1
|
Morisaki K, Furuki Y, Kousaka R, Nagai S, Oonishi Y, Sato Y. Reflexive Chirality Transfer (RCT): Asymmetric 1,3-Dipolar Cycloaddition of α-Amino Acid Schiff Base with Nonchiral Copper Catalyst. J Am Chem Soc 2025; 147:12740-12748. [PMID: 40168187 DOI: 10.1021/jacs.5c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Although optically pure α-amino acids are ubiquitous, their chirality is usually lost during the α-C-H deprotonation. Consequently, precious chiral catalysis has been necessary to synthesize optically active α-tetrasubstituted unnatural α-amino acid derivatives, even when starting with optically pure α-amino acids. However, here, we report a catalytic asymmetric 1,3-dipolar cycloaddition that preserves the α-carbon chirality of α-amino acid derivatives. This process directly converts readily available optically active α-amino acid Schiff bases into optically active α-tetrasubstituted pyrrolidine derivatives without external chiral additives, despite the temporary loss of α-carbon chirality through the formation of planar 1,3-dipole intermediates. Mechanistic studies revealed that the α-carbon chirality of the α-amino acid Schiff base is transiently transferred to metal-centered chirality in enolates and subsequently restored as the carbon-centered chirality of the products. This conceptually novel "reflexive chirality transfer (RCT)" strategy offers a simple and cost-effective approach to optically active unnatural α-amino acid derivatives, addressing the current limitations of chiral pool synthesis.
Collapse
Affiliation(s)
- Kazuhiro Morisaki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuto Furuki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Rento Kousaka
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Serika Nagai
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yoshihiro Oonishi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yoshihiro Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
2
|
Carretero JC, Rodríguez N, Adrio J. Metal catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides: structural diversity at the dipole partner. Chem Commun (Camb) 2025; 61:3821-3831. [PMID: 39945035 DOI: 10.1039/d4cc06484d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The 1,3-dipolar cycloaddition of azomethine ylides represents a versatile approach for synthesizing pyrrolidines, valuable structural motifs in synthetic and medicinal chemistry. However, most studies to date have relied predominantly on α-iminoesters as ylide precursors, thereby limiting the broader synthetic applications of this strategy. This feature article highlights alternative azomethine ylide precursors, beyond conventional α-iminoesters, which have facilitated the preparation of pyrrolidines with new subtitution patterns.
Collapse
Affiliation(s)
- Juan Carlos Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Nuria Rodríguez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Spain
| |
Collapse
|
3
|
Cheng X, Fu C, Chen BB, Chang X, Dong XQ, Wang CJ. Asymmetric Relay Catalysis Enables Unreactive Allylic Alcohols to Participate in 1,3-Dipolar Cycloaddition of Azomethine Ylides. J Am Chem Soc 2025; 147:5014-5024. [PMID: 39893690 DOI: 10.1021/jacs.4c14761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Current synthetic transformations occur readily with starting materials that possess both innate reactivity and steric accessibility or functional-group-oriented reactivity. However, achieving reactions with inactive feedstock substrates remains significantly challenging and normally requires cumbersome prior functional group manipulations. Herein, we report an unprecedented example of catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides with nonactivated alkenes enabled by copper/ruthenium relay catalysis. Key to the success is the temporary activation strategy initiated by oxidative dehydrogenation of inert allylic alcohols into electron-demanding reversed highly reactive enones, which triggers the ensuing Cu-catalyzed asymmetric 1,3-dipolar cycloaddition followed by reductive hydrogenation to deliver highly functionalized chiral pyrrolidines with the construction of two C-C bonds and four well-defined stereogenic centers in an atom-/step-economical and redox-neutral manner. This method features mild reaction conditions, operational simplicity, and broad substrate scope and is also characterized by formal dynamic kinetic resolution. Mechanistic studies and control experiments supported a typical borrowing-hydrogen cascade orthogonally merged with 1,3-dipolar cycloaddition and revealed that the superiority and reliability of relay catalysis are enabled by the controlled release of highly reactive but unstable enones to impede the undesired polymerization. It should be noted that up to four stereoisomers of the challenging and otherwise inaccessible pyrrolidines and cyclobutanes could be readily prepared through concise late-stage elaborations.
Collapse
Affiliation(s)
- Xiang Cheng
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Cong Fu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Bo-Bin Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Chang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiu-Qin Dong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Chun-Jiang Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Hanaya K, Taguchi K, Wada Y, Kawano M. One-Step Maleimide-Based Dual Functionalization of Protein N-Termini. Angew Chem Int Ed Engl 2025; 64:e202417134. [PMID: 39564713 PMCID: PMC11773299 DOI: 10.1002/anie.202417134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Maleimide derivatives are privileged reagents for chemically modifying proteins through the Michael addition reaction with cysteine due to their selectivity, operational simplicity, and commercial availability. However, since accessible free cysteine is rarely found in natural proteins, it is highly desirable to find alternative targets to enable direct bioconjugation of proteins with maleimides. In this study, we have developed an operationally simple and straightforward method for the N-terminal modification of proteins without the need for mutagenesis via a copper(II)-mediated [3+2] cycloaddition reaction with maleimides and 2-pyridinecarboxaldehyde (2-PCA) derivatives under non-denaturing conditions at pH 6 and 37 °C in aqueous media. Our method utilizes commercially available maleimides to attach diverse functionalities to various N-terminal amino acids. We demonstrate the preparation of a ternary protein complex cross-linked at the N-termini and dually modified trastuzumab equipped with monomethyl auristatin E (MMAE), a cytotoxic agent, and a Cy5 fluorophore (MMAE-Cy5-trastuzumab). MMAE-Cy5-trastuzumab retained human epidermal growth factor receptor 2 (HER2) recognition activity and exerted cytotoxicity against HER2-positive cells. Furthermore, MMAE-Cy5-trastuzumab allowed successful visualization of HER2-positive cancer cells in mouse tumors. This straightforward method will expand the accessibility of protein conjugates with well-defined structures in a wide range of research fields.
Collapse
Affiliation(s)
- Kengo Hanaya
- Faculty of PharmacyKeio University1-5-30 Shibakoen.Minato-kuTokyo105-8512Japan
| | - Kazuaki Taguchi
- Faculty of PharmacyKeio University1-5-30 Shibakoen.Minato-kuTokyo105-8512Japan
| | - Yuki Wada
- Department of ChemistrySchool of ScienceTokyo Institute of Technology2-12-1 OokayamaMeguro-kuTokyo152-8550Japan
| | - Masaki Kawano
- Department of ChemistrySchool of ScienceTokyo Institute of Technology2-12-1 OokayamaMeguro-kuTokyo152-8550Japan
| |
Collapse
|
5
|
Kim B, Lee H, Song I, Lee SY. Diastereodivergence in catalytic asymmetric conjugate addition of carbon nucleophiles. Chem Soc Rev 2025; 54:715-741. [PMID: 39661066 DOI: 10.1039/d4cs00485j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Catalytic asymmetric conjugate additions of carbon nucleophiles have emerged as a potent tool for constructing multi-stereogenic molecules with precise stereochemical control. This review explores the concept of diastereodivergence in such reactions, focusing on strategies to achieve selective access to diverse diastereomeric products upon carbon-carbon bond formation. Drawing from a rich array of examples, we delve into key approaches for controlling the stereochemical outcome of these transformations, including alteration of alkene geometry, fine-tuning of reaction parameters, synergistic catalysis, and isomerization of conjugate adducts. Additionally, we highlight the iterative strategies for conjugate additions, showcasing their potential for diastereodivergent synthesis of methyl-branched stereocenters in 1,3-relationships. By presenting a concentrated overview of this significant topic, this review aims to provide valuable insights into the design and execution of stereodivergent catalytic conjugate additions, offering new avenues for advancing stereoselective synthesis and structural diversity in organic synthesis.
