1
|
Cheng R, He X, Li K, Ran B, Zhang X, Qin Y, He G, Li H, Fu C. Rational Design of Organic Electrocatalysts for Hydrogen and Oxygen Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402184. [PMID: 38458150 DOI: 10.1002/adma.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Efficient electrocatalysts are pivotal for advancing green energy conversion technologies. Organic electrocatalysts, as cost-effective alternatives to noble-metal benchmarks, have garnered attention. However, the understanding of the relationships between their properties and electrocatalytic activities remains ambiguous. Plenty of research articles regarding low-cost organic electrocatalysts started to gain momentum in 2010 and have been flourishing recently though, a review article for both entry-level and experienced researchers in this field is still lacking. This review underscores the urgent need to elucidate the structure-activity relationship and design suitable electrode structures, leveraging the unique features of organic electrocatalysts like controllability and compatibility for real-world applications. Organic electrocatalysts are classified into four groups: small molecules, oligomers, polymers, and frameworks, with specific structural and physicochemical properties serving as activity indicators. To unlock the full potential of organic electrocatalysts, five strategies are discussed: integrated structures, surface property modulation, membrane technologies, electrolyte affinity regulation, and addition of anticorrosion species, all aimed at enhancing charge efficiency, mass transfer, and long-term stability during electrocatalytic reactions. The review offers a comprehensive overview of the current state of organic electrocatalysts and their practical applications, bridging the understanding gap and paving the way for future developments of more efficient green energy conversion technologies.
Collapse
Affiliation(s)
- Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoqian He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaiqi Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Biao Ran
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinlong Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghong Qin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Huanxin Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Yin H, Liu X, Wang L, Isimjan TT, Cai D, Yang X. Real Active Site Identification of Co/Co 3O 4 Anchoring Ni-MOF Nanosheets with Fast OER Kinetics for Overall Water Splitting. Inorg Chem 2024; 63:7045-7052. [PMID: 38569164 DOI: 10.1021/acs.inorgchem.4c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Doping metals and constructing heterostructures are pivotal strategies to enhance the electrocatalytic activity of metal-organic frameworks (MOFs). Nevertheless, effectively designing MOF-based catalysts that incorporate both doping and multiphase interfaces poses a significant challenge. In this study, a one-step Co-doped and Co3O4-modified Ni-MOF catalyst (named Ni NDC-Co/CP) with a thickness of approximately 5.0 nm was synthesized by a solvothermal-assisted etching growth strategy. Studies indicate that the formation of the Co-O-Ni-O-Co bond in Ni NDC-Co/CP was found to facilitate charge density redistribution more effectively than the Co-O-Ni bimetallic synergistic effect in NiCo NDC/CP. The designating Ni NDC-Co/CP achieved superior oxygen evolution reaction (OER) activity (245 mV @ 10 mA cm-2) and robust long stability (100 h @ 100 mA cm-2) in 1.0 M KOH. Furthermore, the Ni NDC-Co/CP(+)||Pt/C/CP(-) displays pregnant overall water splitting performance, achieving a current density of 10 mA cm-2 at an ultralow voltage of 1.52 V, which is significantly lower than that of commercial electrolyzer using Pt/C and IrO2 electrode materials. In situ Raman spectroscopy elucidated the transformation of Ni NDC-Co to Ni(Co)OOH under an electric field. This study introduces a novel approach for the rational design of MOF-based OER electrocatalysts.
