2020; 15:156-162. [PMID: 31755237 DOI: 10.1002/asia.201901490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Indexed: 01/24/2023]
Abstract
We report herein a facile synthetic method for converting unactivated (hetero)aryl electrophiles into β-fluoroethylated (hetero)arenes via nickel-catalyzed reductive cross-couplings. This coupling reaction features the involvement of FCH2 CH2 radical intermediate rather than β-fluoroethyl manganese species which provides effective solutions to the problematic β-fluoride side eliminations. The practical value of this protocol is further demonstrated by the late-stage modification of several complex ArCl or ArOH-derived bioactive molecules.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Gen Luo
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Youlin Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Xia Tong
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Mengmeng He
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Hongyao Zeng
- College of Chemistry, Leshan Normal University, 778 Binghe Road, Leshan, Sichuan, 614000, China
| | - Yan Jiang
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Yingle Liu
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| | - Yubin Zheng
- College of Chemistry and Environmental Engineering, Sichuan University of Science&Engineering, 180 Xueyuan Street, Huixing Lu, Zigong, Sichuan, 643000, China
| |
Collapse
|
34
|
Zaheer MK, Gupta E, Kant R, Mohanan K. Metal-free α-arylation of α-fluoro-α-nitroacetamides employing diaryliodonium salts. Chem Commun (Camb) 2019; 56:153-156. [PMID: 31799974 DOI: 10.1039/c9cc07859b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present a mild and efficient metal-free arylation of α-fluoro-α-nitroacetamides employing diaryliodonium salts. A broad range of diaryliodonium salts and α-fluoro-α-nitroacetamides containing sensitive functional groups was successfully employed in this protocol to yield the arylated products in good yields. The synthetic value of this novel protocol was further highlighted by extending the α-arylation to α-cyano-α-fluoroacetamides.
Collapse
Affiliation(s)
- Mohd Khalid Zaheer
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | | | | | | |
Collapse
|
35
|
Fu W, Sun Y, Li X. Silver-catalyzed monofluoromethylation of alkynoates with sodium monofluoroalkanesulfinate (CH2FSO2Na) to access 3-monofluoromethylated coumarins. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1697452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Weijun Fu
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan, P. R. China
| | - Yana Sun
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan, P. R. China
| | - Xinyi Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang, Henan, P. R. China
| |
Collapse
|
36
|
Liang J, Han J, Wu J, Wu P, Hu J, Hu F, Wu F. Nickel-Catalyzed Coupling Reaction of α-Bromo-α-fluoroketones with Arylboronic Acids toward the Synthesis of α-Fluoroketones. Org Lett 2019; 21:6844-6849. [PMID: 31411478 DOI: 10.1021/acs.orglett.9b02474] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A nickel-catalyzed coupling reaction of α-bromo-α-fluoroketones with arylboronic acids was reported, which provides an efficient pathway to access 2-fluoro-1,2-diarylethanones in high yields. We also disclosed the synthesis of the monofluorination agents α-bromo-α-fluoroketones by using a trifluoroacetate release protocol. Mechanistic investigation indicated that a monofluoroalkyl radical is involved in the catalytic circle. Moreover, an important medical intermediate of flindokalner was synthesized via a nickel-catalyzed coupling reaction of α-bromo-α-fluoro-2-indolone and boronic ester.
Collapse
Affiliation(s)
- Junqing Liang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Jie Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Jingjing Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Pingjie Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Jian Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Feng Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| |
Collapse
|