Collapse
Affiliation(s)
- Byungjun Kim
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Hooseung Lee
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Ilwoo Song
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| | - Sarah Yunmi Lee
- Department of Chemistry, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
6
|
Gallent E, Alonso I, Carretero JC, Rodríguez N, Adrio J. Unnatural Cyclopeptide Synthesis via Cu-Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides. Org Lett 2024; 26:10394-10398. [PMID: 39560612 DOI: 10.1021/acs.orglett.4c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Cyclic peptides are valued synthetic targets in organic and medicinal chemistry. Herein, we report an efficient strategy for the synthesis of unnatural cyclic peptides via the Cu-catalyzed 1,3-dipolar cycloaddition of azomethylene ylides. Linear precursors of different lengths and bearing diverse amino acids (26 examples) are shown to be compatible with this method, affording good yields and complete endo-diastereoselectivities. Density functional theory (DFT) calculations support a stepwise mechanism in which Cu plays a key role in the preorganization of the reactants.
Collapse
Affiliation(s)
- Enrique Gallent
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Inés Alonso
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan C Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Kumar SV, Olusegun J, Guiry PJ. Zn(II)-catalyzed asymmetric [3 + 2] cycloaddition of acyclic enones with azomethine ylides. Org Biomol Chem 2024; 22:7148-7153. [PMID: 38920098 DOI: 10.1039/d4ob00854e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The Zn(II)/UCD-Imphanol-catalyzed highly endo-selective [3 + 2] asymmetric cycloaddition of acyclic enones and azomethine ylides has been developed. Moderate to high yields (up to 94%) with excellent endo/exo selectivities (99 : 1) and enantioselectivities up to 96.5 : 3.5 er were obtained.
Collapse
Affiliation(s)
- Sundaravel Vivek Kumar
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Jeremiah Olusegun
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
8
|
Chai GL, Wang X, Huang WY, Hou YJ, Chang J. Chiral-Boron Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of 2'-Hydroxychalcones with N-2,2,2-Trifluoroethylisatin Ketimines. J Org Chem 2024; 89:11607-11619. [PMID: 39088274 DOI: 10.1021/acs.joc.4c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
A highly efficient asymmetric [3 + 2] cycloaddition reaction of 2'-hydroxychalcones with N-2,2,2-trifluoroethylisatin ketimines catalyzed by a (R)-3,3'-I2-BINOL-boron complex was developed. A broad range of 3,2'-pyrrolidinyl spirooxindole derivatives bearing a CF3-substituted pyrrolidine moiety with four contiguous stereocenters was prepared in high yields with excellent diastereo- and enantioselectivities (up to >20:1 dr and >99% ee). This protocol had the characteristics of mild reaction conditions, high efficiency, and excellent stereocontrol.
Collapse
Affiliation(s)
- Guo-Li Chai
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiao Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei-Yu Huang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ya-Jing Hou
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Zhong H, Zhang XY, Yao YM, Chen WM, Wang W, Tian X. Asymmetric Organocatalytic 1,3-Dipolar Cycloaddition of Azomethine Ylides with β-Substituted Cyclic Enones. J Org Chem 2024; 89:9721-9732. [PMID: 38949994 DOI: 10.1021/acs.joc.3c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The enantioselective and diastereoselective control of 1,3-dipolar cycloaddition reactions to β-substituted cyclic enones has been developed. The 1,3-dipolar cycloaddition of phthalazinium dicyanomethanides with cyclic dienones affords chiral tetrahydropyrrolo[2,1-a]phthalazine derivatives 3 through vinylogous iminium ion activation by combining a cinchona-based primary amine C3 and a chiral camphorsulfonic acid additive. Conversely, with a weaker 3,5-bis(trifluoromethyl)benzoic acid additive, the 1,3-dipolar cycloaddition of phthalazinium dicyanomethanides with β-substituted cyclic enones leads to chiral hexahydroisoindolo[1,2-a]phthalazin-10(8H)-one derivatives 4 with excellent stereocontrol via endo-dienamine activation.
Collapse
Affiliation(s)
- Han Zhong
- The Fifth Affiliated Hospital and Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Xiao-Yi Zhang
- The Fifth Affiliated Hospital and Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Yong-Mou Yao
- The Fifth Affiliated Hospital and Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| | - Wen-Ming Chen
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, P. R. China
| | - Xu Tian
- The Fifth Affiliated Hospital and Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou 511436, China
| |
Collapse
|
10
|
Szymańska J, Rachwalski M, Pieczonka AM. Highly Efficient Asymmetric [3+2] Cycloaddition Promoted by Chiral Aziridine-Functionalized Organophosphorus Compounds. Molecules 2024; 29:3283. [PMID: 39064862 PMCID: PMC11279481 DOI: 10.3390/molecules29143283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
The asymmetric [3+2] cycloaddition of azomethine ylides generated from the corresponding imino ester-to-trans-β-nitrostyrene catalysis by chiral aziridine-containing phosphines and phosphine oxides is described. Of the sixteen stereoisomers that could be formed as a result of the title reaction, three were formed, two of which were obtained in an enantiomerically enriched or pure form, and one in a racemic form. One of the products underwent epimerization under basic reaction conditions.
Collapse
Affiliation(s)
- Julia Szymańska
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, PL-91-403 Lodz, Poland; (J.S.); (A.M.P.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, Matejki 21/23, PL-90-237 Lodz, Poland
| | - Michał Rachwalski
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, PL-91-403 Lodz, Poland; (J.S.); (A.M.P.)
| | - Adam M. Pieczonka
- Department of Organic and Applied Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, PL-91-403 Lodz, Poland; (J.S.); (A.M.P.)
| |
Collapse
|
11
|
Dai L, Zhao L, Xu D, Yang C, Zhang XK. Enhancing the Efficacy of Chiral Ligands and Catalysts: Siloxane-Substituted Oxazoline Ferrocenes as Next-Generation Candidates. Molecules 2024; 29:968. [PMID: 38474480 DOI: 10.3390/molecules29050968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Since the discovery of classical chiral oxazoline ferrocene ligands in 1995, they have become pivotal in transition metal-catalyzed asymmetric transformations. Over the past decade, a notable evolution has been observed with the emergence of siloxane-substituted oxazoline ferrocenes, demonstrating significant potential as chiral ligands and catalysts. These compounds have consistently delivered exceptional results in diverse and mechanistically distinct transformations, surpassing the capabilities of classical oxazoline ferrocene ligands. This review meticulously delineates the research progress on siloxane-substituted oxazoline ferrocene compounds. It encompasses the synthesis of crucial precursors and desired products, highlights their achievements in asymmetric catalysis reactions, and delves into the exploration of the derivatization of these compounds, emphasizing the introduction of ionophilic groups and their impact on the recovery of transition metal catalysts. In addition to presenting the current state of knowledge, this review propels future research directions by identifying potential topics for further investigation concerning the siloxane-tagged derivatives. These derivatives are poised to be promising candidates for the next generation of highly efficient ligands and catalysts.