Collapse
Affiliation(s)
- Haoran Yin
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xinqiang Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Lixia Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Dandan Cai
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
3
|
Chai N, Kong Y, Liu T, Ying S, Jiang Q, Yi FY. (FeMnCe)-co-doped MOF-74 with significantly improved performance for overall water splitting. Dalton Trans 2023; 52:11601-11610. [PMID: 37551436 DOI: 10.1039/d3dt01892j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Developing inexpensive electrocatalysts with high activity and stability is of great value for overall water splitting. In this work, we designed a series of 3d-4f (FeMnCe)-trimetallic MOF-74 with different ratios of 3d- and 4f-metal centers. Among them, FeMn6Ce0.5-MOF-74/NF exhibited the best electrocatalytic performance for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in an alkaline solution. It only requires a low overpotential of 281 mV@100 mA cm-2 for OER and 186 mV@-10 mA cm-2 for HER in 1 M KOH. With FeMn6Ce0.5-MOF-74/NF as the anode and cathode in the overall water splitting system, only 1.65 V is needed to deliver a current density of 10 mA cm-2. In particular, for the as-fabricated FeMn6Ce0.5-MOF-74/NF||Pt/C cell unit, only 1.40 V is needed to achieve 10 mA cm-2. Therefore, the successful design of 3d-4f mixed-metallic MOF-74 provides a new viewpoint to develop highly efficient non-precious metal electrocatalysts.
Collapse
Affiliation(s)
- Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China.
- Key Laboratory of Photoelectric Detection Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| |
Collapse
|
4
|
Wang CP, Lin YX, Cui L, Zhu J, Bu XH. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207342. [PMID: 36605002 DOI: 10.1002/smll.202207342] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Hydrogen, a clean and flexible energy carrier, can be efficiently produced by electrocatalytic water splitting. To accelerate the sluggish hydrogen evolution reaction and oxygen evolution reaction kinetics in the splitting process, highly active electrocatalysts are essential for lowering the energy barriers, thereby improving the efficiency of overall water splitting. Combining the distinctive advantages of metal-organic frameworks (MOFs) with the physicochemical properties of 2D materials such as large surface area, tunable structure, accessible active sites, and enhanced conductivity, 2D MOFs have attracted intensive attention in the field of electrocatalysis. Different strategies, such as improving the conductivities of MOFs, reducing the thicknesses of MOF nanosheets, and integrating MOFs with conductive particles or substrates, are developed to promote the catalytic performances of pristine MOFs. This review summarizes the recent advances of pristine 2D MOF-based electrocatalysts for water electrolysis. In particular, their intrinsic electrocatalytic properties are detailly analyzed to reveal important roles of inherent MOF active centers, or other in situ generated active phases from MOFs responsible for the catalytic reactions. Finally, the challenges and development prospects of pristine 2D MOFs for the future applications in overall water splitting are discussed.
Collapse
Affiliation(s)
- Chao-Peng Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yu-Xuan Lin
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lei Cui
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Jian Zhu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Smart Sensing Interdisciplinary Science Center, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
5
|
Xiong X, Wong NH, Ernawati L, Sunarso J, Zhang X, Jin Y, Han D, Wu C, Yu B, Yang X, Wang Y, Chen G, Yao J. Revealing the enhanced photoelectrochemical water oxidation activity of Fe-based metal-organic polymer-modified BiVO4 photoanode. J Colloid Interface Sci 2023; 644:533-545. [PMID: 37012113 DOI: 10.1016/j.jcis.2023.03.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Metal-organic polymers (MOPs) can enhance the photoelectrochemical (PEC) water oxidation performance of BiVO4 photoanodes, but their PEC mechanisms have yet to be comprehended. In this work, we constructed an active and stable composite photoelectrode by overlaying a uniform MOP on the BiVO4 surface using Fe2+ as the metal ions and 2,5-dihydroxyterephthalic acid (DHTA) as ligand. Such modification on the BiVO4 surface yielded a core-shell structure that could effectively enhance the PEC water oxidation activity of the BiVO4 photoanode. Our intensity-modulated photocurrent spectroscopy analysis revealed that the MOP overlayer could concurrently reduce the surface charge recombination rate constant (ksr) and enhance the charge transfer rate constant (ktr), thus accelerating water oxidation activity. These phenomena can be ascribed to the passivation of the surface that inhibits the recombination of the charge carrier and the MOP catalytic layer that improves the hole transfer. Our rate law analysis also demonstrated that the MOP coverage shifted the reaction order of the BiVO4 photoanode from the third-order to the first-order, resulting in a more favorable rate-determining step where only one hole accumulation is required to overcome water oxidation. This work provides new insights into the reaction mechanism of MOP-modified semiconductor photoanodes.