Collapse
Affiliation(s)
- Li Dai
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Li Zhao
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Di Xu
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Chen Yang
- Collaborative Innovation Center for Efficient Utilization of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| | - Xin-Kuan Zhang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
12
|
Maclean I, Gallent E, Orozco O, Molina A, Rodríguez N, Adrio J, Carretero JC. Atroposelective Synthesis of Axially Chiral Naphthylpyrroles by a Catalytic Asymmetric 1,3-Dipolar Cycloaddition/Aromatization Sequence. Org Lett 2024; 26:922-927. [PMID: 38266629 PMCID: PMC10845160 DOI: 10.1021/acs.orglett.3c04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
A straightforward methodology for the enantioselective preparation of axially chiral 2-naphthylpyrroles has been developed. This protocol is based on a CuI/Fesulphos-catalyzed highly enantioselective 1,3-dipolar cycloaddition of an azomethine ylide followed by pyrrolidine alkylation and pyrrolidine to pyrrole oxidation. The mild conditions employed in the DDQ/blue light-mediated aromatization process facilitate an effective central-to-axial chirality transfer affording the corresponding pyrroles with high atroposelectivity.
Collapse
Affiliation(s)
- Ian Maclean
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Enrique Gallent
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Oscar Orozco
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Alba Molina
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Adrio
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan C. Carretero
- Departamento
de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute
for Advanced Research in Chemical Sciences (IAdChem) and Center for
Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
13
|
Alvarado-Castillo MA, Cortés-Mendoza S, Barquera-Lozada JE, Delgado F, Toscano RA, Ortega-Alfaro MC, López-Cortés JG. Well-defined Cu(I) complexes based on [N,P]-pyrrole ligands catalyzed a highly endoselective 1,3-dipolar cycloaddition. Dalton Trans 2024; 53:2231-2241. [PMID: 38193761 DOI: 10.1039/d3dt03692h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We herein report the synthesis and catalytic application of a new family of dinuclear Cu(I) complexes based on [N,P]-pyrrole ligands. The Cu(I) complexes (4a-d) were obtained in good yields and their catalytic properties were evaluated in the1,3-dipolar cycloaddition of azomethine ylides and electron-deficient alkenes. The air-stable complexes 4a-d exhibited high endo-diasteroselectivity to obtain substituted pyrrolidines, and the catalytic system showed excellent reactivity and wide substitution tolerance.
Collapse
Affiliation(s)
- Miguel A Alvarado-Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
- Departamento de Química Organica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Prol. Carpio y Plan de Ayala, S/N, CdMx, 11340, Mexico
| | - Salvador Cortés-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - José E Barquera-Lozada
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - Francisco Delgado
- Departamento de Química Organica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Prol. Carpio y Plan de Ayala, S/N, CdMx, 11340, Mexico
| | - Ruben A Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| | - M Carmen Ortega-Alfaro
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04510 CdMx, Mexico
| | - José G López-Cortés
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, C.P. 04360 CdMx, Mexico.
| |
Collapse
|
14
|
Rodríguez-Flórez LV, González-Marcos M, García-Mingüens E, Retamosa MDG, Kawase M, Selva E, Sansano JM. Phosphine Catalyzed Michael-Type Additions: The Synthesis of Glutamic Acid Derivatives from Arylidene- α-amino Esters. Molecules 2024; 29:342. [PMID: 38257255 PMCID: PMC10820836 DOI: 10.3390/molecules29020342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/28/2023] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
The reaction of arylidene-α-amino esters with electrophilic alkenes to yield Michael-type addition compounds is optimized using several phosphines as organocatalysts. The transformation is very complicated due to the generation of several final compounds, including those derived from the 1,3-dipolar cycloadditions. For this reason, the selection of the reaction conditions is a very complex task and the slow addition of the acrylic system is very important to complete the process. The study of the variation in the structural components of the starting imino ester is performed as well as the expansion of other electron-poor alkenes. The crude products have a purity higher than 90% in most cases without any purification. A plausible mechanism is detailed based on the bibliography and the experimental results. The synthesis of pyroglutamate entities, after the reduction of the imino group and cyclization, is performed in high yields. In addition, the hydrolysis of the imino group, under acidic media, represents a direct access to glutamate surrogates.
Collapse
Affiliation(s)
- Lesly V. Rodríguez-Flórez
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - María González-Marcos
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Eduardo García-Mingüens
- Medalchemy, S. L. Ancha de Castelar, 46-48, entlo. A. San Vicente del Raspeig, 03690 Alicante, Spain
| | - María de Gracia Retamosa
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Misa Kawase
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| | - Elisabet Selva
- Medalchemy, S. L. Ancha de Castelar, 46-48, entlo. A. San Vicente del Raspeig, 03690 Alicante, Spain
| | - José M. Sansano
- Departamento de Química Orgánica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica, Universidad de Alicante, Ctra. Alicante-San Vicente s/n, 03080 Alicante, Spain
| |
Collapse
|
15
|
Furuya S, Muroi K, Kanemoto K, Fukuzawa SI. Dipolarophile-Steered Formal Stereodivergent Synthesis of 2,5-cis/trans-Pyrrolidines Based on Asymmetric 1,3-Dipolar Cycloaddition of Imino Lactones. Chemistry 2023; 29:e202302609. [PMID: 37694523 DOI: 10.1002/chem.202302609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The stereodivergent asymmetric synthesis of 2,5-trans/cis pyrrolidines by 1,3-dipolar cycloaddition using two different types of activated alkenes is described. When ylidene-isoxazolones were employed as dipolarophiles, the Ag/(S,Sp )-iPr-FcPHOX-catalyzed asymmetric [3+2] cycloaddition of imino lactones proceeded with 2,5-trans selectivity. Subsequent decarboxylation of the isoxazolone rings produced pyrrolidines with 2,5-trans stereoretention. In the reaction using acyclic enones as activated alkenes, the Ag/(R,Sp )-ThioClickFerrophos complex-catalyzed asymmetric [3+2] cycloaddition afforded 2,5-cis substituted pyrrolidines in high yields and enantioselectivities. Therefore, these methods can be considered as a formal stereodivergent synthesis of 2,5-cis/trans pyrrolidines.
Collapse
Affiliation(s)
- Shohei Furuya
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kenji Muroi
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Kazuya Kanemoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shin-Ichi Fukuzawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| |
Collapse
|
16
|
Wang BR, Li YB, Zhang Q, Gao D, Tian P, Li Q, Yin L. Copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of 1,3-enynes and azomethine ylides. Nat Commun 2023; 14:4688. [PMID: 37542041 PMCID: PMC10403559 DOI: 10.1038/s41467-023-40409-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
Herein, we report a copper(I)-catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides and 1,3-enynes, which provides a series of chiral poly-substituted pyrrolidines in high regio-, diastereo-, and enantioselectivities. Both 4-aryl-1,3-enynes and 4-silyl-1,3-enynes serve as suitable dipolarophiles while 4-alkyl-1,3-enynes are inert. Moreover, the method is successfully applied in the construction of both tetrasubstituted stereogenic carbon centers and chiral spiro pyrrolidines. The DFT calculations are also conducted, which imply a concerted mechanism rather than a stepwise mechanism. Finally, various transformations started from the pyrrolidine bearing a triethylsilylethynyl group and centered on the alkyne group are achieved, which compensates for the inertness of 4-alkyl-1,3-enynes in the present reaction.