Collapse
|
6
|
Zhang C, Qi Q, Mei Y, Hu J, Sun M, Zhang Y, Huang B, Zhang L, Yang S. Rationally Reconstructed Metal-Organic Frameworks as Robust Oxygen Evolution Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208904. [PMID: 36369974 DOI: 10.1002/adma.202208904] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Reconstructing metal-organic framework (MOFs) toward a designed framework structure provides breakthrough opportunities to achieve unprecedented oxygen evolution reaction (OER) electrocatalytic performance, but has rarely, if ever, been proposed and investigated yet. Here, the first successful fabrication of a robust OER electrocatalyst by precision reconstruction of an MOF structure is reported, viz., from MOF-74-Fe to MIL-53(Fe)-2OH with different coordination environments at the active sites. Due to the radically reduced eg -t2g crystal-field splitting in Fe-3d and the much suppressed electron-hopping barriers through the synergistic effects of the O species the efficient OER of in MIL-53(Fe)-2OH is guaranteed. Benefiting from this desired electronic structure, the designed MIL-53(Fe)-2OH catalyst exhibits high intrinsic OER activity, including a low overpotential of 215 mV at 10 mA cm-2 , low Tafel slope of 45.4 mV dec-1 and high turnover frequency (TOF) of 1.44 s-1 at 300 mV overpotential, over 80 times that of the commercial IrO2 catalyst (0.0177 s-1 ).Consistent with the density functional theory (DFT) calculations, the real-time kinetic simulation reveals that the conversion from O* to OOH* is the rate-determining step on the active sites of MIL-53(Fe)-2OH.
Collapse
Affiliation(s)
- Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Qianglong Qi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yunjie Mei
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
| | - Minzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yingjie Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, 650093, China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| |
Collapse
|
7
|
Chen T, Wang F, Cao S, Bai Y, Zheng S, Li W, Zhang S, Hu SX, Pang H. In Situ Synthesis of MOF-74 Family for High Areal Energy Density of Aqueous Nickel-Zinc Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201779. [PMID: 35593656 DOI: 10.1002/adma.202201779] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Limited by single metal active sites and low electrical conductivity, designing nickel-based metal-organic framework (MOF) materials with high capacity and high energy density remains a challenge. Herein, a series of bi/multimetallic MOF-74 family materials in situ grown on carbon cloth (CC) by doping Mx+ ions in Ni-MOF-74 is fabricated: NiM-MOF@CC (M = Mn2+ , Co2+ , Cu2+ , Zn2+ , Al3+ , Fe3+ ), and NiCoM-MOF@CC (M = Mn2+ , Zn2+ , Al3+ , Fe3+ ). The type and ratio of doping metal ions can be adjusted while the original topology is preserved. Different metal ions are confirmed by X-ray absorption fine structure (XAFS). Furthermore, these Ni-based MOF electrodes are directly utilized as cathodes for aqueous nickel-zinc batteries (NZBs). Among all the as-prepared electrodes, NiCo-MOF@CC-3 (NCM@CC-3), with an optimized Co/Ni ratio of 1:1, exhibits the best electrical conductivity, which is according to the density functional theory (DFT) theoretical calculations. The NCM@CC-3//Zn@CC battery achieves a high specific capacity of 1.77 mAh cm-2 , a high areal energy density of 2.97 mWh cm-2 , and high cycling stability of 83% capacity retention rate after 6000 cycles. The synthetic strategy based on the coordination effect of metal ions and the concept of binder-free electrodes provide a new direction for the synthesis of high-performance materials in the energy-storage field.