Collapse
Affiliation(s)
- Bo-Ran Wang
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qi Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Dingding Gao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Ping Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Qinghua Li
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Liang Yin
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center of TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.
| |
Collapse
|
17
|
Liu J, Zhang R, Mallick S, Patil S, Wientjens C, Flegel J, Krupp A, Strohmann C, Grassin C, Merten C, Pahl A, Grigalunas M, Waldmann H. A highly enantioselective intramolecular 1,3-dipolar cycloaddition yields novel pseudo-natural product inhibitors of the Hedgehog signalling pathway. Chem Sci 2023; 14:7936-7943. [PMID: 37502335 PMCID: PMC10370549 DOI: 10.1039/d3sc01240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023] Open
Abstract
De novo combination of natural product (NP) fragments by means of efficient, complexity- and stereogenic character-generating transformations to yield pseudo-natural products (PNPs) may explore novel biologically relevant chemical space. Pyrrolidine- and tetrahydroquinoline fragments rarely occur in combination in nature, such that PNPs that embody both fragments might represent novel NP-inspired chemical matter endowed with bioactivity. We describe the synthesis of pyrrolo[3,2-c]quinolines by means of a highly enantioselective intramolecular exo-1,3-dipolar cycloaddition catalysed by the AgOAc/(S)-DMBiphep complex. The cycloadditions proceeded in excellent yields (up to 98%) and with very high enantioselectivity (up to 99% ee). Investigation of the resulting PNP collection in cell-based assays monitoring different biological programmes led to the discovery of a structurally novel and potent inhibitor of the Hedgehog signalling pathway that targets the Smoothened protein.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Ruirui Zhang
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Shubhadip Mallick
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Sohan Patil
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Chantal Wientjens
- Faculty of Chemistry, Chemical Biology, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| | - Jana Flegel
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Anna Krupp
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| | - Carsten Strohmann
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| | - Corentin Grassin
- Faculty of Chemistry and Biochemistry, Organic Chemistry II, Ruhr University Bochum University-Street 150 44801 Bochum Germany
| | - Christian Merten
- Faculty of Chemistry and Biochemistry, Organic Chemistry II, Ruhr University Bochum University-Street 150 44801 Bochum Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
- Compound Management and Screening Center Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Michael Grigalunas
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
- Faculty of Chemistry, Chemical Biology, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| |
Collapse
|
18
|
Yavari I, Mohsenzadeh R, Ravaghi P, Safaei M. Synthesis of pyrrolidin-2-ylidenes and pyrrol-2-ylidenes via 1,3-dipolar cycloaddition of H-bond-assisted azomethine ylides to nitrostyrenes. Org Biomol Chem 2023. [PMID: 37309553 DOI: 10.1039/d3ob00725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen-bond-assisted azomethine ylides, generated from 2-(benzylamino)-2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)acetonitriles, undergo a formal Huisgen 1,3-dipolar cycloaddition with β-bromo-β-nitrostyrenes to afford a diastereoselective synthesis of highly substituted pyrrolidin-2-ylidene derivatives. When β-nitrostyrenes were used as the alkene component, 2-(4,5-diaryl-1,5-dihydro-2H-pyrrol-2-ylidene)-1H-indene-1,3(2H)-diones were obtained. Efficient conversion of pyrrolidene-2-ylidenes to the corresponding pyrrol-2-ylidenes takes place in refluxing 1-propanol in the presence of excess Et3N. Also, the structure of the pyrrolidene-2-ylidene derivative was determined by X-ray crystallography.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Ramin Mohsenzadeh
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Parisa Ravaghi
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Maryam Safaei
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| |
Collapse
|
19
|
Chen Z, Zhong W, Liu S, Zou T, Zhang K, Gong C, Guo W, Kong F, Nie L, Hu S, Wang H. Highly Stereodivergent Synthesis of Chiral C4-Ester-Quaternary Pyrrolidines: A Strategy for the Total Synthesis of Spirotryprostatin A. Org Lett 2023; 25:3391-3396. [PMID: 37162168 DOI: 10.1021/acs.orglett.3c00904] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this work, we disclose two sets of highly diastereo- and enantioselective [3 + 2] cycloadditions of iminoesters with various α-substituted acrylates, especially for sterically hindered and weakly activated α-aryl or alkyl-substituted acrylates and alkenal, alkynal, or unstable aliphatic aldehyde-derived iminoesters, catalyzed by the AgHMDS/DTBM-Segphos or Ag2O/CA-AA-Amidphos catalytic system, achieving the stereodivergent synthesis of chiral C4-ester-quaternary exo- or endo-pyrrolidines with high yields and excellent diastereo- and enantioselectivities (up to >99:1 dr and >99% ee). More importantly, the gram-scale synthetic exo-adduct displays significant applications in the aspect of realizing the total synthesis of the spirotryprostatin A alkaloid via nine steps in a 36% overall yield.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Wei Zhong
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Sihua Liu
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Ting Zou
- College of Life Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Kaiqiang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Chuliang Gong
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Wenyan Guo
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Feizhi Kong
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Libo Nie
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Shunqin Hu
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| | - Haifei Wang
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan 412007, P. R. China
| |
Collapse
|
20
|
Cristóbal C, Corral C, Carretero JC, Ribagorda M, Adrio J. Enantioselective transformations of 5-hydroxymethylfurfural via catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Chem Commun (Camb) 2023; 59:4336-4339. [PMID: 36943748 DOI: 10.1039/d3cc00499f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
A catalytic asymmetric 1,3-dipolar cycloaddition between iminoesters derived from 5-hydroxymethylfurfural (HMF) and different activated alkenes is reported. Excellent levels of diastereo and enantioselectivity were obtained when Fesulphos/CuI complex was used as catalyst. This metodology provides an effective and sustainable access to challenging enantioenriched heterocyclic scaffolds and represents one of the rare examples of catalytic asymmetric transformations using HMF as a starting material.
Collapse
Affiliation(s)
- Christian Cristóbal
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | - César Corral
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | - Juan C Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Maria Ribagorda
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
21
|
Beksultanova N, Doğan Ö. Asymmetric synthesis of aryl-substituted pyrrolidines by using CFAM ligand-AgOAc chiral system via 1,3-dipolar cycloaddition reaction. Chirality 2023. [PMID: 36941783 DOI: 10.1002/chir.23557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/23/2023]
Abstract
We have prepared a ligand library based on a ferrocenyl aziridinyl methanol core unit (simply called FAM) having a phenyl group, a cyclohexyl group, and a naphthyl group to be used in 1,3-dipolar cycloaddition (1,3-DC) reactions for the synthesis of chiral pyrrolidines. These chiral ligands were used with AgOAc in 1,3-DC reactions taking place between the aryl-substituted azomethine ylides and N-methylmaleimide as the dipolarophile. In each case, the expected aryl-substituted pyrrolidines were obtained in good to excellent yields with acceptable enantioselectivities favoring only the endo product. The chiral catalyst system CFAM4-AgOAc was also used in 1,3-DC reaction with different dipolarophiles such as dimethyl maleate, tert-butyl acrylate, methyl acrylate, trans-chalcone, and vinyl sulfone. In each case, the cycloadducts were obtained in acceptable yields albeit with low ee. Fortunately, it was possible to increase the ee up to >99% upon crystallization.
Collapse
Affiliation(s)
| | - Özdemir Doğan
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
22
|
Asad M, Arshad MN, Asiri AM, Musthafa TM, Khan SA, Rehan M, Oves M. Synthesis of N-Methylspiropyrrolidine Hybrids for Their Structural Characterization, Biological and Molecular Docking Studies. Polycycl Aromat Compd 2023; 43:2430-2443. [DOI: 10.1080/10406638.2022.2045330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Asad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - T.N. Mohammed Musthafa
- Research & Postgraduate Department of Chemistry, MES Kalladi College, Mannarkkad (Affiliated to University of Calicut), Kerala, India
| | - Salman A. Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Physical Sciences Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Mao XR, Wang Q, Zhuo SP, Xu LP. Reactivity and Selectivity of the Diels-Alder Reaction of Anthracene in [Pd 6L 4] 12+ Supramolecular Cages: A Computational Study. Inorg Chem 2023; 62:4330-4340. [PMID: 36863004 DOI: 10.1021/acs.inorgchem.3c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The field of supramolecular metal-organic cage catalysis has grown rapidly in recent years. However, theoretical studies regarding the reaction mechanism and reactivity and selectivity controlling factors for supramolecular catalysis are still underdeveloped. Herein, we demonstrate a detailed density functional theory study on the mechanism, catalytic efficiency, and regioselectivity of the Diels-Alder reaction in bulk solution and within two [Pd6L4]12+ supramolecular cages. Our calculations are consistent with experiments. The origins of the catalytic efficiency of the bowl-shaped cage 1 have been elucidated to be the host-guest stabilization of the transition states and the favorable entropy effect. The reasons for the switch of the regioselectivity from 9,10-addition to 1,4-addition within the octahedral cage 2 were attributed to the confinement effect and the noncovalent interactions. This work would shed light on the understanding of [Pd6L4]12+ metallocage-catalyzed reactions and provide a detailed mechanistic profile otherwise difficult to obtain from experiments. The findings of this study could also aid to the improvement and development of more efficient and selective supramolecular catalysis.
Collapse
Affiliation(s)
- Xin-Rui Mao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Shu-Ping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
24
|
Belabbes A, Retamosa MG, Foubelo F, Sirvent A, Nájera C, Yus M, Sansano JM. Pseudo-multicomponent 1,3-dipolar cycloaddition involving metal-free generation of unactivated azomethine ylides. Org Biomol Chem 2023; 21:1927-1936. [PMID: 36752549 DOI: 10.1039/d3ob00023k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The pseudo-multicomponent reaction between propargyl amine, an aldehyde and an electron-deficient alkene is described. The C-H activation takes place thermally and allows the obtaining of cycloadducts in very good yields with high diastereoselectivities. The relative configuration is determined by X-ray diffraction analysis of the chiral molecule, obtained as a single diastereoisomer, using a chiral maleimide. A brief study of the stability of the possible ylides involved in the process is also mentioned, confirming the high diastereoselectivity observed. The high functional group density of these cycloadducts permits the synthesis of complex heterocycles. After allylation or propargylation of the pyrrolidine nitrogen atom, RCM-DA cycloaddition or cyclotrimerization with an alkyne is studied, respectively. In this last example, the resulting tetracyclic structures are of potential interest as drugs for the treatment of cystic fibrosis.
Collapse
Affiliation(s)
- Asmaa Belabbes
- Departamento de Química Orgánica e Instituto de Síntesis Orgánica (ISO), University of Alicante, E-03080 Alicante, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, E-03080 Alicante, Spain
| | - María Gracia Retamosa
- Departamento de Química Orgánica e Instituto de Síntesis Orgánica (ISO), University of Alicante, E-03080 Alicante, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Departamento de Química Orgánica e Instituto de Síntesis Orgánica (ISO), University of Alicante, E-03080 Alicante, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, E-03080 Alicante, Spain
| | - Ana Sirvent
- Departamento de Química Orgánica e Instituto de Síntesis Orgánica (ISO), University of Alicante, E-03080 Alicante, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, E-03080 Alicante, Spain
| | - Miguel Yus
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, E-03080 Alicante, Spain
| | - José M Sansano
- Departamento de Química Orgánica e Instituto de Síntesis Orgánica (ISO), University of Alicante, E-03080 Alicante, Spain. .,Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, E-03080 Alicante, Spain
| |
Collapse
|
25
|
Kang SH, No J, Kim SG. Catalyst-free 1,3-dipolar [3 + 2] cycloadditions of N,N′-cyclic azomethine imines with β-substituted-α,β-unsaturated carbonyls: Access to highly regioselective functionalized N,N′-bicyclic pyrazolidinones. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
26
|
Recent Advances in Asymmetric Synthesis of Pyrrolidine-Based Organocatalysts and Their Application: A 15-Year Update. Molecules 2023; 28:molecules28052234. [PMID: 36903480 PMCID: PMC10005811 DOI: 10.3390/molecules28052234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
In 1971, chemists from Hoffmann-La Roche and Schering AG independently discovered a new asymmetric intramolecular aldol reaction catalyzed by the natural amino acid proline, a transformation now known as the Hajos-Parrish-Eder-Sauer-Wiechert reaction. These remarkable results remained forgotten until List and Barbas reported in 2000 that L-proline was also able to catalyze intermolecular aldol reactions with non-negligible enantioselectivities. In the same year, MacMillan reported on asymmetric Diels-Alder cycloadditions which were efficiently catalyzed by imidazolidinones deriving from natural amino acids. These two seminal reports marked the birth of modern asymmetric organocatalysis. A further important breakthrough in this field happened in 2005, when Jørgensen and Hayashi independently proposed the use of diarylprolinol silyl ethers for the asymmetric functionalization of aldehydes. During the last 20 years, asymmetric organocatalysis has emerged as a very powerful tool for the facile construction of complex molecular architectures. Along the way, a deeper knowledge of organocatalytic reaction mechanisms has been acquired, allowing for the fine-tuning of the structures of privileged catalysts or proposing completely new molecular entities that are able to efficiently catalyze these transformations. This review highlights the most recent advances in the asymmetric synthesis of organocatalysts deriving from or related to proline, starting from 2008.
Collapse
|
27
|
No J, Yun YJ, Kim SG. Chemodivergent 1,3-Dipolar Cycloadditions of C, N-Cyclic Azomethine Imines with γ-Sulfonamido-α,β-Unsaturated Ketones to Synthesize Tricyclic Dinitrogen-Fused Heterocycles. J Org Chem 2023; 88:1772-1785. [PMID: 36693432 DOI: 10.1021/acs.joc.2c02949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
1,3-Dipolar cycloadditions of C,N-cyclic azomethine imines with γ-NHTs-α,β-unsaturated ketones were developed to synthesize tricyclic dinitrogen-fused heterocycles. Highly functionalized tricyclic tetrahydroisoquinolines were readily obtained in good to high yields in the [3 + 2]-cycloaddition reaction of N-Bz-protected C,N-cyclic azomethine imines with γ-NHTs-α,β-unsaturated ketones under mild reaction conditions. Moreover, DABCO-catalyzed cycloaddition of N-Ts-protected C,N-cyclic azomethine imines with γ-NHTs-α,β-unsaturated ketones followed by cleavage of the tosyl group is a convenient route to synthesize tetrahydropyrazolo [5,1-a]isoquinolines in good yields with excellent diastereoselectivities.