Collapse
Affiliation(s)
- Tingting Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Fanfan Wang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yang Bai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Shasha Zheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
8
|
Sahoo MK, Samantara AK, Behera JN. Impact of Iron in Three-Dimensional Co-MOF for Electrocatalytic Water Oxidation. Inorg Chem 2021; 61:62-72. [PMID: 34515478 DOI: 10.1021/acs.inorgchem.1c01857] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The integration of iron (Fe) into a cobalt metal-organic framework (Co-MOF) tunes the electronic structure of the parent MOF as well as enhances their electrocatalytic characteristics. By using pyrazine and hydrofluoric acid, we have synthesized three-dimensional Co-MOF [CoFC4H4N2(SO4)0.5], (1), and Fe-MOF [FeFC4H4N2(SO4)0.5], (2), through a single-step solvothermal method. Further, a series of bimetallic (having both Co and Fe metal centers) MOFs [Co1-xFexFC4H4N2(SO4)0.5] were synthesized with variable concentrations of Fe, and their electrocatalytic performances were analyzed. The optimized amount of Fe significantly impacted the electrocatalytic behavior of the bimetallic MOF toward water oxidation. Particularly, the Co0.75Fe0.25-MOF needs only 239 and 257 mV of overpotential to deliver 10 and 50 mA/cm2 current density, respectively, in alkaline electrolytic conditions. The Co0.75Fe0.25-MOF shows a lower Tafel slope (42 mV/dec.) among other bimetallic MOFs and even the commercial RuO2, and it has excellent durability (with ∼8 mV increases in overpotential after 18 h of electrolysis) and 97.05% Faradaic efficiency, which further evident its catalytic excellency. These findings explore the intrinsic properties of MOF-based electrocatalysts and prospect the suitability for future water electrolysis.
Collapse
Affiliation(s)
- Malaya K Sahoo
- National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute, (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, Jatni 752050, Odisha, India
| | - Aneeya K Samantara
- National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute, (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, Jatni 752050, Odisha, India
| | - J N Behera
- National Institute of Science Education and Research (NISER), Khordha 752050, Odisha, India.,Homi Bhabha National Institute, (HBNI), Mumbai 400094, India.,Centre for Interdisciplinary Sciences (CIS), NISER, Jatni 752050, Odisha, India
| |
Collapse
|
9
|
Gao J, Huang Q, Wu Y, Lan YQ, Chen B. Metal–Organic Frameworks for Photo/Electrocatalysis. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/aesr.202100033] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Junkuo Gao
- School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Qing Huang
- Department of Chemistry South China Normal University Guangzhou 510006 China
| | - Yuhang Wu
- School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Ya-Qian Lan
- Department of Chemistry South China Normal University Guangzhou 510006 China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA circle San Antonio TX 78249-0689 USA
| |
Collapse
|
10
|
Morales-Vidal J, García-Muelas R, Ortuño MA. Defects as catalytic sites for the oxygen evolution reaction in Earth-abundant MOF-74 revealed by DFT. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02163f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The oxygen evolution reaction (OER) is the bottleneck of hydrogen production via water splitting and understanding electrocatalysts at atomic level becomes paramount to enhance the efficiency of this process.
Collapse
Affiliation(s)
- Jordi Morales-Vidal
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology (BIST)
- 43007 Tarragona
- Spain
| | - Rodrigo García-Muelas
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology (BIST)
- 43007 Tarragona
- Spain
| | - Manuel A. Ortuño
- Institute of Chemical Research of Catalonia (ICIQ)
- Barcelona Institute of Science and Technology (BIST)
- 43007 Tarragona
- Spain
| |
Collapse
|
11
|
Liang Q, Chen J, Wang F, Li Y. Transition metal-based metal-organic frameworks for oxygen evolution reaction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213488] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213214] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|