Collapse
Affiliation(s)
- Jaeeun No
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Young Jae Yun
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| |
Collapse
|
28
|
Bhat AA, Tandon N, Singh I, Tandon R. Structure-activity relationship (SAR) and antibacterial activity of pyrrolidine based hybrids: A review. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
29
|
Azomethine Ylides-Versatile Synthons for Pyrrolidinyl-Heterocyclic Compounds. Molecules 2023; 28:molecules28020668. [PMID: 36677727 PMCID: PMC9866015 DOI: 10.3390/molecules28020668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Azomethine ylides are nitrogen-based three-atom components commonly used in [3+2]-cycloaddition reactions with various unsaturated 2π-electron components. These reactions are highly regio- and stereoselective and have attracted the attention of organic chemists with respect to the construction of diverse heterocycles potentially bearing four new contiguous stereogenic centers. This review article complies the most important [3+2]-cycloaddition reactions of azomethine ylides with various olefinic, unsaturated 2π-electron components (acyclic, alicyclic, heterocyclic, and exocyclic ones) reported over the past two decades.
Collapse
|
30
|
Tsujihara T, Kawano T, Sato K, Inagaki S, Takehara T, Suzuki T. Catalytic Enantioselective Construction of trans-Fused 2,3,3a,4,5,9b-Hexahydro-1H-pyrrolo[3,2-c]quinoline Derivatives by Intramolecular [3+2]-Cycloaddition. HETEROCYCLES 2023. [DOI: 10.3987/com-22-14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
31
|
Bhat AA, Tandon N, Tandon R. Pyrrolidine derivatives as antibacterial agents, current status and future prospects: a patent review. Pharm Pat Anal 2022; 11:187-198. [PMID: 36366974 DOI: 10.4155/ppa-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bacterial infections are increasingly epitomizing major global health concerns, with rising death rates. Since the most complete assessment of the worldwide impact of antimicrobial resistance to date, with over 1.2 million people dead in 2019 as a direct result of antibiotic-resistant bacterial infections. The majority of antimicrobial drugs have been associated with a multitude of adverse effects including financial costs as well. Pyrrolidine derivatives have sparked the interest of researchers to create novel synthetic molecules with minimal side effect and drawbacks. To close the research gap, the current review discusses the synthetic compounds with active pyrrolidine scaffolds, critical findings and most crucially the structure-activity relationship that affects the activity of the ring over the last one and half decade.
Collapse
Affiliation(s)
- Aeyaz A Bhat
- School of Chemical Engineering & Physical Science, Lovely Professional University, Phagwara, 144402, Punjab
| | - Nitin Tandon
- School of Chemical Engineering & Physical Science, Lovely Professional University, Phagwara, 144402, Punjab
| | - Runjhun Tandon
- School of Chemical Engineering & Physical Science, Lovely Professional University, Phagwara, 144402, Punjab
| |
Collapse
|
32
|
Lee HX, Li WM, Ang CW, Reimer K, Liu V, Patrick BO, Yeong KY, Lee CH. Regio- and stereoselective synthesis of dispiropyrrolizidines through 1,3-dipolar cycloaddition reaction: Inhibition of KRAS expression. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Kumar SV, Guiry PJ. Zinc‐Catalyzed Enantioselective [3+2] Cycloaddition of Azomethine Ylides Using Planar Chiral [2.2]Paracyclophane‐Imidazoline N,O‐ligands. Angew Chem Int Ed Engl 2022; 61:e202205516. [PMID: 35603757 PMCID: PMC9543521 DOI: 10.1002/anie.202205516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Sundaravel Vivek Kumar
- Centre for Synthesis and Chemical Biology (CSCB) School of Chemistry University College Dublin (UCD) Belfield, Dublin 4 Ireland
| | - Patrick J. Guiry
- Centre for Synthesis and Chemical Biology (CSCB) School of Chemistry University College Dublin (UCD) Belfield, Dublin 4 Ireland
| |
Collapse
|
34
|
Wang RQ, Shen C, Cheng X, Dong XQ, Wang CJ. Copper-catalyzed asymmetric propargylic substitution with salicylaldehyde-derived imine esters. Chem Commun (Camb) 2022; 58:8552-8555. [PMID: 35815621 DOI: 10.1039/d2cc01695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper-catalyzed asymmetric propargylic substitution with salicylaldehyde-derived imine esters and propargylic carbonates has been successfully realized, generating a wide range of chiral amino acid derivatives containing propargylic groups with excellent results (up to 95% yield and 94% ee). The ortho-hydroxy group of the salicylaldehyde-derived imine esters is crucial to increase the reactivity and stabilize the azomethine ylide, which may be due to the formation of an intramolecular hydrogen bond between the hydroxyl group and the imine group. A series of synthetic transformations were carried out to access other important chiral compounds, which displayed the synthetic versatility.
Collapse
Affiliation(s)
- Ruo-Qing Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| | - Chong Shen
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,Suzhou Institute of Wuhan University, Suzhou, Jiangsu, 215123, P. R. China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Suzhou Institute of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, 230021, China
| |
Collapse
|
35
|
Vardé M, Marino C, Repetto E, Varela OJ. Enantioselective Synthesis of 2,3,4,5‐Tetra(hydroxyalkyl)pyrrolidines through 1,3‐Dipolar Cycloadditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mariana Vardé
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Organic chemistry ARGENTINA
| | - Carla Marino
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Organic chemistry ARGENTINA
| | - Evangelina Repetto
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Organic chemistry ARGENTINA
| | - Oscar Jose Varela
- Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Organic Chemistry Pabellon 2, Ciudad Universitaria 1428 Buenos Aires ARGENTINA
| |
Collapse
|
36
|
Enantioselective 1,3-Dipolar Cycloaddition Using (Z)-α-Amidonitroalkenes as a Key Step to the Access to Chiral cis-3,4-Diaminopyrrolidines. Molecules 2022; 27:molecules27144579. [PMID: 35889453 PMCID: PMC9316397 DOI: 10.3390/molecules27144579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The enantioselective 1,3-dipolar cycloaddition between imino esters and (Z)-nitroalkenes bearing a masked amino group in the β-position was studied using several chiral ligands and silver salts. The optimized reaction conditions were directly applied to the study of the scope of the reaction. The determination of the absolute configuration was evaluated using NMR experiments and electronic circular dichroism (ECD). The reduction and hydrolysis of both groups was performed to generate in an excellent enantiomeric ratio the corresponding cis-2,3-diaminoprolinate.
Collapse
|
37
|
Yuan WC, Yang L, Zhao JQ, Du HY, Wang ZH, You Y, Zhang YP, Liu J, Zhang W, Zhou MQ. Copper-Catalyzed Umpolung of N-2,2,2-Trifluoroethylisatin Ketimines for the Enantioselective 1,3-Dipolar Cycloaddition with Benzo[ b]thiophene Sulfones. Org Lett 2022; 24:4603-4608. [PMID: 35704767 DOI: 10.1021/acs.orglett.2c01716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed umpolung of N-2,2,2-trifluoroethylisatin ketimines for the enantioselective 1,3-dipolar cycloaddition with benzo[b]thiophene sulfones was developed. Using a catalyst system consisting of an (S,Sp)-tBu-Phosferrox ligand, Cu(OTf)2, and Cs2CO3, a range of pentacyclic spirooxindoles containing pyrrolidine and benzo[b]sulfolane subunits were obtained in high efficiency with excellent regio-, diastereo-, and enantioselectivites under mild conditions. The practicality and versatility of the reaction were also demonstrated.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Lei Yang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Hong-Yan Du
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jiabin Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Wenjing Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
38
|
Cristóbal C, Gaviña D, Alonso I, Ribagorda M, Carretero JC, Del Pozo C, Adrio J. Catalytic enantioselective intramolecular 1,3-dipolar cycloaddition of azomethine ylides with fluorinated dipolarophiles. Chem Commun (Camb) 2022; 58:7805-7808. [PMID: 35735739 DOI: 10.1039/d2cc02902b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enantioselective synthesis of polycyclic fluorinated pyrrolidines has been achieved by Cu-catalyzed intramolecular 1,3-dipolar cycloaddition of azomethine ylides with fluorinated dipolarophiles. The method displays a wide scope and afforded the desired cycloadducts in high yields with up to 99% ee. These results demonstrate that fluoroalkyl substituents are excellent activating groups in this transformation.
Collapse
Affiliation(s)
- Christian Cristóbal
- Departamento de Química Orgánica, Facultad de Ciencias, C/Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Daniel Gaviña
- Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Spain.
| | - Inés Alonso
- Departamento de Química Orgánica, Facultad de Ciencias, C/Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - María Ribagorda
- Departamento de Química Orgánica, Facultad de Ciencias, C/Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan C Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, C/Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| | - Carlos Del Pozo
- Departamento de Química Orgánica, Universidad de Valencia, E-46100 Burjassot, Spain.
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, C/Francisco Tomás y Valiente 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain.,Centro de Innovación en Química Avanzada (ORFEO-CINQA), Spain
| |
Collapse
|
39
|
Murtinho D, Elisa da Silva Serra M. Transition Metal Catalysis in Synthetic Heterocyclic Chemistry. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Kumar SV, Guiry PJ. Zinc‐Catalyzed Enantioselective [3+2] Cycloaddition of Azomethine Ylides Using Planar Chiral [2.2]Paracyclophane‐Imidazoline N,O‐ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sundaravel Vivek Kumar
- Centre for Synthesis and Chemical Biology (CSCB) School of Chemistry University College Dublin (UCD) Belfield, Dublin 4 Ireland
| | - Patrick J. Guiry
- Centre for Synthesis and Chemical Biology (CSCB) School of Chemistry University College Dublin (UCD) Belfield, Dublin 4 Ireland
| |
Collapse
|
41
|
Zhang MM, Qu BL, Shi B, Xiao WJ, Lu LQ. High-order dipolar annulations with metal-containing reactive dipoles. Chem Soc Rev 2022; 51:4146-4174. [PMID: 35521739 DOI: 10.1039/d1cs00897h] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Medium-sized heterocycles are widespread among a spectrum of structurally intriguing and biologically significant natural products and synthetic pharmaceuticals. Metal-catalyzed high-order dipolar annulations resembling reactions of metal-containing reactive dipoles with dipolarophiles constitute a highly efficient and flexible strategy for constructing medium-sized heterocycles. Mechanistically, these annulation reactions usually proceeding through stepwise pathways are different from the classic high-order pericyclic reactions that follow the Woodward-Hoffman rules. More significantly, asymmetric high-order dipolar annulations using chiral organometallic catalysts have been proven successful for constructing chiral medium-sized heterocycles with high enantio- and diastereoselectivity. This review highlights the impressive advances in this area and is focused on the reactivity, scope, mechanisms and applications of high-order dipolar annulation reactions.
Collapse
Affiliation(s)
- Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bao-Le Qu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Bin Shi
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
42
|
Xiao L, Li B, Xiao F, Fu C, Wei L, Dang Y, Dong XQ, Wang CJ. Stereodivergent synthesis of enantioenriched azepino[3,4,5- cd]-indoles via cooperative Cu/Ir-catalyzed asymmetric allylic alkylation and intramolecular Friedel-Crafts reaction. Chem Sci 2022; 13:4801-4812. [PMID: 35655885 PMCID: PMC9067570 DOI: 10.1039/d1sc07271d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/27/2022] [Indexed: 12/20/2022] Open
Abstract
The development of enantioselective annulation reactions using readily available substrates for the construction of structurally and stereochemically diverse heterocycles is a compelling topic in diversity-oriented synthesis. Herein, we report efficient catalytic asymmetric formal 1,3-dipolar (3 + 4) cycloadditions of azomethine ylides with 4-indolyl allylic carbonates for the construction of azepino[3,4,5-cd]-indoles fused with a challenging seven-membered N-heterocycle, a frequently occurring tricyclic indole scaffold in bioactive compounds and pharmaceuticals. Through cooperative Cu/Ir-catalyzed asymmetric allylic alkylation followed by intramolecular Friedel-Crafts reaction, an array of azepino[3,4,5-cd]-indoles were obtained in good yields with excellent diastereo-/enantioselective control. More importantly, the full stereodivergence of this transformation was established via synergistic catalysis followed by acid-promoted epimerization, and up to eight stereoisomers of the cycloadducts bearing three stereogenic centers could be predictably achieved from the same set of starting materials for the first time. Quantum mechanical computations established a plausible mechanism for the synergistic Cu/Ir catalysis to stereodivergently introduce two vicinal stereocenters whose stereochemical information is remotely delivered across the fused azepine ring to control the third chiral center. Epimerization of the last center involves protonation-enabled reversal of the thermodynamically controlled relative configuration.
Collapse
Affiliation(s)
- Lu Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Fan Xiao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Cong Fu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
43
|
Furuya S, Kanemoto K, Fukuzawa SI. exo'-Selective Construction of Spirobipyrrolidines by the Silver-catalyzed Asymmetric [3+2] Cycloaddition of Imino Esters with 4-Benzylidene-2,3-dioxopyrrolidines. Chem Asian J 2022; 17:e202200239. [PMID: 35486803 DOI: 10.1002/asia.202200239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Abstract
The unprecedented Ag-catalyzed exo ' -selective [3+2] cycloaddition of imino esters with 4-benzylidene-2,3-dioxopyrrolidines is described. The reaction was efficiently catalyzed by AgOAc/( R , S p )-ThioClickFerrophos (TCF) leading to the construction of the corresponding spirobipyrrolidine scaffolds in excellent enantio- and diastereoselectivities. This reaction is the first example of a silver-catalyzed exo ' -selective asymmetric [3+2] cycloaddition, as well as the first exo ' -selective spirobipyrrolidine construction via a [3+2] cycloaddition process using imino esters. The wide substrate scope of this reaction enabled the preparation of structurally diverse spirobipyrrolidine derivatives, which are attracting attention as targets for drug discovery. Mechanistic studies suggested that the unusual exo ' -selectivity of this reaction is not due to epimerization following the common exo - or endo -selective cycloaddition, but instead is due to a stepwise Michael addition/Mannich sequence with bond rotation.
Collapse
Affiliation(s)
- Shohei Furuya
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, 112-8551, Tokyo, Japan
| | - Kazuya Kanemoto
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, 112-8551, Tokyo, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, 980-8578, Sendai, Japan
| | - Shin-Ichi Fukuzawa
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga Bunkyo-ku, 112-8551, Tokyo, Japan
| |
Collapse
|
44
|
Chernykh AV, Chernykh AV, Radchenko DS, Chheda PR, Rusanov EB, Grygorenko OO, Spies MA, Volochnyuk DM, Komarov IV. A stereochemical journey around spirocyclic glutamic acid analogs. Org Biomol Chem 2022; 20:3183-3200. [PMID: 35348173 PMCID: PMC10170626 DOI: 10.1039/d2ob00146b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical divergent synthetic approach is reported for the library of regio- and stereoisomers of glutamic acid analogs built on the spiro[3.3]heptane scaffold. Formation of the spirocyclic scaffold was achieved starting from a common precursor - an O-silylated 2-(hydroxymethyl)cyclobutanone derivative. Its olefination required using the titanium-based Tebbe protocol since the standard Wittig reaction did not work with this particular substrate. The construction of the second cyclobutane ring of the spirocyclic system was achieved through either subsequent dichloroketene addition or Meinwald oxirane rearrangement as the key synthetic steps, depending on the substitution patterns in the target compounds (1,6- or 1,5-, respectively). Further modified Strecker reaction of the resulting racemic spirocyclic ketones with the Ellman's sulfinamide as a chiral auxiliary had low to moderate diastereoselectivity; nevertheless, all stereoisomers were isolated in pure form via chromatographic separation, and their absolute configuration was confirmed by X-ray crystallography. Members of the library were tested for the inhibitory activity against H. pylori glutamate racemase.
Collapse
Affiliation(s)
- Anton V Chernykh
- Enamine Ltd, Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine.
| | | | - Dmytro S Radchenko
- Enamine Ltd, Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine.
| | - Pratik Rajesh Chheda
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutics and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City 52246, Iowa, USA
| | - Eduard B Rusanov
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd, Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine.
| | - M Ashley Spies
- Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutics and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City 52246, Iowa, USA
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City 52246, Iowa, USA
| | - Dmitriy M Volochnyuk
- Enamine Ltd, Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine.
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Street 5, Kyiv 02660, Ukraine
| | - Igor V Komarov
- Enamine Ltd, Chervonotkatska Street 78, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv 01601, Ukraine.
| |
Collapse
|
45
|
Chang X, Cheng X, Wang CJ. Catalytic asymmetric synthesis of enantioenriched α-deuterated pyrrolidine derivatives. Chem Sci 2022; 13:4041-4049. [PMID: 35440992 PMCID: PMC8985513 DOI: 10.1039/d2sc00826b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
The recent promising applications of deuterium-labeled pharmaceutical compounds have led to an urgent need for the efficient synthetic methodologies that site-specifically incorporate a deuterium atom into bioactive molecules. Nevertheless, precisely building a deuterium-containing stereogenic center, which meets the requirement for optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of chiral drug candidates, remains a significant challenge in organic synthesis. Herein, a catalytic asymmetric strategy combining H/D exchange (H/D-Ex) and azomethine ylide-involved 1,3-dipolar cycloaddition (1,3-DC) was developed for the construction of biologically important enantioenriched α-deuterated pyrrolidine derivatives in good yields with excellent stereoselectivities and uniformly high levels of deuterium incorporation. Directly converting glycine-derived aldimine esters into the deuterated counterparts with D2O via Cu(i)-catalyzed H/D-Ex, and the subsequent thermodynamically/kinetically favored cleavage of the α-C-H bond rather than the α-C-D bond to generate the key N-metallated α-deuterated azomethine ylide species for the ensuing 1,3-DC are crucial to the success of α-deuterated chiral pyrrolidine synthesis. The current protocol exhibits remarkable features, such as readily available substrates, inexpensive and safe deuterium source, mild reaction conditions, and easy manipulation. Notably, the synthetic utility of a reversed 1,3-DC/[H/D-Ex] protocol has been demonstrated by catalytic asymmetric synthesis of deuterium-labelled MDM2 antagonist idasanutlin (RG7388) with high deuterium incorporation.
Collapse
Affiliation(s)
- Xin Chang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| | - Xiang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
46
|
Corpas J, Mauleón P, Gómez Arrayás R, Carretero JC. E/Z
Photoisomerization of Olefins as an Emergent Strategy for the Control of Stereodivergence in Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Pablo Mauleón
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Ramón Gómez Arrayás
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| | - Juan C. Carretero
- Department of Organic Chemistry Institute for Advanced Research in Chemical Sciences (IAdChem) Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid Cantoblanco 28049 Madrid Spain
| |
Collapse
|
47
|
Borisova SV, Sorokin VV. Synthesis of New Spiroindolinopyrrolidines. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Bhat AA, Tandon N, Tandon R. Pyrrolidine Derivatives as Anti‐diabetic Agents: Current Status and Future Prospects. ChemistrySelect 2022. [DOI: 10.1002/slct.202103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aeyaz Ahmad Bhat
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Nitin Tandon
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| | - Runjhun Tandon
- Department of Chemistry School of Physical Sciences Lovely Professional University Phagwara 144411 India
| |
Collapse
|
49
|
Pookkandam Parambil S, Pulikkal Veettil S, Dehaen W. The Synthesis of Five-Membered N-Heterocycles by Cycloaddition of Nitroalkenes with (In)Organic Azides and Other 1,3-Dipoles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1547-0196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractCycloaddition reactions have emerged as rapid and powerful methods for constructing heterocycles and carbocycles. [3+2] Cycloadditions of nitroalkenes with various 1,3-dipoles have been an interesting research area for many organic chemists. This review outlines the synthesis of N-substituted and NH-1,2,3-triazoles along with other five-membered N-heterocycles through cycloaddition reactions of nitroalkenes.1 Introduction2 Synthesis of 1,2,3-Triazoles2.1 Synthesis of NH-1,2,3-Triazoles2.2 Synthesis of N-Substituted 1,2,3-Triazoles3 Synthesis of Pyrrolidines and Pyrroles4 Synthesis of Pyrazoles5 Conclusion
Collapse
Affiliation(s)
- Shandev Pookkandam Parambil
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven
- Department of Applied Chemistry, Cochin University of Science and Technology
| | | | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven
| |
Collapse
|
50
|
Zhao JQ, Zhou S, Qian HL, Wang ZH, Zhang YP, You Y, Yuan WC. Higher-order [10 + 2] cycloaddition of 2-alkylidene-1-indanones enables the dearomatization of 3-nitroindoles: access to polycyclic cyclopenta[ b]indoline derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo00289b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The higher-order [10 + 2] cycloaddition of 3-nitroindoles and 2-alkylidene-1-indanones enables the dearomatization of 3-nitroindoles and affords a range of structurally diverse cyclopenta[b]indolines with excellent results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hui-Ling Qian
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|